BASICS OF HEAT TRANSFER

The science of thermodynamics deals with the amount of heat transfer as a system undergoes a process from one equilibrium state to another, and makes no reference to how long the process will take. But in engineering, we are often interested in the rate of heat transfer, which is the topic of the science of heat transfer.

We start this chapter with a review of the fundamental concepts of thermodynamics that form the framework for heat transfer. We first present the relation of heat to other forms of energy and review the first law of thermodynamics. We then present the three basic mechanisms of heat transfer, which are conduction, convection, and radiation, and discuss thermal conductivity. Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent, less energetic ones as a result of interactions between the particles. Convection is the mode of heat transfer between a solid surface and the adjacent liquid or gas that is in motion, and it involves the combined effects of conduction and fluid motion. Radiation is the energy emitted by matter in the form of electromagnetic waves (or photons) as a result of the changes in the electronic configurations of the atoms or molecules. We close this chapter with a discussion of simultaneous heat transfer.

CHAPTER 1

CONTENTS

1-1 Thermodynamics and Heat Transfer 2
1-2 Engineering Heat Transfer 4
1-3 Heat and Other Forms of Energy 6
1-4 The First Law of Thermodynamics 11
1-5 Heat Transfer Mechanisms 17

1-6 Conduction 17
1-7 Convection 25
1-8 Radiation 27
1-9 Simultaneous Heat Transfer Mechanism 30
1-10 Problem-Solving Technique 35 Topic of Special Interest: Thermal Comfort 40

FIGURE 1-1
We are normally interested in how long it takes for the hot coffee in a thermos to cool to a certain temperature, which cannot be determined from a thermodynamic analysis alone.

1-1 : THERMODYNAMICS AND HEAT TRANSFER

We all know from experience that a cold canned drink left in a room warms up and a warm canned drink left in a refrigerator cools down. This is accomplished by the transfer of energy from the warm medium to the cold one. The energy transfer is always from the higher temperature medium to the lower temperature one, and the energy transfer stops when the two mediums reach the same temperature.

You will recall from thermodynamics that energy exists in various forms. In this text we are primarily interested in heat, which is the form of energy that can be transferred from one system to another as a result of temperature difference. The science that deals with the determination of the rates of such energy transfers is heat transfer.

You may be wondering why we need to undertake a detailed study on heat transfer. After all, we can determine the amount of heat transfer for any system undergoing any process using a thermodynamic analysis alone. The reason is that thermodynamics is concerned with the amount of heat transfer as a system undergoes a process from one equilibrium state to another, and it gives no indication about how long the process will take. A thermodynamic analysis simply tells us how much heat must be transferred to realize a specified change of state to satisfy the conservation of energy principle.

In practice we are more concerned about the rate of heat transfer (heat transfer per unit time) than we are with the amount of it. For example, we can determine the amount of heat transferred from a thermos bottle as the hot coffee inside cools from $90^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ by a thermodynamic analysis alone. But a typical user or designer of a thermos is primarily interested in how long it will be before the hot coffee inside cools to $80^{\circ} \mathrm{C}$, and a thermodynamic analysis cannot answer this question. Determining the rates of heat transfer to or from a system and thus the times of cooling or heating, as well as the variation of the temperature, is the subject of heat transfer (Fig. 1-1).

Thermodynamics deals with equilibrium states and changes from one equilibrium state to another. Heat transfer, on the other hand, deals with systems that lack thermal equilibrium, and thus it is a nonequilibrium phenomenon. Therefore, the study of heat transfer cannot be based on the principles of thermodynamics alone. However, the laws of thermodynamics lay the framework for the science of heat transfer. The first law requires that the rate of energy transfer into a system be equal to the rate of increase of the energy of that system. The second law requires that heat be transferred in the direction of decreasing temperature (Fig. 1-2). This is like a car parked on an inclined road that must go downhill in the direction of decreasing elevation when its brakes are released. It is also analogous to the electric current flowing in the direction of decreasing voltage or the fluid flowing in the direction of decreasing total pressure.

The basic requirement for heat transfer is the presence of a temperature difference. There can be no net heat transfer between two mediums that are at the same temperature. The temperature difference is the driving force for heat transfer, just as the voltage difference is the driving force for electric current flow and pressure difference is the driving force for fluid flow. The rate of heat transfer in a certain direction depends on the magnitude of the temperature gradient (the temperature difference per unit length or the rate of change of
temperature) in that direction. The larger the temperature gradient, the higher the rate of heat transfer.

Application Areas of Heat Transfer

Heat transfer is commonly encountered in engineering systems and other aspects of life, and one does not need to go very far to see some application areas of heat transfer. In fact, one does not need to go anywhere. The human body is constantly rejecting heat to its surroundings, and human comfort is closely tied to the rate of this heat rejection. We try to control this heat transfer rate by adjusting our clothing to the environmental conditions.

Many ordinary household appliances are designed, in whole or in part, by using the principles of heat transfer. Some examples include the electric or gas range, the heating and air-conditioning system, the refrigerator and freezer, the water heater, the iron, and even the computer, the TV, and the VCR. Of course, energy-efficient homes are designed on the basis of minimizing heat loss in winter and heat gain in summer. Heat transfer plays a major role in the design of many other devices, such as car radiators, solar collectors, various components of power plants, and even spacecraft. The optimal insulation thickness in the walls and roofs of the houses, on hot water or steam pipes, or on water heaters is again determined on the basis of a heat transfer analysis with economic consideration (Fig. 1-3).

