
Note that a heat transfer problem may involve different kinds of boundary
conditions on different surfaces. For example, a plate may be subject to heat
flux on one surface while losing or gaining heat by convection from the other
surface. Also, the two boundary conditions in a direction may be specified at
the same boundary, while no condition is imposed on the other boundary. For
example, specifying the temperature and heat flux at x � 0 of a plate of thick-
ness L will result in a unique solution for the one-dimensional steady temper-
ature distribution in the plate, including the value of temperature at the surface
x � L. Although not necessary, there is nothing wrong with specifying more
than two boundary conditions in a specified direction, provided that there is
no contradiction. The extra conditions in this case can be used to verify the
results.

2–5 SOLUTION OF STEADY ONE-DIMENSIONAL
HEAT CONDUCTION PROBLEMS

So far we have derived the differential equations for heat conduction in
various coordinate systems and discussed the possible boundary conditions.
A heat conduction problem can be formulated by specifying the applicable
differential equation and a set of proper boundary conditions.

In this section we will solve a wide range of heat conduction problems in
rectangular, cylindrical, and spherical geometries. We will limit our attention
to problems that result in ordinary differential equations such as the steady
one-dimensional heat conduction problems. We will also assume constant
thermal conductivity, but will consider variable conductivity later in this chap-
ter. If you feel rusty on differential equations or haven’t taken differential
equations yet, no need to panic. Simple integration is all you need to solve the
steady one-dimensional heat conduction problems.

The solution procedure for solving heat conduction problems can be sum-
marized as (1) formulate the problem by obtaining the applicable differential
equation in its simplest form and specifying the boundary conditions, (2) ob-
tain the general solution of the differential equation, and (3) apply the bound-
ary conditions and determine the arbitrary constants in the general solution
(Fig. 2–40). This is demonstrated below with examples.

�
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Heat transfer problem

Mathematical formulation
(Differential equation and

boundary conditions)

General solution of differential equation

Application of boundary conditions

Solution of the problem

FIGURE 2–40
Basic steps involved in the solution of
heat transfer problems.

T2T1

Plane
wall

0
L x

FIGURE 2–41
Schematic for Example 2–11.

EXAMPLE 2–11 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L � 0.2 m, thermal conductivity k �
1.2 W/m · °C, and surface area A � 15 m2. The two sides of the wall are main-
tained at constant temperatures of T1 � 120°C and T2 � 50°C, respectively, as
shown in Figure 2–41. Determine (a) the variation of temperature within the
wall and the value of temperature at x � 0.1 m and (b) the rate of heat con-
duction through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The vari-
ation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal
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conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.

Properties The thermal conductivity is given to be k � 1.2 W/m · °C.

Analysis (a) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

� 0

with boundary conditions

T(0) � T1 � 120°C

T(L) � T2 � 50°C

The differential equation is linear and second order, and a quick inspection of
it reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integration.
Noting that an integration reduces the order of a derivative by one, the general
solution of the differential equation above can be obtained by two simple suc-
cessive integrations, each of which introduces an integration constant.

Integrating the differential equation once with respect to x yields

� C1

where C1 is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, if we take the derivative of
this equation, we will obtain the original differential equation. This equation is
not the solution yet since it involves a derivative.

Integrating one more time, we obtain

T(x) � C1x � C2

which is the general solution of the differential equation (Fig. 2–42). The gen-
eral solution in this case resembles the general formula of a straight line whose
slope is C1 and whose value at x � 0 is C2. This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative indicates that the slope of the function remains constant.
Therefore, any straight line is a solution of this differential equation.

The general solution contains two unknown constants C1 and C2, and thus we
need two equations to determine them uniquely and obtain the specific solu-
tion. These equations are obtained by forcing the general solution to satisfy the
specified boundary conditions. The application of each condition yields one
equation, and thus we need to specify two conditions to determine the con-
stants C1 and C2.

