
S T E A D Y  H E AT  C O N D U C T I O N

In heat transfer analysis, we are often interested in the rate of heat transfer
through a medium under steady conditions and surface temperatures. Such
problems can be solved easily without involving any differential equations

by the introduction of thermal resistance concepts in an analogous manner to
electrical circuit problems. In this case, the thermal resistance corresponds
to electrical resistance, temperature difference corresponds to voltage, and the
heat transfer rate corresponds to electric current.

We start this chapter with one-dimensional steady heat conduction in
a plane wall, a cylinder, and a sphere, and develop relations for thermal resis-
tances in these geometries. We also develop thermal resistance relations for
convection and radiation conditions at the boundaries. We apply this concept
to heat conduction problems in multilayer plane walls, cylinders, and spheres
and generalize it to systems that involve heat transfer in two or three dimen-
sions. We also discuss the thermal contact resistance and the overall heat
transfer coefficient and develop relations for the critical radius of insulation
for a cylinder and a sphere. Finally, we discuss steady heat transfer from
finned surfaces and some complex geometrics commonly encountered in
practice through the use of conduction shape factors.
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3–1 STEADY HEAT CONDUCTION IN PLANE WALLS
Consider steady heat conduction through the walls of a house during a winter
day. We know that heat is continuously lost to the outdoors through the wall.
We intuitively feel that heat transfer through the wall is in the normal direc-
tion to the wall surface, and no significant heat transfer takes place in the wall
in other directions (Fig. 3–1).

Recall that heat transfer in a certain direction is driven by the temperature
gradient in that direction. There will be no heat transfer in a direction in which
there is no change in temperature. Temperature measurements at several loca-
tions on the inner or outer wall surface will confirm that a wall surface is
nearly isothermal. That is, the temperatures at the top and bottom of a wall
surface as well as at the right or left ends are almost the same. Therefore, there
will be no heat transfer through the wall from the top to the bottom, or from
left to right, but there will be considerable temperature difference between the
inner and the outer surfaces of the wall, and thus significant heat transfer in
the direction from the inner surface to the outer one.

The small thickness of the wall causes the temperature gradient in that
direction to be large. Further, if the air temperatures in and outside the house
remain constant, then heat transfer through the wall of a house can be modeled
as steady and one-dimensional. The temperature of the wall in this case
will depend on one direction only (say the x-direction) and can be expressed
as T(x).

Noting that heat transfer is the only energy interaction involved in this case
and there is no heat generation, the energy balance for the wall can be ex-
pressed as

or

Q
·

in � Q
·

out � (3-1)

But dEwall /dt � 0 for steady operation, since there is no change in the temper-
ature of the wall with time at any point. Therefore, the rate of heat transfer into
the wall must be equal to the rate of heat transfer out of it. In other words, the
rate of heat transfer through the wall must be constant, Q

·
cond, wall � constant.

Consider a plane wall of thickness L and average thermal conductivity k.
The two surfaces of the wall are maintained at constant temperatures of
T1 and T2. For one-dimensional steady heat conduction through the wall,
we have T(x). Then Fourier’s law of heat conduction for the wall can be
expressed as

Q
·

cond, wall � �kA (W) (3-2)

where the rate of conduction heat transfer Q
·

cond wall and the wall area A are
constant. Thus we have dT/dx � constant, which means that the temperature

dT
dx

dEwall

dt

� Rate of
heat transfer
into the wall� � � Rate of

heat transfer
out of the wall� � �Rate of change

of the energy
of the wall �

�
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FIGURE 3–1
Heat flow through a wall is one-
dimensional when the temperature of
the wall varies in one direction only.
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through the wall varies linearly with x. That is, the temperature distribution in
the wall under steady conditions is a straight line (Fig. 3–2).

Separating the variables in the above equation and integrating from x � 0,
where T(0) � T1, to x � L, where T(L) � T2, we get

Q
·

cond, wall dx � � kA dT

Performing the integrations and rearranging gives

Q
·

cond, wall � kA (W) (3-3)

which is identical to Eq. 3–1. Again, the rate of heat conduction through
a plane wall is proportional to the average thermal conductivity, the wall
area, and the temperature difference, but is inversely proportional to the
wall thickness. Also, once the rate of heat conduction is available, the tem-
perature T(x) at any location x can be determined by replacing T2 in Eq. 3–3
by T, and L by x.

The Thermal Resistance Concept
Equation 3–3 for heat conduction through a plane wall can be rearranged as

Q
·

cond, wall � (W) (3-4)

where

Rwall � (°C/W) (3-5)

is the thermal resistance of the wall against heat conduction or simply the
conduction resistance of the wall. Note that the thermal resistance of a
medium depends on the geometry and the thermal properties of the medium.

The equation above for heat flow is analogous to the relation for electric
current flow I, expressed as

I � (3-6)

where Re � L/�e A is the electric resistance and V1 � V2 is the voltage differ-
ence across the resistance (�e is the electrical conductivity). Thus, the rate of
heat transfer through a layer corresponds to the electric current, the thermal
resistance corresponds to electrical resistance, and the temperature difference
corresponds to voltage difference across the layer (Fig. 3–3).