Historical Background

Heat has always been perceived to be something that produces in us a sensation of warmth, and one would think that the nature of heat is one of the first things understood by mankind. But it was only in the middle of the nineteenth

FIGURE 1-4
In the early nineteenth century, heat was thought to be an invisible fluid called the caloric that flowed from warmer bodies to the cooler ones.
century that we had a true physical understanding of the nature of heat, thanks to the development at that time of the kinetic theory, which treats molecules as tiny balls that are in motion and thus possess kinetic energy. Heat is then defined as the energy associated with the random motion of atoms and molecules. Although it was suggested in the eighteenth and early nineteenth centuries that heat is the manifestation of motion at the molecular level (called the live force), the prevailing view of heat until the middle of the nineteenth century was based on the caloric theory proposed by the French chemist Antoine Lavoisier (1743-1794) in 1789. The caloric theory asserts that heat is a fluidlike substance called the caloric that is a massless, colorless, odorless, and tasteless substance that can be poured from one body into another (Fig. 1-4). When caloric was added to a body, its temperature increased; and when caloric was removed from a body, its temperature decreased. When a body could not contain any more caloric, much the same way as when a glass of water could not dissolve any more salt or sugar, the body was said to be saturated with caloric. This interpretation gave rise to the terms saturated liquid and saturated vapor that are still in use today.

The caloric theory came under attack soon after its introduction. It maintained that heat is a substance that could not be created or destroyed. Yet it was known that heat can be generated indefinitely by rubbing one's hands together or rubbing two pieces of wood together. In 1798, the American Benjamin Thompson (Count Rumford) (1753-1814) showed in his papers that heat can be generated continuously through friction. The validity of the caloric theory was also challenged by several others. But it was the careful experiments of the Englishman James P. Joule (1818-1889) published in 1843 that finally convinced the skeptics that heat was not a substance after all, and thus put the caloric theory to rest. Although the caloric theory was totally abandoned in the middle of the nineteenth century, it contributed greatly to the development of thermodynamics and heat transfer.

1-2 = ENGINEERING HEAT TRANSFER

Heat transfer equipment such as heat exchangers, boilers, condensers, radiators, heaters, furnaces, refrigerators, and solar collectors are designed primarily on the basis of heat transfer analysis. The heat transfer problems encountered in practice can be considered in two groups: (1) rating and (2) sizing problems. The rating problems deal with the determination of the heat transfer rate for an existing system at a specified temperature difference. The sizing problems deal with the determination of the size of a system in order to transfer heat at a specified rate for a specified temperature difference.

A heat transfer process or equipment can be studied either experimentally (testing and taking measurements) or analytically (by analysis or calculations). The experimental approach has the advantage that we deal with the actual physical system, and the desired quantity is determined by measurement, within the limits of experimental error. However, this approach is expensive, time-consuming, and often impractical. Besides, the system we are analyzing may not even exist. For example, the size of a heating system of a building must usually be determined before the building is actually built on the basis of the dimensions and specifications given. The analytical approach (including numerical approach) has the advantage that it is fast and
inexpensive, but the results obtained are subject to the accuracy of the assumptions and idealizations made in the analysis. In heat transfer studies, often a good compromise is reached by reducing the choices to just a few by analysis, and then verifying the findings experimentally.

Modeling in Heat Transfer

The descriptions of most scientific problems involve expressions that relate the changes in some key variables to each other. Usually the smaller the increment chosen in the changing variables, the more general and accurate the description. In the limiting case of infinitesimal or differential changes in variables, we obtain differential equations that provide precise mathematical formulations for the physical principles and laws by representing the rates of changes as derivatives. Therefore, differential equations are used to investigate a wide variety of problems in sciences and engineering, including heat transfer. However, most heat transfer problems encountered in practice can be solved without resorting to differential equations and the complications associated with them.

The study of physical phenomena involves two important steps. In the first step, all the variables that affect the phenomena are identified, reasonable assumptions and approximations are made, and the interdependence of these variables is studied. The relevant physical laws and principles are invoked, and the problem is formulated mathematically. The equation itself is very instructive as it shows the degree of dependence of some variables on others, and the relative importance of various terms. In the second step, the problem is solved using an appropriate approach, and the results are interpreted.

Many processes that seem to occur in nature randomly and without any order are, in fact, being governed by some visible or not-so-visible physical laws. Whether we notice them or not, these laws are there, governing consistently and predictably what seem to be ordinary events. Most of these laws are well defined and well understood by scientists. This makes it possible to predict the course of an event before it actually occurs, or to study various aspects of an event mathematically without actually running expensive and timeconsuming experiments. This is where the power of analysis lies. Very accurate results to meaningful practical problems can be obtained with relatively little effort by using a suitable and realistic mathematical model. The preparation of such models requires an adequate knowledge of the natural phenomena involved and the relevant laws, as well as a sound judgment. An unrealistic model will obviously give inaccurate and thus unacceptable results.

An analyst working on an engineering problem often finds himself or herself in a position to make a choice between a very accurate but complex model, and a simple but not-so-accurate model. The right choice depends on the situation at hand. The right choice is usually the simplest model that yields adequate results. For example, the process of baking potatoes or roasting a round chunk of beef in an oven can be studied analytically in a simple way by modeling the potato or the roast as a spherical solid ball that has the properties of water (Fig. 1-5). The model is quite simple, but the results obtained are sufficiently accurate for most practical purposes. As another example, when we analyze the heat losses from a building in order to select the right size for a heater, we determine the heat losses under anticipated worst conditions and select a furnace that will provide sufficient heat to make up for those losses.

FIGURE 1-5
Modeling is a powerful engineering tool that provides great insight and simplicity at the expense of some accuracy.

Often we tend to choose a larger furnace in anticipation of some future expansion, or just to provide a factor of safety. A very simple analysis will be adequate in this case.

When selecting heat transfer equipment, it is important to consider the actual operating conditions. For example, when purchasing a heat exchanger that will handle hard water, we must consider that some calcium deposits will form on the heat transfer surfaces over time, causing fouling and thus a gradual decline in performance. The heat exchanger must be selected on the basis of operation under these adverse conditions instead of under new conditions.
Preparing very accurate but complex models is usually not so difficult. But such models are not much use to an analyst if they are very difficult and timeconsuming to solve. At the minimum, the model should reflect the essential features of the physical problem it represents. There are many significant realworld problems that can be analyzed with a simple model. But it should always be kept in mind that the results obtained from an analysis are as accurate as the assumptions made in simplifying the problem. Therefore, the solution obtained should not be applied to situations for which the original assumptions do not hold.