When applying a boundary condition to an equation, all occurrences of the
dependent and independent variables and any derivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x’s by zero and T (x ) by T1. That is (Fig. 2–43),

T(0) � C1 � 0 � C2 → C2 � T1

dT
dx

d 2T
dx2

Differential equation:

� 0

Integrate:

� C1

Integrate again:

T(x) � C1x � C2

General Arbitrary
solution constants

dT
dx

d 2T
dx2

FIGURE 2–42
Obtaining the general solution of a

simple second order differential
equation by integration.

→ →→

Boundary condition:

T(0) � T1

General solution:

T(x) � C1x � C2

Applying the boundary condition:

T(x) � C1x � C2

↑ ↑
0 0{

T1

Substituting:

T1 � C1 � 0 � C2 → C2 � T1

It cannot involve x or T(x) after the
boundary condition is applied.

FIGURE 2–43
When applying a boundary condition
to the general solution at a specified

point, all occurrences of the dependent
and independent variables should be

replaced by their specified values
at that point.

�
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The second boundary condition can be interpreted as in the general solution, re-
place all the x’s by L and T (x ) by T2. That is,

T(L) � C1L � C2 → T2 � C1L � T1 → C1 �

Substituting the C1 and C2 expressions into the general solution, we obtain

T(x) � x � T1 (2-56)

which is the desired solution since it satisfies not only the differential equation
but also the two specified boundary conditions. That is, differentiating Eq.
2–56 with respect to x twice will give d 2T /dx 2, which is the given differential
equation, and substituting x � 0 and x � L into Eq. 2–56 gives T (0) � T1 and
T (L) � T2, respectively, which are the specified conditions at the boundaries.

Substituting the given information, the value of the temperature at x � 0.1 m
is determined to be

T(0.1 m) � (0.1 m) � 120°C � 85°C

(b) The rate of heat conduction anywhere in the wall is determined from
Fourier’s law to be

Q
·

wall � �kA � �kAC1 � �kA � kA (2-57)

The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

Q
·

� kA � (1.2 W/m · °C)(15 m2) � 6300 W

Discussion Note that under steady conditions, the rate of heat conduction
through a plane wall is constant.

(120 � 50)°C
0.2 m

T1 � T2

L

T1 � T2

L
T2 � T1

L
dT
dx

(50 � 120)°C
0.2 m

T2 � T1

L

T2 � T1

L

EXAMPLE 2–12 A Wall with Various Sets of Boundary Conditions

Consider steady one-dimensional heat conduction in a large plane wall of thick-
ness L and constant thermal conductivity k with no heat generation. Obtain ex-
pressions for the variation of temperature within the wall for the following pairs
of boundary conditions (Fig. 2–44):

(a) �k � q·0 � 40 W/cm2 and T(0) � T0 � 15°C

(b) �k � q·0 � 40 W/cm2 and �k � q·L � �25 W/cm2

(c) �k � q·0 � 40 W/cm2 and �k � q·0 � 40 W/cm2
dT(L)

dx
dT(0)

dx

dT(L)
dx

dT(0)
dx

dT(0)
dx
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FIGURE 2–44
Schematic for Example 2–12.

15°C

Plane
wall

T(x)
40 W/cm2

0

(a)

L x

Plane
wall

T(x)
40 W/cm2

25 W/cm2

0

(b)

L x

Plane
wall

T(x)
40 W/cm2

40 W/cm2

0

(c)

L x

SOLUTION This is a steady one-dimensional heat conduction problem with
constant thermal conductivity and no heat generation in the medium, and the
heat conduction equation in this case can be expressed as (Eq. 2–17)

� 0

whose general solution was determined in the previous example by direct inte-
gration to be

T(x) � C1x � C2

where C1 and C2 are two arbitrary integration constants. The specific solutions
corresponding to each specified pair of boundary conditions are determined as
follows.