Consider convection heat transfer from a solid surface of area As and tem-
perature Ts to a fluid whose temperature sufficiently far from the surface is T�,
with a convection heat transfer coefficient h. Newton’s law of cooling for con-
vection heat transfer rate Q

·
conv � hAs (Ts � T�) can be rearranged as

Q
·

conv � (W) (3-7)
Ts � T�

Rconv

V1 � V2

Re

L
kA

T1 � T2

Rwall

T1 � T2

L

�T2

T�T1

�L

x�0
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FIGURE 3–2
Under steady conditions,

the temperature distribution in
a plane wall is a straight line.
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FIGURE 3–3
Analogy between thermal

and electrical resistance concepts.
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where

Rconv � (°C/W) (3-8)

is the thermal resistance of the surface against heat convection, or simply the
convection resistance of the surface (Fig. 3–4). Note that when the convec-
tion heat transfer coefficient is very large (h → �), the convection resistance
becomes zero and Ts � T�. That is, the surface offers no resistance to convec-
tion, and thus it does not slow down the heat transfer process. This situation is
approached in practice at surfaces where boiling and condensation occur. Also
note that the surface does not have to be a plane surface. Equation 3–8 for
convection resistance is valid for surfaces of any shape, provided that the as-
sumption of h � constant and uniform is reasonable.

When the wall is surrounded by a gas, the radiation effects, which we have
ignored so far, can be significant and may need to be considered. The rate of
radiation heat transfer between a surface of emissivity � and area As at tem-
perature Ts and the surrounding surfaces at some average temperature Tsurr can
be expressed as

Q
·

rad � �� As ( � ) � hrad As (Ts � Tsurr) � (W) (3-9)

where

Rrad � (K/W) (3-10)

is the thermal resistance of a surface against radiation, or the radiation re-
sistance, and

hrad � � ��( � (Ts � Tsurr) (W/m2 · K) (3-11)

is the radiation heat transfer coefficient. Note that both Ts and Tsurr must be
in K in the evaluation of hrad. The definition of the radiation heat transfer co-
efficient enables us to express radiation conveniently in an analogous manner
to convection in terms of a temperature difference. But hrad depends strongly
on temperature while hconv usually does not.

A surface exposed to the surrounding air involves convection and radiation
simultaneously, and the total heat transfer at the surface is determined by
adding (or subtracting, if in the opposite direction) the radiation and convec-
tion components. The convection and radiation resistances are parallel to each
other, as shown in Fig. 3–5, and may cause some complication in the thermal
resistance network. When Tsurr � T�, the radiation effect can properly be ac-
counted for by replacing h in the convection resistance relation by

hcombined � hconv � hrad (W/m2 · K) (3-12)

where hcombined is the combined heat transfer coefficient. This way all the
complications associated with radiation are avoided.

T 2
surr)T 2

s

Q·
rad

As(Ts � Tsurr)

1
hrad As

Ts � Tsurr

Rrad
T 4

surrT 4
s

1
hAs
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FIGURE 3–4
Schematic for convection
resistance at a surface.
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FIGURE 3–5
Schematic for convection and
radiation resistances at a surface.
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Thermal Resistance Network
Now consider steady one-dimensional heat flow through a plane wall of thick-
ness L, area A, and thermal conductivity k that is exposed to convection on
both sides to fluids at temperatures T�1 and T�2 with heat transfer coefficients
h1 and h2, respectively, as shown in Fig. 3–6. Assuming T�2 � T�1, the varia-
tion of temperature will be as shown in the figure. Note that the temperature
varies linearly in the wall, and asymptotically approaches T�1 and T�2 in the
fluids as we move away from the wall.

Under steady conditions we have

or

Q
·

� h1 A(T�1 � T1) � kA � h2 A(T2 � T�2) (3-13)

which can be rearranged as

Q
·

�

� (3-14)

Adding the numerators and denominators yields (Fig. 3–7)

Q
·

� (W) (3-15)
T� � T�2

Rtotal

T�1 � T1

Rconv, 1
�

T1 � T2

Rwall
�

T2 � T�2

Rconv, 2

T�1 � T1

1/h1 A
�

T1 � T2

L /kA
�

T2 � T�2

1/h2 A

T1 � T2

L

� Rate of
heat convection

into the wall � � � Rate of
heat conduction
through the wall� � � Rate of

heat convection
from the wall �
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FIGURE 3–6
The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides,

and the electrical analogy.
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where

Rtotal � Rconv, 1 � Rwall � Rconv, 2 � (°C/W) (3-16)

Note that the heat transfer area A is constant for a plane wall, and the rate of
heat transfer through a wall separating two mediums is equal to the tempera-
ture difference divided by the total thermal resistance between the mediums.
Also note that the thermal resistances are in series, and the equivalent thermal
resistance is determined by simply adding the individual resistances, just like
the electrical resistances connected in series. Thus, the electrical analogy still
applies. We summarize this as the rate of steady heat transfer between two
surfaces is equal to the temperature difference divided by the total thermal re-
sistance between those two surfaces.