A solution that is not quite consistent with the observed nature of the problem indicates that the mathematical model used is too crude. In that case, a more realistic model should be prepared by eliminating one or more of the questionable assumptions. This will result in a more complex problem that, of course, is more difficult to solve. Thus any solution to a problem should be interpreted within the context of its formulation.

1-3 - HEAT AND OTHER FORMS OF ENERGY

Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential, electrical, magnetic, chemical, and nuclear, and their sum constitutes the total energy E (or e on a unit mass basis) of a system. The forms of energy related to the molecular structure of a system and the degree of the molecular activity are referred to as the microscopic energy. The sum of all microscopic forms of energy is called the internal energy of a system, and is denoted by U (or u on a unit mass basis).

The international unit of energy is joule (J) or kilojoule ($1 \mathrm{~kJ}=1000 \mathrm{~J}$). In the English system, the unit of energy is the British thermal unit (Btu), which is defined as the energy needed to raise the temperature of 1 lbm of water at $60^{\circ} \mathrm{F}$ by $1^{\circ} \mathrm{F}$. The magnitudes of kJ and Btu are almost identical (1 Btu $=1.055056 \mathrm{~kJ})$. Another well-known unit of energy is the calorie $(1 \mathrm{cal}=4.1868 \mathrm{~J})$, which is defined as the energy needed to raise the temperature of 1 gram of water at $14.5^{\circ} \mathrm{C}$ by $1^{\circ} \mathrm{C}$.

Internal energy may be viewed as the sum of the kinetic and potential energies of the molecules. The portion of the internal energy of a system associated with the kinetic energy of the molecules is called sensible energy or sensible heat. The average velocity and the degree of activity of the molecules are proportional to the temperature. Thus, at higher temperatures the molecules will possess higher kinetic energy, and as a result, the system will have a higher internal energy.

The internal energy is also associated with the intermolecular forces between the molecules of a system. These are the forces that bind the molecules
to each other, and, as one would expect, they are strongest in solids and weakest in gases. If sufficient energy is added to the molecules of a solid or liquid, they will overcome these molecular forces and simply break away, turning the system to a gas. This is a phase change process and because of this added energy, a system in the gas phase is at a higher internal energy level than it is in the solid or the liquid phase. The internal energy associated with the phase of a system is called latent energy or latent heat.
The changes mentioned above can occur without a change in the chemical composition of a system. Most heat transfer problems fall into this category, and one does not need to pay any attention to the forces binding the atoms in a molecule together. The internal energy associated with the atomic bonds in a molecule is called chemical (or bond) energy, whereas the internal energy associated with the bonds within the nucleus of the atom itself is called nuclear energy. The chemical and nuclear energies are absorbed or released during chemical or nuclear reactions, respectively.
In the analysis of systems that involve fluid flow, we frequently encounter the combination of properties u and $P v$. For the sake of simplicity and convenience, this combination is defined as enthalpy h. That is, $h=u+P v$ where the term $P v$ represents the flow energy of the fluid (also called the flow work), which is the energy needed to push a fluid and to maintain flow. In the energy analysis of flowing fluids, it is convenient to treat the flow energy as part of the energy of the fluid and to represent the microscopic energy of a fluid stream by enthalpy h (Fig. 1-6).

Specific Heats of Gases, Liquids, and Solids

You may recall that an ideal gas is defined as a gas that obeys the relation

$$
\begin{equation*}
P v=R T \quad \text { or } \quad P=\rho R T \tag{1-1}
\end{equation*}
$$

where P is the absolute pressure, v is the specific volume, T is the absolute temperature, ρ is the density, and R is the gas constant. It has been experimentally observed that the ideal gas relation given above closely approximates the $P-v-T$ behavior of real gases at low densities. At low pressures and high temperatures, the density of a gas decreases and the gas behaves like an ideal gas. In the range of practical interest, many familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and krypton and even heavier gases such as carbon dioxide can be treated as ideal gases with negligible error (often less than one percent). Dense gases such as water vapor in steam power plants and refrigerant vapor in refrigerators, however, should not always be treated as ideal gases since they usually exist at a state near saturation.
You may also recall that specific heat is defined as the energy required to raise the temperature of a unit mass of a substance by one degree (Fig. 1-7). In general, this energy depends on how the process is executed. In thermodynamics, we are interested in two kinds of specific heats: specific heat at constant volume C_{v} and specific heat at constant pressure C_{p}. The specific heat at constant volume C_{v} can be viewed as the energy required to raise the temperature of a unit mass of a substance by one degree as the volume is held constant. The energy required to do the same as the pressure is held constant is the specific heat at constant pressure C_{p}. The specific heat at constant

FIGURE 1-6 The internal energy u represents the microscopic energy of a nonflowing fluid, whereas enthalpy h represents the microscopic energy of a flowing fluid.

FIGURE 1-7
Specific heat is the energy required to raise the temperature of a unit mass of a substance by one degree in a specified way.

FIGURE 1-8
The specific heat of a substance changes with temperature.

FIGURE 1-9
The C_{v} and C_{p} values of incompressible substances are identical and are denoted by C.
pressure C_{p} is greater than C_{v} because at constant pressure the system is allowed to expand and the energy for this expansion work must also be supplied to the system. For ideal gases, these two specific heats are related to each other by $C_{p}=C_{v}+R$.

A common unit for specific heats is $\mathrm{kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ or $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$. Notice that these two units are identical since $\Delta T\left({ }^{\circ} \mathrm{C}\right)=\Delta T(\mathrm{~K})$, and $1^{\circ} \mathrm{C}$ change in temperature is equivalent to a change of 1 K . Also,

$$
1 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \equiv 1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \equiv 1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \equiv 1 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

The specific heats of a substance, in general, depend on two independent properties such as temperature and pressure. For an ideal gas, however, they depend on temperature only (Fig. 1-8). At low pressures all real gases approach ideal gas behavior, and therefore their specific heats depend on temperature only.