(a) In this case, both boundary conditions are specified at the same boundary
at x � 0, and no boundary condition is specified at the other boundary at x � L.
Noting that

� C1

the application of the boundary conditions gives

�k � q·0 → �kC1 � q·0 → C1 � �

and

T(0) � T0 → T0 � C1 � 0 � C2 → C2 � T0

Substituting, the specific solution in this case is determined to be

T(x) � � � T0

Therefore, the two boundary conditions can be specified at the same boundary,
and it is not necessary to specify them at different locations. In fact, the fun-
damental theorem of linear ordinary differential equations guarantees that a

q·0
k

q·0
k

dT(0)
dx

dT
dx

d 2T
dx2
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Differential equation:

T �(x) � 0

General solution:

T(x) � C1x � C2

(a) Unique solution:

T(x) � � x � T0

(b) No solution:

T(x) � None

(c) Multiple solutions:

T(x) � � x � C2

↑
Arbitrary

q· 0

k��kT�(0) � q·0
�kT�(L) � q·0

��kT�(0) � q·0
�kT�(L) � q·L

q· 0

k��kT�(0) � q·0
T(0) � T0

FIGURE 2–45
A boundary-value problem may have a
unique solution, infinitely many
solutions, or no solutions at all.

unique solution exists when both conditions are specified at the same location.
But no such guarantee exists when the two conditions are specified at different
boundaries, as you will see below.

(b) In this case different heat fluxes are specified at the two boundaries. The
application of the boundary conditions gives

�k � q·0 → �kC1 � q·0 → C1 � �

and

�k � q·L → �kC1 � q·L → C1 � �

Since q·0 � q·L and the constant C1 cannot be equal to two different things at
the same time, there is no solution in this case. This is not surprising since this
case corresponds to supplying heat to the plane wall from both sides and ex-
pecting the temperature of the wall to remain steady (not to change with time).
This is impossible.

(c) In this case, the same values for heat flux are specified at the two bound-
aries. The application of the boundary conditions gives

�k � q·0 → �kC1 � q·0 → C1 � �

and

�k � q·0 → �kC1 � q·0 → C1 � �

Thus, both conditions result in the same value for the constant C1, but no value
for C2. Substituting, the specific solution in this case is determined to be

T(x) � � x � C2

which is not a unique solution since C2 is arbitrary. This solution represents a
family of straight lines whose slope is �q·0/k. Physically, this problem corre-
sponds to requiring the rate of heat supplied to the wall at x � 0 be equal to the
rate of heat removal from the other side of the wall at x � L. But this is a con-
sequence of the heat conduction through the wall being steady, and thus the
second boundary condition does not provide any new information. So it is not
surprising that the solution of this problem is not unique. The three cases dis-
cussed above are summarized in Figure 2–45.

q·0
k

q·0
k

dT(L)
dx

q·0
k

dT(0)
dx

q·L
k

dT(L)
dx

q·0
k

dT(0)
dx

EXAMPLE 2–13 Heat Conduction in the Base Plate of an Iron

Consider the base plate of a 1200-W household iron that has a thickness of
L � 0.5 cm, base area of A � 300 cm2, and thermal conductivity of k �
15 W/m · °C. The inner surface of the base plate is subjected to uniform heat
flux generated by the resistance heaters inside, and the outer surface loses
heat to the surroundings at T
 � 20°C by convection, as shown in Figure 2–46.

x

h

L

Insulation

Base plate
Resistance heater

1200 W

T
 = 20°C

300 cm2

FIGURE 2–46
Schematic for Example 2–13.
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Taking the convection heat transfer coefficient to be h � 80 W/m2 · °C and
disregarding heat loss by radiation, obtain an expression for the variation of
temperature in the base plate, and evaluate the temperatures at the inner and
the outer surfaces.