Another observation that can be made from Eq. 3–15 is that the ratio of the
temperature drop to the thermal resistance across any layer is constant, and
thus the temperature drop across any layer is proportional to the thermal
resistance of the layer. The larger the resistance, the larger the temperature
drop. In fact, the equation Q

·
� 	T/R can be rearranged as

	T � Q
·
R (°C) (3-17)

which indicates that the temperature drop across any layer is equal to the rate
of heat transfer times the thermal resistance across that layer (Fig. 3–8). You
may recall that this is also true for voltage drop across an electrical resistance
when the electric current is constant.

It is sometimes convenient to express heat transfer through a medium in an
analogous manner to Newton’s law of cooling as

Q
·

� UA 	T (W) (3-18)

where U is the overall heat transfer coefficient. A comparison of Eqs. 3–15
and 3–18 reveals that

1
h1 A

�
L
kA

�
1

h2 A
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FIGURE 3–8
The temperature drop across a layer is
proportional to its thermal resistance.
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UA � (3-19)

Therefore, for a unit area, the overall heat transfer coefficient is equal to the
inverse of the total thermal resistance.

Note that we do not need to know the surface temperatures of the wall in or-
der to evaluate the rate of steady heat transfer through it. All we need to know
is the convection heat transfer coefficients and the fluid temperatures on both
sides of the wall. The surface temperature of the wall can be determined as
described above using the thermal resistance concept, but by taking the
surface at which the temperature is to be determined as one of the terminal
surfaces. For example, once Q

·
is evaluated, the surface temperature T1 can be

determined from

Q
·

� (3-20)

Multilayer Plane Walls
In practice we often encounter plane walls that consist of several layers of dif-
ferent materials. The thermal resistance concept can still be used to determine
the rate of steady heat transfer through such composite walls. As you may
have already guessed, this is done by simply noting that the conduction resis-
tance of each wall is L/kA connected in series, and using the electrical analogy.
That is, by dividing the temperature difference between two surfaces at known
temperatures by the total thermal resistance between them.

Consider a plane wall that consists of two layers (such as a brick wall with
a layer of insulation). The rate of steady heat transfer through this two-layer
composite wall can be expressed as (Fig. 3–9)

Q
·

� (3-21)
T�1 � T�2

Rtotal

T�1 � T1

Rconv, 1
�

T�1 � T1

1/h1 A

1
Rtotal
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FIGURE 3–9
The thermal resistance network for
heat transfer through a two-layer
plane wall subjected to
convection on both sides.
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where Rtotal is the total thermal resistance, expressed as

Rtotal � Rconv, 1 � Rwall, 1 � Rwall, 2 � Rconv, 2

� (3-22)

The subscripts 1 and 2 in the Rwall relations above indicate the first and the
second layers, respectively. We could also obtain this result by following the
approach used above for the single-layer case by noting that the rate of steady
heat transfer Q

·
through a multilayer medium is constant, and thus it must be

the same through each layer. Note from the thermal resistance network that
the resistances are in series, and thus the total thermal resistance is simply the
arithmetic sum of the individual thermal resistances in the path of heat flow.

This result for the two-layer case is analogous to the single-layer case, ex-
cept that an additional resistance is added for the additional layer. This result
can be extended to plane walls that consist of three or more layers by adding
an additional resistance for each additional layer.

Once Q
·

is known, an unknown surface temperature Tj at any surface or in-
terface j can be determined from

Q
·

� (3-23)

where Ti is a known temperature at location i and Rtotal, i � j is the total thermal
resistance between locations i and j. For example, when the fluid temperatures
T�1 and T�2 for the two-layer case shown in Fig. 3–9 are available and Q

·
is

calculated from Eq. 3–21, the interface temperature T2 between the two walls
can be determined from (Fig. 3–10)

Q
·

� (3-24)

The temperature drop across a layer is easily determined from Eq. 3–17 by
multiplying Q

·
by the thermal resistance of that layer.

The thermal resistance concept is widely used in practice because it is intu-
itively easy to understand and it has proven to be a powerful tool in the solu-
tion of a wide range of heat transfer problems. But its use is limited to systems
through which the rate of heat transfer Q

·
remains constant; that is, to systems

involving steady heat transfer with no heat generation (such as resistance
heating or chemical reactions) within the medium.

T�1 � T2

Rconv, 1 � Rwall, 1
�

T�1 � T2

1
h1 A

�
L1

k1 A

Ti � Tj

Rtotal, i�j

1
h1 A

�
L1

k1 A
�

L2

k2 A
�

1
h2 A
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FIGURE 3–10
The evaluation of the surface and
interface temperatures when T�1 and
T�2 are given and Q

·
is calculated.

EXAMPLE 3–1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal con-
ductivity is k � 0.9 W/m · °C (Fig. 3–11). On a certain day, the temperatures of
the inner and the outer surfaces of the wall are measured to be 16°C and 2°C,
respectively. Determine the rate of heat loss through the wall on that day.