The differential changes in the internal energy u and enthalpy h of an ideal gas can be expressed in terms of the specific heats as

$$
\begin{equation*}
d u=C_{v} d T \quad \text { and } \quad d h=C_{p} d T \tag{1-2}
\end{equation*}
$$

The finite changes in the internal energy and enthalpy of an ideal gas during a process can be expressed approximately by using specific heat values at the average temperature as

$$
\begin{equation*}
\Delta u=C_{v, \text { ave }} \Delta T \quad \text { and } \quad \Delta h=C_{p, \text { ave }} \Delta T \quad(\mathrm{~J} / \mathrm{g}) \tag{1-3}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta U=m C_{v, \text { ave }} \Delta T \quad \text { and } \quad \Delta H=m C_{p, \text { ave }} \Delta T \tag{J}
\end{equation*}
$$

where m is the mass of the system.
A substance whose specific volume (or density) does not change with temperature or pressure is called an incompressible substance. The specific volumes of solids and liquids essentially remain constant during a process, and thus they can be approximated as incompressible substances without sacrificing much in accuracy.

The constant-volume and constant-pressure specific heats are identical for incompressible substances (Fig. 1-9). Therefore, for solids and liquids the subscripts on C_{v} and C_{p} can be dropped and both specific heats can be represented by a single symbol, C. That is, $C_{p} \cong C_{v} \cong C$. This result could also be deduced from the physical definitions of constant-volume and constantpressure specific heats. Specific heats of several common gases, liquids, and solids are given in the Appendix.

The specific heats of incompressible substances depend on temperature only. Therefore, the change in the internal energy of solids and liquids can be expressed as

$$
\begin{equation*}
\Delta U=m C_{\mathrm{ave}} \Delta T \tag{J}
\end{equation*}
$$

where $C_{\text {ave }}$ is the average specific heat evaluated at the average temperature. Note that the internal energy change of the systems that remain in a single phase (liquid, solid, or gas) during the process can be determined very easily using average specific heats.

Energy Transfer

Energy can be transferred to or from a given mass by two mechanisms: heat Q and work W. An energy interaction is heat transfer if its driving force is a temperature difference. Otherwise, it is work. A rising piston, a rotating shaft, and an electrical wire crossing the system boundaries are all associated with work interactions. Work done per unit time is called power, and is denoted by \dot{W}. The unit of power is W or $\mathrm{hp}(1 \mathrm{hp}=746 \mathrm{~W})$. Car engines and hydraulic, steam, and gas turbines produce work; compressors, pumps, and mixers consume work. Notice that the energy of a system decreases as it does work, and increases as work is done on it.

In daily life, we frequently refer to the sensible and latent forms of internal energy as heat, and we talk about the heat content of bodies (Fig. 1-10). In thermodynamics, however, those forms of energy are usually referred to as thermal energy to prevent any confusion with heat transfer.

The term heat and the associated phrases such as heat flow, heat addition, heat rejection, heat absorption, heat gain, heat loss, heat storage, heat generation, electrical heating, latent heat, body heat, and heat source are in common use today, and the attempt to replace heat in these phrases by thermal energy had only limited success. These phrases are deeply rooted in our vocabulary and they are used by both the ordinary people and scientists without causing any misunderstanding. For example, the phrase body heat is understood to mean the thermal energy content of a body. Likewise, heat flow is understood to mean the transfer of thermal energy, not the flow of a fluid-like substance called heat, although the latter incorrect interpretation, based on the caloric theory, is the origin of this phrase. Also, the transfer of heat into a system is frequently referred to as heat addition and the transfer of heat out of a system as heat rejection.

Keeping in line with current practice, we will refer to the thermal energy as heat and the transfer of thermal energy as heat transfer. The amount of heat transferred during the process is denoted by Q. The amount of heat transferred per unit time is called heat transfer rate, and is denoted by \dot{Q}. The overdot stands for the time derivative, or "per unit time." The heat transfer rate \dot{Q} has the unit J / s, which is equivalent to W .

When the rate of heat transfer \dot{Q} is available, then the total amount of heat transfer Q during a time interval Δt can be determined from

$$
\begin{equation*}
Q=\int_{0}^{\Delta t} \dot{Q} d t \tag{1-6}
\end{equation*}
$$

provided that the variation of \dot{Q} with time is known. For the special case of $\dot{Q}=$ constant, the equation above reduces to

$$
\begin{equation*}
Q=\dot{Q} \Delta t \tag{J}
\end{equation*}
$$

FIGURE 1-10
The sensible and latent forms of internal energy can be transferred as a result of a temperature difference, and they are referred to as heat or thermal energy.

$$
\dot{q}=\frac{\dot{Q}}{A}=\frac{24 \mathrm{~W}}{6 \mathrm{~m}^{2}}=4 \mathrm{~W} / \mathrm{m}^{2}
$$

FIGURE 1-11

Heat flux is heat transfer per unit time and per unit area, and is equal to $\dot{q}=\dot{Q} / A$ when \dot{Q} is uniform over the area A.

FIGURE 1-12
Schematic for Example 1-1.

The rate of heat transfer per unit area normal to the direction of heat transfer is called heat flux, and the average heat flux is expressed as (Fig. 1-11)

$$
\begin{equation*}
\dot{q}=\frac{\dot{Q}}{A} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) \tag{1-8}
\end{equation*}
$$

where A is the heat transfer area. The unit of heat flux in English units is $\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}$. Note that heat flux may vary with time as well as position on a surface.

EXAMPLE 1-1 Heating of a Copper Ball

A $10-\mathrm{cm}$ diameter copper ball is to be heated from $100^{\circ} \mathrm{C}$ to an average temperature of $150^{\circ} \mathrm{C}$ in 30 minutes (Fig. 1-12). Taking the average density and specific heat of copper in this temperature range to be $\rho=8950 \mathrm{~kg} / \mathrm{m}^{3}$ and $C_{p}=0.395 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, respectively, determine (a) the total amount of heat transfer to the copper ball, (b) the average rate of heat transfer to the ball, and (c) the average heat flux.