SOLUTION The base plate of an iron is considered. The variation of tempera-
ture in the plate and the surface temperatures are to be determined.
Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since the surface area of the base plate is
large relative to its thickness, and the thermal conditions on both sides are uni-
form. 3 Thermal conductivity is constant. 4 There is no heat generation in the
medium. 5 Heat transfer by radiation is negligible. 6 The upper part of the iron
is well insulated so that the entire heat generated in the resistance wires is
transferred to the base plate through its inner surface.
Properties The thermal conductivity is given to be k � 15 W/m · °C.
Analysis The inner surface of the base plate is subjected to uniform heat flux
at a rate of

q·0 � � � 40,000 W/m2

The outer side of the plate is subjected to the convection condition. Taking the
direction normal to the surface of the wall as the x-direction with its origin on
the inner surface, the differential equation for this problem can be expressed as
(Fig. 2–47)

� 0

with the boundary conditions

� k � q·0 � 40,000 W/m2

� k � h[T(L) � T
]

The general solution of the differential equation is again obtained by two suc-
cessive integrations to be

� C1

and

T(x) � C1x � C2 (a)

where C1 and C2 are arbitrary constants. Applying the first boundary condition,

�k � q·0 → �kC1 � q·0 → C1 � �

Noting that dT /dx � C1 and T (L) � C1L � C2, the application of the second
boundary condition gives

q·0
k

dT(0)
dx

dT
dx

dT(L)
dx

dT(0)
dx

d 2T
dx2

1200 W
0.03 m2

Q·
0

Abase

0

Heat flux Conduction

Base plate

L x

Convection

h
T


Conduction

–k = h[T(L) – T
]
dT(L)–——

dx

q0 = –k
dT(0)–——

dx
·

FIGURE 2–47
The boundary conditions on the base

plate of the iron discussed
in Example 2–13.
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�k � h[T(L) � T
] → � kC1 � h[(C1L � C2) � T
]

Substituting C1 � �q·0/k and solving for C2, we obtain

C2 � T
 � � L

Now substituting C1 and C2 into the general solution (a) gives

T(x) � T
 � q·0 � (b)

which is the solution for the variation of the temperature in the plate. The tem-
peratures at the inner and outer surfaces of the plate are determined by substi-
tuting x � 0 and x � L, respectively, into the relation (b):

T(0) � T
 � q·0 �

� 20°C � (40,000 W/m2) � � 533°C

and

T(L) � T
 � q·0 0 � � 20°C � � 520°C

Discussion Note that the temperature of the inner surface of the base plate
will be 13°C higher than the temperature of the outer surface when steady op-
erating conditions are reached. Also note that this heat transfer analysis enables
us to calculate the temperatures of surfaces that we cannot even reach. This ex-
ample demonstrates how the heat flux and convection boundary conditions are
applied to heat transfer problems.

40,000 W/m2

80 W/m2 ·  °C
1
h��

1
80 W/m2 ·  °C�� 0.005 m

15 W/m ·  °C

1
h��L

k

1
h��L � x

k

q·0
k

q·0
h

dT(L)
dx

EXAMPLE 2–14 Heat Conduction in a Solar Heated Wall

Consider a large plane wall of thickness L � 0.06 m and thermal conductivity
k � 1.2 W/m · °C in space. The wall is covered with white porcelain tiles that
have an emissivity of � � 0.85 and a solar absorptivity of � � 0.26, as shown
in Figure 2–48. The inner surface of the wall is maintained at T1 � 300 K at all
times, while the outer surface is exposed to solar radiation that is incident at a
rate of q· solar � 800 W/m2. The outer surface is also losing heat by radiation to
deep space at 0 K. Determine the temperature of the outer surface of the wall
and the rate of heat transfer through the wall when steady operating conditions
are reached. What would your response be if no solar radiation was incident on
the surface?

SOLUTION A plane wall in space is subjected to specified temperature on one
side and solar radiation on the other side. The outer surface temperature and
the rate of heat transfer are to be determined.

