In the case of constant thermal conductivity, it reduces to

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

which is the desired equation.

2–4 • BOUNDARY AND INITIAL CONDITIONS

The heat conduction equations above were developed using an energy balance on a differential element inside the medium, and they remain the same regardless of the *thermal conditions* on the *surfaces* of the medium. That is, the differential equations do not incorporate any information related to the conditions on the surfaces such as the surface temperature or a specified heat flux. Yet we know that the heat flux and the temperature distribution in a medium depend on the conditions at the surfaces, and the description of a heat transfer problem in a medium is not complete without a full description of the thermal conditions at the bounding surfaces of the medium. The *mathematical expressions* of the thermal conditions at the boundaries are called the **boundary conditions.**

From a mathematical point of view, solving a differential equation is essentially a process of *removing derivatives*, or an *integration* process, and thus the solution of a differential equation typically involves arbitrary constants (Fig. 2–26). It follows that to obtain a unique solution to a problem, we need to specify more than just the governing differential equation. We need to specify some conditions (such as the value of the function or its derivatives at some value of the independent variable) so that forcing the solution to satisfy these conditions at specified points will result in unique values for the arbitrary constants and thus a *unique solution*. But since the differential equation has no place for the additional information or conditions, we need to supply them separately in the form of boundary or initial conditions.

Consider the variation of temperature along the wall of a brick house in winter. The temperature at any point in the wall depends on, among other things, the conditions at the two surfaces of the wall such as the air temperature of the house, the velocity and direction of the winds, and the solar energy incident on the outer surface. That is, the temperature distribution in a medium depends on the conditions at the boundaries of the medium as well as the heat transfer mechanism inside the medium. To describe a heat transfer problem completely, two boundary conditions must be given for each direction of the coordinate system along which heat transfer is significant (Fig. 2–27). Therefore, we need to specify two boundary conditions for one-dimensional problems, four boundary conditions for two-dimensional problems, and six boundary conditions for three-dimensional problems. In the case of the wall of a house, for example, we need to specify the conditions at two locations (the inner and the outer surfaces) of the wall since heat transfer in this case is one-dimensional. But in the case of a parallelepiped, we need to specify six boundary conditions (one at each face) when heat transfer in all three dimensions is significant.

FIGURE 2–26

The general solution of a typical differential equation involves arbitrary constants, and thus an infinite number of solutions.

FIGURE 2–27

To describe a heat transfer problem completely, two boundary conditions must be given for each direction along which heat transfer is significant. The physical argument presented above is consistent with the mathematical nature of the problem since the heat conduction equation is second order (i.e., involves second derivatives with respect to the space variables) in all directions along which heat conduction is significant, and the general solution of a second-order linear differential equation involves two arbitrary constants for each direction. That is, the number of boundary conditions that needs to be specified in a direction is equal to the order of the differential equation in that direction.

Reconsider the brick wall already discussed. The temperature at any point on the wall at a specified time also depends on the condition of the wall at the beginning of the heat conduction process. Such a condition, which is usually specified at time t = 0, is called the **initial condition**, which is a mathematical expression for the temperature distribution of the medium initially. Note that we need only one initial condition for a heat conduction problem regardless of the dimension since the conduction equation is first order in time (it involves the first derivative of temperature with respect to time).

In rectangular coordinates, the initial condition can be specified in the general form as

$$T(x, y, z, 0) = f(x, y, z)$$
 (2-45)

where the function f(x, y, z) represents the temperature distribution throughout the medium at time t = 0. When the medium is initially at a uniform temperature of T_i , the initial condition of Eq. 2–45 can be expressed as $T(x, y, z, 0) = T_i$. Note that under *steady* conditions, the heat conduction equation does not involve any time derivatives, and thus we do not need to specify an initial condition.

The heat conduction equation is first order in time, and thus the initial condition cannot involve any derivatives (it is limited to a specified temperature). However, the heat conduction equation is second order in space coordinates, and thus a boundary condition may involve first derivatives at the boundaries as well as specified values of temperature. Boundary conditions most commonly encountered in practice are the *specified temperature*, *specified heat flux, convection*, and *radiation* boundary conditions.

FIGURE 2–28

Specified temperature boundary conditions on both surfaces of a plane wall.