SOLUTION The copper ball is to be heated from $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. The total heat transfer, the average rate of heat transfer, and the average heat flux are to be determined.
Assumptions Constant properties can be used for copper at the average temperature.
Properties The average density and specific heat of copper are given to be $\rho=8950 \mathrm{~kg} / \mathrm{m}^{3}$ and $C_{\rho}=0.395 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$.
Analysis (a) The amount of heat transferred to the copper ball is simply the change in its internal energy, and is determined from

Energy transfer to the system = Energy increase of the system

$$
Q=\Delta U=m C_{\mathrm{ave}}\left(T_{2}-T_{1}\right)
$$

where

$$
m=\rho V=\frac{\pi}{6} \rho D^{3}=\frac{\pi}{6}\left(8950 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.1 \mathrm{~m})^{3}=4.69 \mathrm{~kg}
$$

Substituting,

$$
Q=(4.69 \mathrm{~kg})\left(0.395 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(150-100)^{\circ} \mathrm{C}=\mathbf{9 2 . 6} \mathrm{kJ}
$$

Therefore, 92.6 kJ of heat needs to be transferred to the copper ball to heat it from $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
(b) The rate of heat transfer normally changes during a process with time. However, we can determine the average rate of heat transfer by dividing the total amount of heat transfer by the time interval. Therefore,

$$
\dot{Q}_{\text {ave }}=\frac{Q}{\Delta t}=\frac{92.6 \mathrm{~kJ}}{1800 \mathrm{~s}}=0.0514 \mathrm{~kJ} / \mathrm{s}=51.4 \mathrm{~W}
$$

(c) Heat flux is defined as the heat transfer per unit time per unit area, or the rate of heat transfer per unit area. Therefore, the average heat flux in this case is

$$
\dot{q}_{\mathrm{ave}}=\frac{\dot{Q}_{\mathrm{ave}}}{A}=\frac{\dot{Q}_{\mathrm{ave}}}{\pi D^{2}}=\frac{51.4 \mathrm{~W}}{\pi(0.1 \mathrm{~m})^{2}}=1636 \mathrm{~W} / \mathrm{m}^{2}
$$

Discussion Note that heat flux may vary with location on a surface. The value calculated above is the average heat flux over the entire surface of the ball.

1-4 : THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics, also known as the conservation of energy principle, states that energy can neither be created nor destroyed; it can only change forms. Therefore, every bit of energy must be accounted for during a process. The conservation of energy principle (or the energy balance) for any system undergoing any process may be expressed as follows: The net change (increase or decrease) in the total energy of the system during a process is equal to the difference between the total energy entering and the total energy leaving the system during that process. That is,

$$
\left(\begin{array}{c}
\text { Total energy } \tag{1-9}\\
\text { entering the } \\
\text { system }
\end{array}\right)-\left(\begin{array}{c}
\text { Total energy } \\
\text { leaving the } \\
\text { system }
\end{array}\right)=\left(\begin{array}{c}
\text { Change in the } \\
\text { total energy of } \\
\text { the system }
\end{array}\right)
$$

Noting that energy can be transferred to or from a system by heat, work, and mass flow, and that the total energy of a simple compressible system consists of internal, kinetic, and potential energies, the energy balance for any system undergoing any process can be expressed as

$$
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, } \tag{1-10}\\
\text { potential, etc., ene }
\end{array}}
$$

or, in the rate form, as

$$
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of net energy transfer } \tag{W}\\
\text { by heat, work, and mass }
\end{array}}=\underbrace{d E_{\text {system }} / d t}_{\begin{array}{c}
\text { Rate of change in internal } \\
\text { kinetic, potential, etc., energies }
\end{array}}
$$

Energy is a property, and the value of a property does not change unless the state of the system changes. Therefore, the energy change of a system is zero $\left(\Delta E_{\text {system }}=0\right)$ if the state of the system does not change during the process, that is, the process is steady. The energy balance in this case reduces to (Fig. 1-13)

Steady, rate form:

$$
\underbrace{\dot{E}_{\mathrm{in}}}_{\begin{array}{c}
\text { Rate of net energy transfer in } \tag{1-12}\\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\dot{E}_{\mathrm{out}}}_{\begin{array}{c}
\text { Rate of net energy transfer out } \\
\text { by heat, work, and mass }
\end{array}}
$$

In the absence of significant electric, magnetic, motion, gravity, and surface tension effects (i.e., for stationary simple compressible systems), the change

FIGURE 1-13
In steady operation, the rate of energy transfer to a system is equal to the rate of energy transfer from the system.

FIGURE 1-14
In the absence of any work interactions, the change in the energy content of a closed system is equal to the net heat transfer.
in the total energy of a system during a process is simply the change in its internal energy. That is, $\Delta E_{\text {system }}=\Delta U_{\text {system }}$.

In heat transfer analysis, we are usually interested only in the forms of energy that can be transferred as a result of a temperature difference, that is, heat or thermal energy. In such cases it is convenient to write a heat balance and to treat the conversion of nuclear, chemical, and electrical energies into thermal energy as heat generation. The energy balance in that case can be expressed as

$$
\underbrace{Q_{\text {in }}-Q_{\text {out }}}_{\begin{array}{c}
\text { Net heat } \tag{J}\\
\text { transfer }
\end{array}}+\underbrace{E_{\text {gen }}}_{\begin{array}{c}
\text { Heat } \\
\text { generation }
\end{array}}=\underbrace{\Delta E_{\text {thermal, system }}}_{\begin{array}{c}
\text { Change in thermal } \\
\text { energy of the system }
\end{array}}
$$

Energy Balance for Closed Systems (Fixed Mass)

A closed system consists of a fixed mass. The total energy E for most systems encountered in practice consists of the internal energy U. This is especially the case for stationary systems since they don't involve any changes in their velocity or elevation during a process. The energy balance relation in that case reduces to

Stationary closed system:

$$
\begin{equation*}
E_{\text {in }}-E_{\text {out }}=\Delta U=m C_{v} \Delta T \tag{J}
\end{equation*}
$$

where we expressed the internal energy change in terms of mass m, the specific heat at constant volume C_{v}, and the temperature change ΔT of the system. When the system involves heat transfer only and no work interactions across its boundary, the energy balance relation further reduces to (Fig. 1-14)

Stationary closed system, no work:

$$
\begin{equation*}
Q=m C_{v} \Delta T \tag{J}
\end{equation*}
$$

where Q is the net amount of heat transfer to or from the system. This is the form of the energy balance relation we will use most often when dealing with a fixed mass.