0

Plane wall

L x

ε
α

Conduction

Space

Radiation

Sola
r

T1

Sun

FIGURE 2–48
Schematic for Example 2–14.
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Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since the wall is large relative to its
thickness, and the thermal conditions on both sides are uniform. 3 Thermal
conductivity is constant. 4 There is no heat generation.
Properties The thermal conductivity is given to be k � 1.2 W/m · °C.
Analysis Taking the direction normal to the surface of the wall as the
x-direction with its origin on the inner surface, the differential equation for this
problem can be expressed as

� 0

with boundary conditions

T(0) � T1 � 300 K

�k � ��[T(L)4 � T 4
space] � �q·solar

where Tspace � 0. The general solution of the differential equation is again ob-
tained by two successive integrations to be

T(x) � C1x � C2 (a)

where C1 and C2 are arbitrary constants. Applying the first boundary condition
yields

T(0) � C1 � 0 � C2 → C2 � T1

Noting that dT /dx � C1 and T (L) � C1L � C2 � C1L � T1, the application of
the second boundary conditions gives

�k � ��T(L)4 � �q·solar → � kC1 � ��(C1L � T1)4 � �q·solar

Although C1 is the only unknown in this equation, we cannot get an explicit ex-
pression for it because the equation is nonlinear, and thus we cannot get a
closed-form expression for the temperature distribution. This should explain
why we do our best to avoid nonlinearities in the analysis, such as those asso-
ciated with radiation.

Let us back up a little and denote the outer surface temperature by T (L) � TL

instead of T (L) � C1L � T1. The application of the second boundary condition
in this case gives

�k � ��T(L)4 � �q·solar → �kC1 � �� � �q·solar

Solving for C1 gives

C1 � (b)

Now substituting C1 and C2 into the general solution (a), we obtain

T(x) � x � T1 (c)
�q·solar � ��T 4

L

k

�q·solar � ��T 4
L

k

T 4
L

dT(L)
dx

dT(L)
dx

dT(L)
dx

d 2T
dx2
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(1) Rearrange the equation to be solved:

TL � 310.4 � 0.240975

The equation is in the proper form since the
left side consists of TL only.

(2) Guess the value of TL, say 300 K, and
substitute into the right side of the equation.
It gives

TL � 290.2 K

(3) Now substitute this value of TL into the
right side of the equation and get

TL � 293.1 K

(4) Repeat step (3) until convergence to
desired accuracy is achieved. The
subsequent iterations give

TL � 292.6 K

TL � 292.7 K

TL � 292.7 K

Therefore, the solution is TL � 292.7 K. The
result is independent of the initial guess.

� TL

100�
4

FIGURE 2–49
A simple method of solving a
nonlinear equation is to arrange the
equation such that the unknown is
alone on the left side while everything
else is on the right side, and to iterate
after an initial guess until
convergence.

which is the solution for the variation of the temperature in the wall in terms of
the unknown outer surface temperature TL. At x � L it becomes

TL � L � T1 (d )

which is an implicit relation for the outer surface temperature TL. Substituting
the given values, we get

TL � (0.06 m) � 300 K

which simplifies to

TL � 310.4 � 0.240975

This equation can be solved by one of the several nonlinear equation solvers
available (or by the old fashioned trial-and-error method) to give (Fig. 2–49)

TL � 292.7 K

Knowing the outer surface temperature and knowing that it must remain con-
stant under steady conditions, the temperature distribution in the wall can be
determined by substituting the TL value above into Eq. (c):

T(x) � x � 300 K

which simplifies to

T(x) � (�121.5 K/m)x � 300 K

Note that the outer surface temperature turned out to be lower than the inner
surface temperature. Therefore, the heat transfer through the wall will be toward
the outside despite the absorption of solar radiation by the outer surface. Know-
ing both the inner and outer surface temperatures of the wall, the steady rate of
heat conduction through the wall can be determined from

q· � k � (1.2 W/m · K) � 146 W/m2

Discussion In the case of no incident solar radiation, the outer surface tem-
perature, determined from Eq. (d ) by setting q· solar � 0, will be TL � 284.3 K. It
is interesting to note that the solar energy incident on the surface causes the
surface temperature to increase by about 8 K only when the inner surface tem-
perature of the wall is maintained at 300 K.