Wall

2°C

16°C

L = 0.3 m

A

5 m

3 m
Q
·

FIGURE 3–11
Schematic for Example 3–1.
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SOLUTION The two surfaces of a wall are maintained at specified tempera-
tures. The rate of heat loss through the wall is to be determined.
Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer is one-
dimensional since any significant temperature gradients will exist in the direc-
tion from the indoors to the outdoors. 3 Thermal conductivity is constant.
Properties The thermal conductivity is given to be k � 0.9 W/m · °C.
Analysis Noting that the heat transfer through the wall is by conduction and
the area of the wall is A � 3 m 
 5 m � 15 m2, the steady rate of heat transfer
through the wall can be determined from Eq. 3–3 to be

Q
·

� kA � (0.9 W/m · °C)(15 m2) � 630 W

We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from

Q
·

�

where

Rwall � � 0.02222°C/ W

Substituting, we get

Q
·

� � 630 W

Discussion This is the same result obtained earlier. Note that heat conduction
through a plane wall with specified surface temperatures can be determined
directly and easily without utilizing the thermal resistance concept. However,
the thermal resistance concept serves as a valuable tool in more complex heat
transfer problems, as you will see in the following examples.

(16 � 2)°C
0.02222°C/ W

L
kA

�
0.3 m

(0.9 W/m ·  °C)(15 m2)

	Twall

Rwall

(16 � 2)°C
0.3 m

T1 � T2

L

EXAMPLE 3–2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k � 0.78 W/m · °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors is �10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be h1 � 10 W/m2 · °C and h2 � 40 W/m2 · °C,
which includes the effects of radiation.

SOLUTION Heat loss through a window glass is considered. The rate of
heat transfer through the window and the inner surface temperature are to be
determined.
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Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients will ex-
ist in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.
Properties The thermal conductivity is given to be k � 0.78 W/m · °C.
Analysis This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 3–12. Noting that the area of the window is A � 0.8 m 
 1.5 m � 1.2 m2,
the individual resistances are evaluated from their definitions to be

Ri � Rconv, 1 � � 0.08333°C/ W

Rglass � � 0.00855°C/ W

Ro � Rconv, 2 � � 0.02083°C/ W

Noting that all three resistances are in series, the total resistance is

Rtotal � Rconv, 1 � Rglass � Rconv, 2 � 0.08333 � 0.00855 � 0.02083

� 0.1127°C/ W

Then the steady rate of heat transfer through the window becomes

Q
·

� � 266 W

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

Q
·

� → T1 � T�1 � Q
·
Rconv, 1

� 20°C � (266 W)(0.08333°C/ W)

� �2.2°C

Discussion Note that the inner surface temperature of the window glass will be
�2.2°C even though the temperature of the air in the room is maintained at
20°C. Such low surface temperatures are highly undesirable since they cause
the formation of fog or even frost on the inner surfaces of the glass when the
humidity in the room is high.

T�1 � T1

Rconv, 1

T�1 � T�2

Rtotal
�

[20 � (�10)]°C
0.1127°C/ W

1
h2 A

�
1

(40 W/m2 ·  °C)(1.2 m2)

L
kA

�
0.008 m

(0.78 W/m ·  °C)(1.2 m2)

1
h1 A

�
1

(10 W/m2 ·  °C)(1.2 m2)

T2

Rglass Ro

L = 8 mm

Ri

T1 T2

T1

h1 = 10 W/m2·°C h2 = 40 W/m2·°C

Glass

20°C

–10°C

T�1 T�2

FIGURE 3–12
Schematic for Example 3–2.

EXAMPLE 3–3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (k � 0.78 W/m · °C) separated by a 10-mm-wide
stagnant air space (k � 0.026 W/m · °C). Determine the steady rate of heat
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transfer through this double-pane window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is �10°C. Take the convection heat transfer coefficients on
the inner and outer surfaces of the window to be h1 � 10 W/m2 · °C and h2 �
40 W/m2 · °C, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.
Analysis This example problem is identical to the previous one except that
the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses that
enclose a 10-mm-wide stagnant air space. Therefore, the thermal resistance
network of this problem will involve two additional conduction resistances cor-
responding to the two additional layers, as shown in Fig. 3–13. Noting that the
area of the window is again A � 0.8 m 
 1.5 m � 1.2 m2, the individual re-
sistances are evaluated from their definitions to be

Ri � Rconv, 1 � � 0.08333°C/ W

R1 � R3 � Rglass � � 0.00427°C/ W

R2 � Rair � � 0.3205°C/ W

Ro � Rconv, 2 � � 0.02083°C/ W

Noting that all three resistances are in series, the total resistance is

Rtotal � Rconv, 1 � Rglass, 1 � Rair � Rglass, 2 � Rconv, 2

� 0.08333 � 0.00427 � 0.3205 � 0.00427 � 0.02083

� 0.4332°C/ W

Then the steady rate of heat transfer through the window becomes

Q
·

� � 69.2 W

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

T1 � T�1 � Q
·
R conv, 1 � 20°C � (69.2 W)(0.08333°C/ W) � 14.2°C

which is considerably higher than the �2.2°C obtained in the previous ex-
ample. Therefore, a double-pane window will rarely get fogged. A double-pane
window will also reduce the heat gain in summer, and thus reduce the air-
conditioning costs.