Energy Balance for Steady-Flow Systems

A large number of engineering devices such as water heaters and car radiators involve mass flow in and out of a system, and are modeled as control volumes. Most control volumes are analyzed under steady operating conditions. The term steady means no change with time at a specified location. The opposite of steady is unsteady or transient. Also, the term uniform implies no change with position throughout a surface or region at a specified time. These meanings are consistent with their everyday usage (steady girlfriend, uniform distribution, etc.). The total energy content of a control volume during a steady-flow process remains constant ($E_{\mathrm{CV}}=$ constant). That is, the change in the total energy of the control volume during such a process is zero $\left(\Delta E_{\mathrm{CV}}=0\right)$. Thus the amount of energy entering a control volume in all forms (heat, work, mass transfer) for a steady-flow process must be equal to the amount of energy leaving it.

The amount of mass flowing through a cross section of a flow device per unit time is called the mass flow rate, and is denoted by \dot{m}. A fluid may flow in and out of a control volume through pipes or ducts. The mass flow rate of a fluid flowing in a pipe or duct is proportional to the cross-sectional area A_{c} of
the pipe or duct, the density ρ, and the velocity \mathscr{V} of the fluid. The mass flow rate through a differential area $d A_{c}$ can be expressed as $\delta \dot{m}=\rho \mathscr{V}_{n} d A_{c}$ where \mathscr{V}_{n} is the velocity component normal to $d A_{c}$. The mass flow rate through the entire cross-sectional area is obtained by integration over A_{c}.

The flow of a fluid through a pipe or duct can often be approximated to be one-dimensional. That is, the properties can be assumed to vary in one direction only (the direction of flow). As a result, all properties are assumed to be uniform at any cross section normal to the flow direction, and the properties are assumed to have bulk average values over the entire cross section. Under the one-dimensional flow approximation, the mass flow rate of a fluid flowing in a pipe or duct can be expressed as (Fig. 1-15)

$$
\begin{equation*}
\dot{m}=\rho \mathscr{V} A_{c} \quad(\mathrm{~kg} / \mathrm{s}) \tag{1-16}
\end{equation*}
$$

where ρ is the fluid density, \mathscr{V} is the average fluid velocity in the flow direction, and A_{c} is the cross-sectional area of the pipe or duct.

The volume of a fluid flowing through a pipe or duct per unit time is called the volume flow rate \dot{V}, and is expressed as

$$
\begin{equation*}
\dot{V}=\mathscr{V} A_{c}=\frac{\dot{m}}{\rho} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right) \tag{1-17}
\end{equation*}
$$

Note that the mass flow rate of a fluid through a pipe or duct remains constant during steady flow. This is not the case for the volume flow rate, however, unless the density of the fluid remains constant.

For a steady-flow system with one inlet and one exit, the rate of mass flow into the control volume must be equal to the rate of mass flow out of it. That is, $\dot{m}_{\text {in }}=\dot{m}_{\text {out }}=\dot{m}$. When the changes in kinetic and potential energies are negligible, which is usually the case, and there is no work interaction, the energy balance for such a steady-flow system reduces to (Fig. 1-16)

$$
\begin{equation*}
\dot{Q}=\dot{m} \Delta h=\dot{m} C_{p} \Delta T \quad(\mathrm{~kJ} / \mathrm{s}) \tag{1-18}
\end{equation*}
$$

where \dot{Q} is the rate of net heat transfer into or out of the control volume. This is the form of the energy balance relation that we will use most often for steady-flow systems.

Surface Energy Balance

As mentioned in the chapter opener, heat is transferred by the mechanisms of conduction, convection, and radiation, and heat often changes vehicles as it is transferred from one medium to another. For example, the heat conducted to the outer surface of the wall of a house in winter is convected away by the cold outdoor air while being radiated to the cold surroundings. In such cases, it may be necessary to keep track of the energy interactions at the surface, and this is done by applying the conservation of energy principle to the surface.

A surface contains no volume or mass, and thus no energy. Thereore, a surface can be viewed as a fictitious system whose energy content remains constant during a process (just like a steady-state or steady-flow system). Then the energy balance for a surface can be expressed as

Surface energy balance: $\quad \dot{E}_{\text {in }}=\dot{E}_{\text {out }}$

FIGURE 1-15
The mass flow rate of a fluid at a cross section is equal to the product of the fluid density, average fluid velocity, and the cross-sectional area.

FIGURE 1-16
Under steady conditions, the net rate of energy transfer to a fluid in a control volume is equal to the rate of increase in the energy of the fluid stream flowing through the control volume.

convection

FIGURE 1-17
Energy interactions at the outer wall surface of a house.

This relation is valid for both steady and transient conditions, and the surface energy balance does not involve heat generation since a surface does not have a volume. The energy balance for the outer surface of the wall in Fig. 1-17, for example, can be expressed as

$$
\begin{equation*}
\dot{Q}_{1}=\dot{Q}_{2}+\dot{Q}_{3} \tag{1-20}
\end{equation*}
$$

where \dot{Q}_{1} is conduction through the wall to the surface, \dot{Q}_{2} is convection from the surface to the outdoor air, and \dot{Q}_{3} is net radiation from the surface to the surroundings.

When the directions of interactions are not known, all energy interactions can be assumed to be towards the surface, and the surface energy balance can be expressed as $\sum \dot{E}_{\text {in }}=0$. Note that the interactions in opposite direction will end up having negative values, and balance this equation.