1 Specified Temperature Boundary Condition

The *temperature* of an exposed surface can usually be measured directly and easily. Therefore, one of the easiest ways to specify the thermal conditions on a surface is to specify the temperature. For one-dimensional heat transfer through a plane wall of thickness L, for example, the specified temperature boundary conditions can be expressed as (Fig. 2–28)

$$T(0, t) = T_1$$

 $T(L, t) = T_2$ (2-46)

where T_1 and T_2 are the specified temperatures at surfaces at x = 0 and x = L, respectively. The specified temperatures can be constant, which is the case for steady heat conduction, or may vary with time.

2 Specified Heat Flux Boundary Condition

When there is sufficient information about energy interactions at a surface, it may be possible to determine the rate of heat transfer and thus the *heat flux* \dot{q} (heat transfer rate per unit surface area, W/m²) on that surface, and this information can be used as one of the boundary conditions. The heat flux in the positive *x*-direction anywhere in the medium, including the boundaries, can be expressed by *Fourier's law* of heat conduction as

 $\dot{q} = -k \frac{\partial T}{\partial x} = \begin{pmatrix} \text{Heat flux in the} \\ \text{positive x-direction} \end{pmatrix}$ (W/m²) (2-47)

Then the boundary condition at a boundary is obtained by setting the specified heat flux equal to $-k(\partial T/\partial x)$ at that boundary. The sign of the specified heat flux is determined by inspection: *positive* if the heat flux is in the positive direction of the coordinate axis, and *negative* if it is in the opposite direction. Note that it is extremely important to have the *correct sign* for the specified heat flux since the wrong sign will invert the direction of heat transfer and cause the heat gain to be interpreted as heat loss (Fig. 2–29).

For a plate of thickness *L* subjected to heat flux of 50 W/m² into the medium from both sides, for example, the specified heat flux boundary conditions can be expressed as

$$-k\frac{\partial T(0, t)}{\partial x} = 50$$
 and $-k\frac{\partial T(L, t)}{\partial x} = -50$ (2-48)

Note that the heat flux at the surface at x = L is in the *negative x*-direction, and thus it is -50 W/m^2 .

Special Case: Insulated Boundary

Some surfaces are commonly insulated in practice in order to minimize heat loss (or heat gain) through them. Insulation reduces heat transfer but does not totally eliminate it unless its thickness is infinity. However, heat transfer through a properly insulated surface can be taken to be zero since adequate insulation reduces heat transfer through a surface to negligible levels. Therefore, a well-insulated surface can be modeled as a surface with a specified heat flux of zero. Then the boundary condition on a perfectly insulated surface (at x = 0, for example) can be expressed as (Fig. 2–30)

$$k \frac{\partial T(0, t)}{\partial x} = 0$$
 or $\frac{\partial T(0, t)}{\partial x} = 0$ (2-49)

That is, on an insulated surface, the first derivative of temperature with respect to the space variable (the temperature gradient) in the direction normal to the insulated surface is zero. This also means that the temperature function must be perpendicular to an insulated surface since the slope of temperature at the surface must be zero.

Another Special Case: Thermal Symmetry

Some heat transfer problems possess *thermal symmetry* as a result of the symmetry in imposed thermal conditions. For example, the two surfaces of a large hot plate of thickness *L* suspended vertically in air will be subjected to

Specified heat flux boundary conditions on both surfaces of a plane wall.

Thermal symmetry boundary condition at the center plane of a plane wall.

the same thermal conditions, and thus the temperature distribution in one half of the plate will be the same as that in the other half. That is, the heat transfer problem in this plate will possess thermal symmetry about the center plane at x = L/2. Also, the direction of heat flow at any point in the plate will be toward the surface closer to the point, and there will be no heat flow across the center plane. Therefore, the center plane can be viewed as an insulated surface, and the thermal condition at this plane of symmetry can be expressed as (Fig. 2–31)

$$\frac{\partial T(L/2, t)}{\partial x} = 0$$
 (2-50)

which resembles the *insulation* or *zero heat flux* boundary condition. This result can also be deduced from a plot of temperature distribution with a maximum, and thus zero slope, at the center plane.