T�1 � T�2

Rtotal
�

[20 � (�10)]°C
0.4332°C/ W

1
h2 A

�
1

(40 W/m2 ·  °C)(1.2 m2)

L2

k2 A
�

0.01 m
(0.026 W/m ·  °C)(1.2 m2)

L1

k1 A
�

0.004 m
(0.78 W/m ·  °C)(1.2 m2)

1
h1 A

�
1

(10 W/m2 ·  °C)(1.2 m2)

T1
T2

T3

R1Ri R3R2

T4

10 mm

20°C
Air

Glass

–10°C

4 mm 4 mm

Ro T�2T�1

Glass

FIGURE 3–13
Schematic for Example 3–3.
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3–2 THERMAL CONTACT RESISTANCE
In the analysis of heat conduction through multilayer solids, we assumed
“perfect contact” at the interface of two layers, and thus no temperature drop
at the interface. This would be the case when the surfaces are perfectly smooth
and they produce a perfect contact at each point. In reality, however, even flat
surfaces that appear smooth to the eye turn out to be rather rough when ex-
amined under a microscope, as shown in Fig. 3–14, with numerous peaks and
valleys. That is, a surface is microscopically rough no matter how smooth it
appears to be.

When two such surfaces are pressed against each other, the peaks will form
good material contact but the valleys will form voids filled with air. As a re-
sult, an interface will contain numerous air gaps of varying sizes that act as
insulation because of the low thermal conductivity of air. Thus, an interface
offers some resistance to heat transfer, and this resistance per unit interface
area is called the thermal contact resistance, Rc. The value of Rc is deter-
mined experimentally using a setup like the one shown in Fig. 3–15, and as
expected, there is considerable scatter of data because of the difficulty in char-
acterizing the surfaces.

Consider heat transfer through two metal rods of cross-sectional area A that
are pressed against each other. Heat transfer through the interface of these two
rods is the sum of the heat transfers through the solid contact spots and the
gaps in the noncontact areas and can be expressed as

Q
·

� Q
·

contact � Q
·

gap (3-25)

It can also be expressed in an analogous manner to Newton’s law of cooling as

Q
·

� hc A 	Tinterface (3-26)

�
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FIGURE 3–14
Temperature distribution and heat flow

lines along two solid plates pressed
against each other for the case of

perfect and imperfect contact.

Layer 1

(a) Ideal (perfect) thermal contact (b) Actual (imperfect) thermal contact

Layer 2 Layer 1 Layer 2

Temperature
drop

∆TNo
temperature

drop

Temperature
distribution

Interface

T1 = T2

T1 

T2 

Interface

Cold
fluid

Applied load

Loading shaft
Alignment collar
Top plate
Steel ball
Pencil heaters
Heaters block

Bell jar
base plate

Bottom plate
Steel ball

Lower heat flux meter

Lower test specimen

Upper test specimen

Load cell

Cold plate

Thermocouples

Interface

FIGURE 3–15
A typical experimental setup for
the determination of thermal contact
resistance (from Song et al., Ref. 11).
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where A is the apparent interface area (which is the same as the cross-sectional
area of the rods) and 	Tinterface is the effective temperature difference at the
interface. The quantity hc, which corresponds to the convection heat transfer
coefficient, is called the thermal contact conductance and is expressed as

hc � (W/m2 · °C) (3-27)

It is related to thermal contact resistance by

Rc � (m2 · °C/W) (3-28)

That is, thermal contact resistance is the inverse of thermal contact conduc-
tance. Usually, thermal contact conductance is reported in the literature, but
the concept of thermal contact resistance serves as a better vehicle for ex-
plaining the effect of interface on heat transfer. Note that Rc represents ther-
mal contact resistance per unit area. The thermal resistance for the entire
interface is obtained by dividing Rc by the apparent interface area A.

The thermal contact resistance can be determined from Eq. 3–28 by
measuring the temperature drop at the interface and dividing it by the heat
flux under steady conditions. The value of thermal contact resistance depends
on the surface roughness and the material properties as well as the tem-
perature and pressure at the interface and the type of fluid trapped at the
interface. The situation becomes more complex when plates are fastened by
bolts, screws, or rivets since the interface pressure in this case is nonuniform.
The thermal contact resistance in that case also depends on the plate thick-
ness, the bolt radius, and the size of the contact zone. Thermal contact
resistance is observed to decrease with decreasing surface roughness 
and increasing interface pressure, as expected. Most experimentally deter-
mined values of the thermal contact resistance fall between 0.000005 and
0.0005 m2 · °C/W (the corresponding range of thermal contact conductance
is 2000 to 200,000 W/m2 · °C).