EXAMPLE 1-2 Heating of Water in an Electric Teapot

1.2 kg of liquid water initially at $15^{\circ} \mathrm{C}$ is to be heated to $95^{\circ} \mathrm{C}$ in a teapot equipped with a 1200-W electric heating element inside (Fig. 1-18). The teapot is 0.5 kg and has an average specific heat of $0.7 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$. Taking the specific heat of water to be $4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ and disregarding any heat loss from the teapot, determine how long it will take for the water to be heated.

SOLUTION Liquid water is to be heated in an electric teapot. The heating time is to be determined.
Assumptions 1 Heat loss from the teapot is negligible. 2 Constant properties can be used for both the teapot and the water.
Properties The average specific heats are given to be $0.7 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ for the teapot and $4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ for water.
Analysis We take the teapot and the water in it as the system, which is a closed system (fixed mass). The energy balance in this case can be expressed as

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta E_{\text {system }} \\
E_{\text {in }} & =\Delta U_{\text {system }}=\Delta U_{\text {water }}+\Delta U_{\text {teapot }}
\end{aligned}
$$

Then the amount of energy needed to raise the temperature of water and the teapot from $15^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ is

$$
\begin{aligned}
E_{\text {in }}= & (m C \Delta T)_{\text {water }}+(m C \Delta T)_{\text {teapot }} \\
= & (1.2 \mathrm{~kg})\left(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(95-15)^{\circ} \mathrm{C}+(0.5 \mathrm{~kg})\left(0.7 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right) \\
& (95-15)^{\circ} \mathrm{C} \\
= & 429.3 \mathrm{~kJ}
\end{aligned}
$$

The 1200-W electric heating unit will supply energy at a rate of 1.2 kW or 1.2 kJ per second. Therefore, the time needed for this heater to supply 429.3 kJ of heat is determined from

$$
\Delta t=\frac{\text { Total energy transferred }}{\text { Rate of energy transfer }}=\frac{E_{\text {in }}}{\dot{E}_{\text {transfer }}}=\frac{429.3 \mathrm{~kJ}}{1.2 \mathrm{~kJ} / \mathrm{s}}=358 \mathrm{~s}=6.0 \mathrm{~min}
$$

Discussion In reality, it will take more than 6 minutes to accomplish this heating process since some heat loss is inevitable during heating.

EXAMPLE 1-3 Heat Loss from Heating Ducts in a Basement

A 5-m-long section of an air heating system of a house passes through an unheated space in the basement (Fig. 1-19). The cross section of the rectangular duct of the heating system is $20 \mathrm{~cm} \times 25 \mathrm{~cm}$. Hot air enters the duct at 100 kPa and $60^{\circ} \mathrm{C}$ at an average velocity of $5 \mathrm{~m} / \mathrm{s}$. The temperature of the air in the duct drops to $54^{\circ} \mathrm{C}$ as a result of heat loss to the cool space in the basement. Determine the rate of heat loss from the air in the duct to the basement under steady conditions. Also, determine the cost of this heat loss per hour if the house is heated by a natural gas furnace that has an efficiency of 80 percent, and the cost of the natural gas in that area is \$0.60/therm (1 therm $=$ $100,000 \mathrm{Btu}=105,500 \mathrm{~kJ}$).

SOLUTION The temperature of the air in the heating duct of a house drops as a result of heat loss to the cool space in the basement. The rate of heat loss from the hot air and its cost are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air can be treated as an ideal gas with constant properties at room temperature.
Properties The constant pressure specific heat of air at the average temperature of $(54+60) / 2=57^{\circ} \mathrm{C}$ is $1.007 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ (Table A-15).
Analysis We take the basement section of the heating system as our system, which is a steady-flow system. The rate of heat loss from the air in the duct can be determined from

$$
\dot{Q}=\dot{m} C_{p} \Delta T
$$

where \dot{m} is the mass flow rate and ΔT is the temperature drop. The density of air at the inlet conditions is

$$
\rho=\frac{P}{R T}=\frac{100 \mathrm{kPa}}{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(60+273) \mathrm{K}}=1.046 \mathrm{~kg} / \mathrm{m}^{3}
$$

The cross-sectional area of the duct is

$$
A_{c}=(0.20 \mathrm{~m})(0.25 \mathrm{~m})=0.05 \mathrm{~m}^{2}
$$

Then the mass flow rate of air through the duct and the rate of heat loss become

$$
\dot{m}=\rho \mathscr{V} A_{c}=\left(1.046 \mathrm{~kg} / \mathrm{m}^{3}\right)(5 \mathrm{~m} / \mathrm{s})\left(0.05 \mathrm{~m}^{2}\right)=0.2615 \mathrm{~kg} / \mathrm{s}
$$

and

$$
\begin{aligned}
\dot{Q}_{\text {loss }} & =\dot{m} C_{p}\left(T_{\text {in }}-T_{\text {out }}\right) \\
& =(0.2615 \mathrm{~kg} / \mathrm{s})\left(1.007 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(60-54)^{\circ} \mathrm{C} \\
& =\mathbf{1 . 5 8 0} \mathrm{kJ} / \mathrm{s}
\end{aligned}
$$

FIGURE 1-19
Schematic for Example 1-3.

FIGURE 1-20
Schematic for Example 1-4.
or $5688 \mathrm{~kJ} / \mathrm{h}$. The cost of this heat loss to the home owner is

$$
\begin{aligned}
\text { Cost of heat loss } & =\frac{(\text { Rate of heat loss })(\text { Unit cost of energy input })}{\text { Furnace efficiency }} \\
& =\frac{(5688 \mathrm{~kJ} / \mathrm{h})(\$ 0.60 / \text { therm })}{0.80}\left(\frac{1 \text { therm }}{105,500 \mathrm{~kJ}}\right) \\
& =\$ 0.040 / \mathrm{h}
\end{aligned}
$$

Discussion The heat loss from the heating ducts in the basement is costing the home owner 4 cents per hour. Assuming the heater operates 2000 hours during a heating season, the annual cost of this heat loss adds up to $\$ 80$. Most of this money can be saved by insulating the heating ducts in the unheated areas.