(300 � 292.7) K
0.06 m

T0 � TL

L

0.26 � (800 W/m2) � 0.85 � (5.67 � 10�8 W/m2 ·  K4)(292.7 K)4

1.2 W/m ·  K

� TL

100�
4

0.26 � (800 W/m2) � 0.85 � (5.67 � 10�8 W/m2 ·  K4) T 4
L

1.2 W/m ·  K

�q·solar � ��T 4
L

k

EXAMPLE 2–15 Heat Loss through a Steam Pipe

Consider a steam pipe of length L � 20 m, inner radius r1 � 6 cm, outer radius
r2 � 8 cm, and thermal conductivity k � 20 W/m · °C, as shown in Figure
2–50. The inner and outer surfaces of the pipe are maintained at average tem-
peratures of T1 � 150°C and T2 � 60°C, respectively. Obtain a general relation

L

0

T2

T1

r1

r2

r

FIGURE 2–50
Schematic for Example 2–15.

cen58933_ch02.qxd  9/10/2002  8:46 AM  Page 94



CHAPTER 2
95

for the temperature distribution inside the pipe under steady conditions, and
determine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe is subjected to specified temperatures on its
surfaces. The variation of temperature and the rate of heat transfer are to be
determined.
Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerline and no variation in the axial direction, and thus T � T (r ). 3 Thermal
conductivity is constant. 4 There is no heat generation.
Properties The thermal conductivity is given to be k � 20 W/m · °C.
Analysis The mathematical formulation of this problem can be expressed as

� 0

with boundary conditions

T(r1) � T1 � 150°C

T(r2) � T2 � 60°C

Integrating the differential equation once with respect to r gives

r � C1

where C1 is an arbitrary constant. We now divide both sides of this equation by
r to bring it to a readily integrable form,

�

Again integrating with respect to r gives (Fig. 2–51)

T(r) � C1 ln r � C2 (a)

We now apply both boundary conditions by replacing all occurrences of r and
T (r ) in Eq. (a) with the specified values at the boundaries. We get

T(r1) � T1 → C1 ln r1 � C2 � T1

T(r2) � T2 → C1 ln r2 � C2 � T2

which are two equations in two unknowns, C1 and C2. Solving them simultane-
ously gives

C1 � and C2 � T1 � ln r1

Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

T(r) � (T2 � T1) � T1 (2-58)

The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier’s law to be

�ln(r/r1)
ln(r2/r1

�

T2 � T1

ln(r2/r1)
T2 � T1

ln(r2/r1)

C1

r
dT
dr

dT
dr

�r 
dT
dr �d

dr

Differential equation:

� 0

Integrate:

r � C1

Divide by r (r � 0):

�

Integrate again:

T(r) � C1 ln r � C2

which is the general solution.

C1

r
dT
dr

dT
dr

�r 
dT
dr �d

dr

FIGURE 2–51
Basic steps involved in the solution

of the steady one-dimensional
heat conduction equation in

cylindrical coordinates.
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Q
·

cylinder � �kA � �k(2�rL) � �2�kLC1 � 2�kL (2-59)

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

Q
·

� 2�(20 W/m · °C)(20 m) � 786 kW

DISCUSSION Note that the total rate of heat transfer through a pipe is con-
stant, but the heat flux is not since it decreases in the direction of heat trans-
fer with increasing radius since q· � Q

·
/(2�rL).

(150 � 60)°C
ln(0.08/0.06)

T1 � T2

ln(r2/r1)
C1

r
dT
dr

EXAMPLE 2–16 Heat Conduction through a Spherical Shell

Consider a spherical container of inner radius r1 � 8 cm, outer radius r2 �
10 cm, and thermal conductivity k � 45 W/m · °C, as shown in Figure 2–52.
The inner and outer surfaces of the container are maintained at constant tem-
peratures of T1 � 200°C and T2 � 80°C, respectively, as a result of some chem-
ical reactions occurring inside. Obtain a general relation for the temperature
distribution inside the shell under steady conditions, and determine the rate of
heat loss from the container.