In the case of cylindrical (or spherical) bodies having thermal symmetry about the center line (or midpoint), the thermal symmetry boundary condition requires that the first derivative of temperature with respect to r (the radial variable) be zero at the centerline (or the midpoint).

EXAMPLE 2–7 Heat Flux Boundary Condition

Consider an aluminum pan used to cook beef stew on top of an electric range. The bottom section of the pan is L = 0.3 cm thick and has a diameter of D = 20 cm. The electric heating unit on the range top consumes 800 W of power during cooking, and 90 percent of the heat generated in the heating element is transferred to the pan. During steady operation, the temperature of the inner surface of the pan is measured to be 110° C. Express the boundary conditions for the bottom section of the pan during this cooking process.

SOLUTION The heat transfer through the bottom section of the pan is from the bottom surface toward the top and can reasonably be approximated as being one-dimensional. We take the direction normal to the bottom surfaces of the pan as the *x* axis with the origin at the outer surface, as shown in Figure 2–32. Then the inner and outer surfaces of the bottom section of the pan can be represented by x = 0 and x = L, respectively. During steady operation, the temperature will depend on *x* only and thus T = T(x).

The boundary condition on the outer surface of the bottom of the pan at x = 0 can be approximated as being specified heat flux since it is stated that 90 percent of the 800 W (i.e., 720 W) is transferred to the pan at that surface. Therefore,

 $-k\frac{dT(0)}{dx} = \dot{q}_0$

where

$$\dot{q}_0 = \frac{\text{Heat transfer rate}}{\text{Bottom surface area}} = \frac{0.720 \text{ kW}}{\pi (0.1 \text{ m})^2} = 22.9 \text{ kW/m}^2$$

The temperature at the inner surface of the bottom of the pan is specified to be 110°C. Then the boundary condition on this surface can be expressed as

$$T(L) = 110^{\circ}\mathrm{C}$$

where L = 0.003 m. Note that the determination of the boundary conditions may require some reasoning and approximations.

3 Convection Boundary Condition

Convection is probably the most common boundary condition encountered in practice since most heat transfer surfaces are exposed to an environment at a specified temperature. The convection boundary condition is based on a *surface energy balance* expressed as

1	Heat conduction	\ /	Heat convection
	at the surface in a	=	at the surface in
1	selected direction	/ \	the same direction

For one-dimensional heat transfer in the *x*-direction in a plate of thickness *L*, the convection boundary conditions on both surfaces can be expressed as

$$-k\frac{\partial T(0,t)}{\partial x} = h_1[T_{\infty 1} - T(0,t)]$$
 (2-51a)

and

$$-k\frac{\partial T(L,t)}{\partial x} = h_2[T(L,t) - T_{\infty 2}]$$
(2-51b)

where h_1 and h_2 are the convection heat transfer coefficients and $T_{\infty 1}$ and $T_{\infty 2}$ are the temperatures of the surrounding mediums on the two sides of the plate, as shown in Figure 2–33.

In writing Eqs. 2–51 for convection boundary conditions, we have selected the direction of heat transfer to be the positive *x*-direction at both surfaces. But those expressions are equally applicable when heat transfer is in the opposite direction at one or both surfaces since reversing the direction of heat transfer at a surface simply reverses the signs of *both* conduction and convection terms at that surface. This is equivalent to multiplying an equation by -1, which has no effect on the equality (Fig. 2–34). Being able to select either direction as the direction of heat transfer is certainly a relief since often we do not know the surface temperature and thus the direction of heat transfer at a surface in advance. This argument is also valid for other boundary conditions such as the radiation and combined boundary conditions discussed shortly.

Note that a surface has zero thickness and thus no mass, and it cannot store any energy. Therefore, the entire net heat entering the surface from one side must leave the surface from the other side. The convection boundary condition simply states that heat continues to flow from a body to the surrounding medium at the same rate, and it just changes vehicles at the surface from conduction to convection (or vice versa in the other direction). This is analogous to people traveling on buses on land and transferring to the ships at the shore.

FIGURE 2–33

Convection boundary conditions on the two surfaces of a plane wall.

FIGURE 2–34

The assumed direction of heat transfer at a boundary has no effect on the boundary condition expression.

Schematic for Example 2-8.