When we analyze heat transfer in a medium consisting of two or more lay-
ers, the first thing we need to know is whether the thermal contact resistance
is significant or not. We can answer this question by comparing the magni-
tudes of the thermal resistances of the layers with typical values of thermal
contact resistance. For example, the thermal resistance of a 1-cm-thick layer
of an insulating material per unit surface area is

Rc, insulation � � 0.25 m2 · °C/W

whereas for a 1-cm-thick layer of copper, it is

Rc, copper � � 0.000026 m2 · °C/W

Comparing the values above with typical values of thermal contact resistance,
we conclude that thermal contact resistance is significant and can even domi-
nate the heat transfer for good heat conductors such as metals, but can be

L
k

�
0.01 m

386 W/m ·  °C

L
k

�
0.01 m

0.04 W/m ·  °C

1
hc

�
	Tinterface

Q· /A

Q· /A
	Tinterface
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disregarded for poor heat conductors such as insulations. This is not surpris-
ing since insulating materials consist mostly of air space just like the inter-
face itself.

The thermal contact resistance can be minimized by applying a thermally
conducting liquid called a thermal grease such as silicon oil on the surfaces
before they are pressed against each other. This is commonly done when at-
taching electronic components such as power transistors to heat sinks. The
thermal contact resistance can also be reduced by replacing the air at the in-
terface by a better conducting gas such as helium or hydrogen, as shown in
Table 3–1.

Another way to minimize the contact resistance is to insert a soft metallic
foil such as tin, silver, copper, nickel, or aluminum between the two surfaces.
Experimental studies show that the thermal contact resistance can be reduced
by a factor of up to 7 by a metallic foil at the interface. For maximum effec-
tiveness, the foils must be very thin. The effect of metallic coatings on thermal
contact conductance is shown in Fig. 3–16 for various metal surfaces.

There is considerable uncertainty in the contact conductance data reported
in the literature, and care should be exercised when using them. In Table 3–2
some experimental results are given for the contact conductance between sim-
ilar and dissimilar metal surfaces for use in preliminary design calculations.
Note that the thermal contact conductance is highest (and thus the contact re-
sistance is lowest) for soft metals with smooth surfaces at high pressure.
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TABLE 3–1

Thermal contact conductance
for aluminum plates with different
fluids at the interface for a surface
roughness of 10 �m and interface
pressure of 1 atm (from Fried,
Ref. 5)

Contact
Fluid at the Conductance, hc,
Interface W/m2 · °C

Air 3640
Helium 9520

Hydrogen 13,900
Silicone oil 19,000

Glycerin 37,700
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104
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FIGURE 3–16
Effect of metallic coatings on
thermal contact conductance
(from Peterson, Ref. 10).

EXAMPLE 3–4 Equivalent Thickness for Contact Resistance

The thermal contact conductance at the interface of two 1-cm-thick aluminum
plates is measured to be 11,000 W/m2 · °C. Determine the thickness of the alu-
minum plate whose thermal resistance is equal to the thermal resistance of the
interface between the plates (Fig. 3–17).

SOLUTION The thickness of the aluminum plate whose thermal resistance
is equal to the thermal contact resistance is to be determined.
Properties The thermal conductivity of aluminum at room temperature is
k � 237 W/m · °C (Table A-3).
Analysis Noting that thermal contact resistance is the inverse of thermal con-
tact conductance, the thermal contact resistance is

Rc � � 0.909 
 10�4 m2 · °C/ W

For a unit surface area, the thermal resistance of a flat plate is defined as

R �

where L is the thickness of the plate and k is the thermal conductivity. Setting
R � Rc, the equivalent thickness is determined from the relation above to be

L � kRc � (237 W/m · °C)(0.909 
 10�4 m2 · °C/ W) � 0.0215 m � 2.15 cm

L
k

1
hc

�
1

11,000 W/m2 ·  °C
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TABLE 3–2

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Rough- Tempera- Pressure, hc,*
Material Condition ness, �m ture, °C MPa W/m2 · °C

Identical Metal Pairs
416 Stainless steel Ground 2.54 90–200 0.3–2.5 3800
304 Stainless steel Ground 1.14 20 4–7 1900
Aluminum Ground 2.54 150 1.2–2.5 11,400
Copper Ground 1.27 20 1.2–20 143,000
Copper Milled 3.81 20 1–5 55,500
Copper (vacuum) Milled 0.25 30 0.7–7 11,400

Dissimilar Metal Pairs
Stainless steel– 10 2900

Aluminum 20–30 20 20 3600

Stainless steel– 10 16,400
Aluminum 1.0–2.0 20 20 20,800

Steel Ct-30– 10 50,000
Aluminum Ground 1.4–2.0 20 15–35 59,000

Steel Ct-30– 10 4800
Aluminum Milled 4.5–7.2 20 30 8300

5 42,000
Aluminum-Copper Ground 1.3–1.4 20 15 56,000

10 12,000
Aluminum-Copper Milled 4.4–4.5 20 20–35 22,000

*Divide the given values by 5.678 to convert to Btu/h · ft2 · °F.