SOLUTION A spherical container is subjected to specified temperatures on its
surfaces. The variation of temperature and the rate of heat transfer are to be
determined.
Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
midpoint, and thus T � T (r ). 3 Thermal conductivity is constant. 4 There is no
heat generation.
Properties The thermal conductivity is given to be k � 45 W/m · °C.
Analysis The mathematical formulation of this problem can be expressed as

� 0

with boundary conditions

T(r1) � T1 � 200°C

T(r2) � T2 � 80°C

Integrating the differential equation once with respect to r yields

r 2 � C1

where C1 is an arbitrary constant. We now divide both sides of this equation by
r 2 to bring it to a readily integrable form,

�
C1

r 2

dT
dr

dT
dr

�r 2 
dT
dr �d

dr

0 r1

T1

T2

r2 r

FIGURE 2–52
Schematic for Example 2–16.
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2–6 HEAT GENERATION IN A SOLID
Many practical heat transfer applications involve the conversion of some form
of energy into thermal energy in the medium. Such mediums are said to in-
volve internal heat generation, which manifests itself as a rise in temperature
throughout the medium. Some examples of heat generation are resistance
heating in wires, exothermic chemical reactions in a solid, and nuclear reac-
tions in nuclear fuel rods where electrical, chemical, and nuclear energies are
converted to heat, respectively (Fig. 2–54). The absorption of radiation
throughout the volume of a semitransparent medium such as water can also be
considered as heat generation within the medium, as explained earlier.

CHAPTER 2
97

Again integrating with respect to r gives

T(r) � � � C2 (a)

We now apply both boundary conditions by replacing all occurrences of r and
T (r ) in the relation above by the specified values at the boundaries. We get

T(r1) � T1 → � � C2 � T1

T(r2) � T2 → � � C2 � T2

which are two equations in two unknowns, C1 and C2 . Solving them simultane-
ously gives

C1 � � (T1 � T2) and C2 �

Substituting into Eq. (a), the variation of temperature within the spherical shell
is determined to be

T(r) � (T1 � T2) � (2-60)

The rate of heat loss from the container is simply the total rate of heat conduc-
tion through the container wall and is determined from Fourier’s law

Q
·

sphere � �kA � �k(4�r 2) � �4�kC1 � 4�kr1r2 (2-61)

The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

Q
·

� 4�(45 W/m · °C)(0.08 m)(0.10 m) � 27,140 W

Discussion Note that the total rate of heat transfer through a spherical shell is
constant, but the heat flux, q· � Q

·
/4�r 2, is not since it decreases in the direc-

tion of heat transfer with increasing radius as shown in Figure 2–53.

(200 � 80)°C
(0.10 � 0.08) m

T1 � T2

r2 � r1

C1

r 2

dT
dr

r2T2 � r1T1

r2 � r1

r1r2

r (r2 � r1)

r2T2 � r1T1

r2 � r1

r1r2

r2 � r1

C1

r2

C1

r1

C1

r

0 r1 r2 r

Q1
·

Q2 = Q1
· ·

q2 < q1
· ·

q1
·

= = 337.5 kW/m2q1 =· 27.14 kW
—————
4   (0.08 m)2

Q1—
A1 π

·

= = 216.0 kW/m2q2 =· 27.14 kW
—————
4   (0.10 m)2

Q2—
A2 π

·

FIGURE 2–53
During steady one-dimensional

heat conduction in a spherical (or
cylindrical) container, the total rate

of heat transfer remains constant,
but the heat flux decreases with

increasing radius.

Electric
resistance

wires

Nuclear
fuel rods

Chemical
reactions

FIGURE 2–54
Heat generation in solids is

commonly encountered in practice.
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