If the passengers are not allowed to wander around at the shore, then the rate at which the people are unloaded at the shore from the buses must equal the rate at which they board the ships. We may call this the conservation of "people" principle.

Also note that the surface temperatures T(0, t) and T(L, t) are not known (if they were known, we would simply use them as the specified temperature boundary condition and not bother with convection). But a surface temperature can be determined once the solution T(x, t) is obtained by substituting the value of x at that surface into the solution.

EXAMPLE 2–8 Convection and Insulation Boundary Conditions

Steam flows through a pipe shown in Figure 2–35 at an average temperature of $T_{\infty} = 200^{\circ}$ C. The inner and outer radii of the pipe are $r_1 = 8$ cm and $r_2 = 8.5$ cm, respectively, and the outer surface of the pipe is heavily insulated. If the convection heat transfer coefficient on the inner surface of the pipe is $h = 65 \text{ W/m}^2 \cdot ^{\circ}$ C, express the boundary conditions on the inner and outer surfaces of the pipe during transient periods.

SOLUTION During initial transient periods, heat transfer through the pipe material will predominantly be in the radial direction, and thus can be approximated as being one-dimensional. Then the temperature within the pipe material will change with the radial distance r and the time t. That is, T = T(r, t).

It is stated that heat transfer between the steam and the pipe at the inner surface is by convection. Then taking the direction of heat transfer to be the positive r direction, the boundary condition on that surface can be expressed as

$$-k\frac{\partial T(r_1,t)}{\partial r} = h[T_{\infty} - T(r_1)]$$

The pipe is said to be well insulated on the outside, and thus heat loss through the outer surface of the pipe can be assumed to be negligible. Then the boundary condition at the outer surface can be expressed as

$$\frac{\partial T(r_2, t)}{\partial r} = 0$$

That is, the temperature gradient must be zero on the outer surface of the pipe at all times.

4 Radiation Boundary Condition

In some cases, such as those encountered in space and cryogenic applications, a heat transfer surface is surrounded by an evacuated space and thus there is no convection heat transfer between a surface and the surrounding medium. In such cases, *radiation* becomes the only mechanism of heat transfer between the surface under consideration and the surroundings. Using an energy balance, the radiation boundary condition on a surface can be expressed as

$$\begin{pmatrix} \text{Heat conduction} \\ \text{at the surface in a} \\ \text{selected direction} \end{pmatrix} = \begin{pmatrix} \text{Radiation exchange} \\ \text{at the surface in} \\ \text{the same direction} \end{pmatrix}$$

For one-dimensional heat transfer in the *x*-direction in a plate of thickness *L*, the radiation boundary conditions on both surfaces can be expressed as (Fig. 2-36)

$$-k\frac{\partial T(0,t)}{\partial x} = \varepsilon_1 \sigma [T_{\text{surr, 1}}^4 - T(0,t)^4]$$

and

$$-k\frac{\partial T(L,t)}{\partial x} = \varepsilon_2 \sigma[T(L,t)^4 - T_{\text{surr},2}^4]$$
(2-52b)

where ε_1 and ε_2 are the emissivities of the boundary surfaces, $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ is the Stefan–Boltzmann constant, and $T_{\text{surr}, 1}$ and $T_{\text{surr}, 2}$ are the average temperatures of the surfaces surrounding the two sides of the plate, respectively. Note that the temperatures in radiation calculations must be expressed in K or R (not in °C or °F).

The radiation boundary condition involves the fourth power of temperature, and thus it is a *nonlinear* condition. As a result, the application of this boundary condition results in powers of the unknown coefficients, which makes it difficult to determine them. Therefore, it is tempting to ignore radiation exchange at a surface during a heat transfer analysis in order to avoid the complications associated with nonlinearity. This is especially the case when heat transfer at the surface is dominated by convection, and the role of radiation is minor.

(2-52a)

Radiation boundary conditions on both surfaces of a plane wall.

FIGURE 2–37

Boundary conditions at the interface of two bodies in perfect contact.

5 Interface Boundary Conditions

Some bodies are made up of layers of different materials, and the solution of a heat transfer problem in such a medium requires the solution of the heat transfer problem in each layer. This, in turn, requires the specification of the boundary conditions at each *interface*.