Plate
1

1 cm

Plate
2

Interface

1 cm

Plate
1

Equivalent
aluminum

layer

1 cm

Plate
2

2.15 cm 1 cm

FIGURE 3–17
Schematic for Example 3–4.

Discussion Note that the interface between the two plates offers as much re-
sistance to heat transfer as a 2.3–cm-thick aluminum plate. It is interesting
that the thermal contact resistance in this case is greater than the sum of the
thermal resistances of both plates.

EXAMPLE 3–5 Contact Resistance of Transistors

Four identical power transistors with aluminum casing are attached on one side
of a 1-cm-thick 20-cm 
 20-cm square copper plate (k � 386 W/m · °C) by
screws that exert an average pressure of 6 MPa (Fig. 3–18). The base area of
each transistor is 8 cm2, and each transistor is placed at the center of a 10-cm

 10-cm quarter section of the plate. The interface roughness is estimated to
be about 1.5 �m. All transistors are covered by a thick Plexiglas layer, which is
a poor conductor of heat, and thus all the heat generated at the junction of the
transistor must be dissipated to the ambient at 20°C through the back surface
of the copper plate. The combined convection/radiation heat transfer coefficient
at the back surface can be taken to be 25 W/m2 · °C. If the case temperature of
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20°C

Copper
plate

70°C

20 cm

1 cm

Plexiglas cover

FIGURE 3–18
Schematic for Example 3–5.

the transistor is not to exceed 70°C, determine the maximum power each
transistor can dissipate safely, and the temperature jump at the case-plate
interface.

SOLUTION Four identical power transistors are attached on a copper plate. For
a maximum case temperature of 70°C, the maximum power dissipation and the
temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be ap-
proximated as being one-dimensional, although it is recognized that heat con-
duction in some parts of the plate will be two-dimensional since the plate area
is much larger than the base area of the transistor. But the large thermal con-
ductivity of copper will minimize this effect. 3 All the heat generated at the
junction is dissipated through the back surface of the plate since the transistors
are covered by a thick Plexiglas layer. 4 Thermal conductivities are constant.

Properties The thermal conductivity of copper is given to be k � 386
W/m · °C. The contact conductance is obtained from Table 3–2 to be hc �
42,000 W/m2 · °C, which corresponds to copper-aluminum interface for the
case of 1.3–1.4 �m roughness and 5 MPa pressure, which is sufficiently close
to what we have.

Analysis The contact area between the case and the plate is given to be 8 cm2,
and the plate area for each transistor is 100 cm2. The thermal resistance net-
work of this problem consists of three resistances in series (interface, plate, and
convection), which are determined to be

Rinterface � � 0.030°C/ W

Rplate � � 0.0026°C/ W

Rconv � � 4.0°C/ W

The total thermal resistance is then

Rtotal � Rinterface � Rplate � Rambient � 0.030 � 0.0026 � 4.0 � 4.0326°C/ W

Note that the thermal resistance of a copper plate is very small and can be
ignored altogether. Then the rate of heat transfer is determined to be

Q
·

� � 12.4 W

Therefore, the power transistor should not be operated at power levels greater
than 12.4 W if the case temperature is not to exceed 70°C.

The temperature jump at the interface is determined from

	Tinterface � Q
·
R interface � (12.4 W)(0.030°C/ W) � 0.37°C

which is not very large. Therefore, even if we eliminate the thermal contact re-
sistance at the interface completely, we will lower the operating temperature of
the transistor in this case by less than 0.4°C.

	T
Rtotal

�
(70 � 20)°C
4.0326°C/ W

1
ho A

�
1

(25 W/m2 ·  °C)(0.01 m2)

L
kA

�
0.01 m

(386 W/m ·  °C)(0.01 m2)

1
hc Ac

�
1

(42,000 W/m2 ·  °C)(8 
 10�4 m2)
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3–3 GENERALIZED THERMAL RESISTANCE
NETWORKS

The thermal resistance concept or the electrical analogy can also be used to
solve steady heat transfer problems that involve parallel layers or combined
series-parallel arrangements. Although such problems are often two- or even
three-dimensional, approximate solutions can be obtained by assuming one-
dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3–19, which consists of two par-
allel layers. The thermal resistance network, which consists of two parallel re-
sistances, can be represented as shown in the figure. Noting that the total heat
transfer is the sum of the heat transfers through each layer, we have

Q
·

� Q
·

1 � Q
·

2 � � (T1 � T2) (3-29)

Utilizing electrical analogy, we get

Q
·

� (3-30)

where

→ Rtotal � (3-31)

since the resistances are in parallel.
Now consider the combined series-parallel arrangement shown in Fig.

3–20. The total rate of heat transfer through this composite system can again
be expressed as

Q
·

� (3-32)

where

Rtotal � R12 � R3 � Rconv � � R3 � Rconv (3-33)

and

R1 � , R2 � , R3 � , Rconv � (3-34)

Once the individual thermal resistances are evaluated, the total resistance and
the total rate of heat transfer can easily be determined from the relations
above.