The boundary conditions at an interface are based on the requirements that (1) two bodies in contact must have the *same temperature* at the area of contact and (2) an interface (which is a surface) cannot store any energy, and thus the *heat flux* on the two sides of an interface *must be the same*. The boundary conditions at the interface of two bodies *A* and *B* in perfect contact at $x = x_0$ can be expressed as (Fig. 2–37)

$$T_A(x_0, t) = T_B(x_0, t)$$
 (2-53)

and

$$-k_A \frac{\partial T_A(x_0, t)}{\partial x} = -k_B \frac{\partial T_B(x_0, t)}{\partial x}$$
(2-54)

where k_A and k_B are the thermal conductivities of the layers A and B, respectively. The case of imperfect contact results in thermal contact resistance, which is considered in the next chapter.

6 Generalized Boundary Conditions

So far we have considered surfaces subjected to *single mode* heat transfer, such as the specified heat flux, convection, or radiation for simplicity. In general, however, a surface may involve convection, radiation, *and* specified heat flux simultaneously. The boundary condition in such cases is again obtained from a surface energy balance, expressed as

 $\begin{pmatrix} \text{Heat transfer} \\ \text{to the surface} \\ \text{in all modes} \end{pmatrix} = \begin{pmatrix} \text{Heat transfer} \\ \text{from the surface} \\ \text{in all modes} \end{pmatrix}$ (2-55)

This is illustrated in Examples 2–9 and 2–10.

EXAMPLE 2-9 Combined Convection and Radiation Condition

A spherical metal ball of radius r_0 is heated in an oven to a temperature of 600°F throughout and is then taken out of the oven and allowed to cool in ambient air at $T_{\infty} = 78$ °F, as shown in Figure 2–38. The thermal conductivity of the ball material is k = 8.3 Btu/h \cdot ft \cdot °F, and the average convection heat transfer coefficient on the outer surface of the ball is evaluated to be h = 4.5 Btu/h \cdot ft² \cdot °F. The emissivity of the outer surface of the ball is $\varepsilon = 0.6$, and the average temperature of the surrounding surfaces is $T_{surr} = 525$ R. Assuming the ball is cooled uniformly from the entire outer surface, express the initial and boundary conditions for the cooling process of the ball.

SOLUTION The ball is initially at a uniform temperature and is cooled uniformly from the entire outer surface. Therefore, this is a one-dimensional transient heat transfer problem since the temperature within the ball will change with the radial distance r and the time t. That is, T = T(r, t). Taking the moment the ball is removed from the oven to be t = 0, the initial condition can be expressed as

$$T(r, 0) = T_i = 600^{\circ} F$$

The problem possesses symmetry about the midpoint (r = 0) since the isotherms in this case will be concentric spheres, and thus no heat will be crossing the midpoint of the ball. Then the boundary condition at the midpoint can be expressed as

$$\frac{\partial T(0, t)}{\partial r} = 0$$

The heat conducted to the outer surface of the ball is lost to the environment by convection and radiation. Then taking the direction of heat transfer to be the positive r direction, the boundary condition on the outer surface can be expressed as

$$-k\frac{\partial T(r_0,t)}{\partial r} = h[T(r_0) - T_{\infty}] + \varepsilon\sigma[T(r_0)^4 - T_{\text{surr}}^4]$$

FIGURE 2–38 Schematic for Example 2–9.

All the quantities in the above relations are known except the temperatures and their derivatives at r = 0 and r_0 . Also, the radiation part of the boundary condition is often ignored for simplicity by modifying the convection heat transfer coefficient to account for the contribution of radiation. The convection coefficient *h* in that case becomes the combined heat transfer coefficient.

EXAMPLE 2–10 Combined Convection, Radiation, and Heat Flux

Consider the south wall of a house that is L = 0.2 m thick. The outer surface of the wall is exposed to solar radiation and has an absorptivity of $\alpha = 0.5$ for solar energy. The interior of the house is maintained at $T_{\alpha_1} = 20^{\circ}$ C, while the ambient air temperature outside remains at $T_{\alpha_2} = 5^{\circ}$ C. The sky, the ground, and the surfaces of the surrounding structures at this location can be modeled as a surface at an effective temperature of $T_{sky} = 255$ K for radiation exchange on the outer surface. The radiation exchange between the inner surface of the wall and the surfaces of the walls, floor, and ceiling it faces is negligible. The convection heat transfer coefficients on the inner and the outer surfaces of the wall material is k = 0.7 W/m \cdot °C, and the emissivity of the outer surface is $\varepsilon_2 = 0.9$. Assuming the heat transfer through the wall to be steady and one-dimensional, express the boundary conditions on the inner and the outer surfaces of the wall.

SOLUTION We take the direction normal to the wall surfaces as the *x*-axis with the origin at the inner surface of the wall, as shown in Figure 2–39. The heat transfer through the wall is given to be steady and one-dimensional, and thus the temperature depends on *x* only and not on time. That is, T = T(x).

The boundary condition on the inner surface of the wall at x = 0 is a typical convection condition since it does not involve any radiation or specified heat flux. Taking the direction of heat transfer to be the positive *x*-direction, the boundary condition on the inner surface can be expressed as

$$-k\frac{dT(0)}{dx} = h_1[T_{\infty 1} - T(0)]$$

The boundary condition on the outer surface at x = 0 is quite general as it involves conduction, convection, radiation, and specified heat flux. Again taking the direction of heat transfer to be the positive *x*-direction, the boundary condition on the outer surface can be expressed as

$$-k\frac{dT(L)}{dx} = h_2[T(L) - T_{\infty 2}] + \varepsilon_2 \sigma[T(L)^4 - T_{\text{sky}}^4] - \alpha \dot{q}_{\text{solar}}$$

where $\dot{q}_{\rm solar}$ is the incident solar heat flux. Assuming the opposite direction for heat transfer would give the same result multiplied by -1, which is equivalent to the relation here. All the quantities in these relations are known except the temperatures and their derivatives at the two boundaries.

FIGURE 2–39 Schematic for Example 2–10.

FIGURE 2-40

Basic steps involved in the solution of heat transfer problems.

Schematic for Example 2–11.

Note that a heat transfer problem may involve different kinds of boundary conditions on different surfaces. For example, a plate may be subject to *heat flux* on one surface while losing or gaining heat by *convection* from the other surface. Also, the two boundary conditions in a direction may be specified *at the same boundary*, while no condition is imposed on the other boundary. For example, specifying the temperature and heat flux at x = 0 of a plate of thickness *L* will result in a unique solution for the one-dimensional steady temperature distribution in the plate, including the value of temperature at the surface x = L. Although not necessary, there is nothing wrong with specifying more than two boundary conditions in a specified direction, provided that there is no contradiction. The extra conditions in this case can be used to verify the results.

2–5 • SOLUTION OF STEADY ONE-DIMENSIONAL HEAT CONDUCTION PROBLEMS

So far we have derived the differential equations for heat conduction in various coordinate systems and discussed the possible boundary conditions. A heat conduction problem can be formulated by specifying the applicable differential equation and a set of proper boundary conditions.

In this section we will solve a wide range of heat conduction problems in rectangular, cylindrical, and spherical geometries. We will limit our attention to problems that result in *ordinary differential equations* such as the *steady one-dimensional* heat conduction problems. We will also assume *constant thermal conductivity*, but will consider variable conductivity later in this chapter. If you feel rusty on differential equations or haven't taken differential equations yet, no need to panic. *Simple integration* is all you need to solve the steady one-dimensional heat conduction problems.

The solution procedure for solving heat conduction problems can be summarized as (1) *formulate* the problem by obtaining the applicable differential equation in its simplest form and specifying the boundary conditions, (2) obtain the *general solution* of the differential equation, and (3) apply the *boundary conditions* and determine the arbitrary constants in the general solution (Fig. 2–40). This is demonstrated below with examples.

EXAMPLE 2–11 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k = 1.2 W/m · °C, and surface area A = 15 m². The two sides of the wall are maintained at constant temperatures of $T_1 = 120$ °C and $T_2 = 50$ °C, respectively, as shown in Figure 2–41. Determine (*a*) the variation of temperature within the wall and the value of temperature at x = 0.1 m and (*b*) the rate of heat conduction through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The variation of temperature and the rate of heat transfer are to be determined.

Assumptions 1 Heat conduction is steady. 2 Heat conduction is onedimensional since the wall is large relative to its thickness and the thermal