The result obtained will be somewhat approximate, since the surfaces of the
third layer will probably not be isothermal, and heat transfer between the first
two layers is likely to occur.

Two assumptions commonly used in solving complex multidimensional
heat transfer problems by treating them as one-dimensional (say, in the 

1
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FIGURE 3–19
Thermal resistance

network for two parallel layers.
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Thermal resistance network for

combined series-parallel arrangement.

cen58933_ch03.qxd  9/10/2002  8:59 AM  Page 143



x-direction) using the thermal resistance network are (1) any plane wall nor-
mal to the x-axis is isothermal (i.e., to assume the temperature to vary in the
x-direction only) and (2) any plane parallel to the x-axis is adiabatic (i.e., to
assume heat transfer to occur in the x-direction only). These two assumptions
result in different resistance networks, and thus different (but usually close)
values for the total thermal resistance and thus heat transfer. The actual result
lies between these two values. In geometries in which heat transfer occurs pre-
dominantly in one direction, either approach gives satisfactory results.
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EXAMPLE 3–6 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm 
 22-cm cross section
horizontal bricks (k � 0.72 W/m · °C) separated by 3-cm-thick plaster layers
(k � 0.22 W/m · °C). There are also 2-cm-thick plaster layers on each side of
the brick and a 3-cm-thick rigid foam (k � 0.026 W/m · °C) on the inner side
of the wall, as shown in Fig. 3–21. The indoor and the outdoor temperatures are
20°C and �10°C, and the convection heat transfer coefficients on the inner
and the outer sides are h1 � 10 W/m2 · °C and h2 � 25 W/m2 · °C, respectively.
Assuming one-dimensional heat transfer and disregarding radiation, determine
the rate of heat transfer through the wall.

SOLUTION The composition of a composite wall is given. The rate of heat
transfer through the wall is to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer can be approximated as being one-dimensional since
it is predominantly in the x-direction. 3 Thermal conductivities are constant.
4 Heat transfer by radiation is negligible.
Properties The thermal conductivities are given to be k � 0.72 W/m · °C
for bricks, k � 0.22 W/m · °C for plaster layers, and k � 0.026 W/m · °C for the
rigid foam.
Analysis There is a pattern in the construction of this wall that repeats itself
every 25-cm distance in the vertical direction. There is no variation in the hori-
zontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion of
the wall, since it is representative of the entire wall.

Assuming any cross section of the wall normal to the x-direction to be
isothermal, the thermal resistance network for the representative section of
the wall becomes as shown in Fig. 3–21. The individual resistances are eval-
uated as:

Ri � Rconv, 1 � � 0.4°C/ W

R1 � Rfoam � � 4.6°C/ W

R2 � R6 � Rplaster, side �

� 0.36°C/ W

R3 � R5 � Rplaster, center �

� 48.48°C/ W

L
kA

�
0.16 m

(0.22 W/m ·  °C)(0.015 
 1 m2)

L
kA

�
0.02 m

(0.22 W/m ·  °C)(0.25 
 1 m2)

L
kA

�
0.03 m

(0.026 W/m ·  °C)(0.25 
 1 m2)

1
h1 A

�
1
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FIGURE 3–21
Schematic for Example 3–6.
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R4 � Rbrick � � 1.01°C/ W

Ro � Rconv, 2 � � 0.16°C/ W

The three resistances R3, R4, and R5 in the middle are parallel, and their equiv-
alent resistance is determined from

� 1.03 W/°C

which gives

Rmid � 0.97°C/ W

Now all the resistances are in series, and the total resistance is

Rtotal � Ri � R1 � R2 � Rmid � R6 � Ro

� 0.4 � 4.6 � 0.36 � 0.97 � 0.36 � 0.16

� 6.85°C/ W

Then the steady rate of heat transfer through the wall becomes

Q
·

� � 4.38 W (per 0.25 m2 surface area)

or 4.38/0.25 � 17.5 W per m2 area. The total area of the wall is A � 3 m 
 5
m � 15 m2. Then the rate of heat transfer through the entire wall becomes

Q
·

total � (17.5 W/m2)(15 m2) � 263 W

Of course, this result is approximate, since we assumed the temperature within
the wall to vary in one direction only and ignored any temperature change (and
thus heat transfer) in the other two directions.
Discussion In the above solution, we assumed the temperature at any cross
section of the wall normal to the x-direction to be isothermal. We could also
solve this problem by going to the other extreme and assuming the surfaces par-
allel to the x-direction to be adiabatic. The thermal resistance network in this
case will be as shown in Fig. 3–22. By following the approach outlined above,
the total thermal resistance in this case is determined to be Rtotal � 6.97°C/W,
which is very close to the value 6.85°C/ W obtained before. Thus either ap-
proach would give roughly the same result in this case. This example demon-
strates that either approach can be used in practice to obtain satisfactory
results.
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FIGURE 3–22
Alternative thermal resistance

network for Example 3–6 for the
case of surfaces parallel to the

primary direction of heat
transfer being adiabatic.
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