EXAMPLE 1-4 Electric Heating of a House at High Elevation

Consider a house that has a floor space of $2000 \mathrm{ft}^{2}$ and an average height of 9 ft at 5000 ft elevation where the standard atmospheric pressure is 12.2 psia (Fig. 1-20). Initially the house is at a uniform temperature of $50^{\circ} \mathrm{F}$. Now the electric heater is turned on, and the heater runs until the air temperature in the house rises to an average value of $70^{\circ} \mathrm{F}$. Determine the amount of energy transferred to the air assuming (a) the house is air-tight and thus no air escapes during the heating process and (b) some air escapes through the cracks as the heated air in the house expands at constant pressure. Also determine the cost of this heat for each case if the cost of electricity in that area is $\$ 0.075 / \mathrm{kWh}$.

SOLUTION The air in the house is heated from $50^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$ by an electric heater. The amount and cost of the energy transferred to the air are to be determined for constant-volume and constant-pressure cases.
Assumptions 1 Air can be treated as an ideal gas with constant properties at room temperature. 2 Heat loss from the house during heating is negligible. 3 The volume occupied by the furniture and other things is negligible.
Properties The specific heats of air at the average temperature of $(50+70) / 2$ $=60^{\circ} \mathrm{F}$ are $C_{\rho}=0.240 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}$ and $C_{v}=C_{p}-R=0.171 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}$ (Tables A-1E and A-15E).
Analysis The volume and the mass of the air in the house are

$$
\begin{aligned}
V & =(\text { Floor area })(\text { Height })=\left(2000 \mathrm{ft}^{2}\right)(9 \mathrm{ft})=18,000 \mathrm{ft}^{3} \\
m & =\frac{P V}{R T}=\frac{(12.2 \mathrm{psia})\left(18,000 \mathrm{ft}^{3}\right)}{\left(0.3704 \mathrm{psia} \cdot \mathrm{ft}^{3} / \mathrm{lbm} \cdot \mathrm{R}\right)(50+460) \mathrm{R}}=1162 \mathrm{lbm}
\end{aligned}
$$

(a) The amount of energy transferred to air at constant volume is simply the change in its internal energy, and is determined from

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta E_{\text {system }} \\
E_{\text {in, constant volume }} & =\Delta U_{\text {air }}=m C_{v} \Delta T \\
& =(1162 \mathrm{lbm})\left(0.171 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)(70-50)^{\circ} \mathrm{F} \\
& =3974 \mathrm{Btu}
\end{aligned}
$$

At a unit cost of $\$ 0.075 / \mathrm{kWh}$, the total cost of this energy is

$$
\begin{aligned}
\text { Cost of energy } & =(\text { Amount of energy })(\text { Unit cost of energy }) \\
& =(3974 \mathrm{Btu})(\$ 0.075 / \mathrm{kWh})\left(\frac{1 \mathrm{kWh}}{3412 \mathrm{Btu}}\right) \\
& =\$ 0.087
\end{aligned}
$$

(b) The amount of energy transferred to air at constant pressure is the change in its enthalpy, and is determined from

$$
\begin{aligned}
E_{\text {in, constant pressure }} & =\Delta H_{\mathrm{air}}=m C_{p} \Delta T \\
& =(1162 \mathrm{lbm})\left(0.240 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)(70-50)^{\circ} \mathrm{F} \\
& =\mathbf{5 5 7 8} \mathbf{~ B t u}
\end{aligned}
$$

At a unit cost of $\$ 0.075 / \mathrm{kWh}$, the total cost of this energy is

$$
\begin{aligned}
\text { Cost of energy } & =(\text { Amount of energy })(\text { Unit cost of energy }) \\
& =(5578 \mathrm{Btu})(\$ 0.075 / \mathrm{kWh})\left(\frac{1 \mathrm{kWh}}{3412 \mathrm{Btu}}\right) \\
& =\$ 0.123
\end{aligned}
$$

Discussion It will cost about 12 cents to raise the temperature of the air in this house from $50^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$. The second answer is more realistic since every house has cracks, especially around the doors and windows, and the pressure in the house remains essentially constant during a heating process. Therefore, the second approach is used in practice. This conservative approach somewhat overpredicts the amount of energy used, however, since some of the air will escape through the cracks before it is heated to $70^{\circ} \mathrm{F}$.

1-5 - HEAT TRANSFER MECHANISMS

In Section 1-1 we defined heat as the form of energy that can be transferred from one system to another as a result of temperature difference. A thermodynamic analysis is concerned with the amount of heat transfer as a system undergoes a process from one equilibrium state to another. The science that deals with the determination of the rates of such energy transfers is the heat transfer. The transfer of energy as heat is always from the higher-temperature medium to the lower-temperature one, and heat transfer stops when the two mediums reach the same temperature.

Heat can be transferred in three different modes: conduction, convection, and radiation. All modes of heat transfer require the existence of a temperature difference, and all modes are from the high-temperature medium to a lower-temperature one. Below we give a brief description of each mode. A detailed study of these modes is given in later chapters of this text.

1-6 - CONDUCTION

Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent less energetic ones as a result of interactions between the particles. Conduction can take place in solids, liquids, or gases. In gases and liquids, conduction is due to the collisions and diffusion of the

FIGURE 1-21
Heat conduction through a large plane wall of thickness Δx and area A.

(a) Copper $\left(k=401 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$

(b) Silicon ($k=148 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$)

FIGURE 1-22
The rate of heat conduction through a solid is directly proportional to its thermal conductivity.
molecules during their random motion. In solids, it is due to the combination of vibrations of the molecules in a lattice and the energy transport by free electrons. A cold canned drink in a warm room, for example, eventually warms up to the room temperature as a result of heat transfer from the room to the drink through the aluminum can by conduction.

The rate of heat conduction through a medium depends on the geometry of the medium, its thickness, and the material of the medium, as well as the temperature difference across the medium. We know that wrapping a hot water tank with glass wool (an insulating material) reduces the rate of heat loss from the tank. The thicker the insulation, the smaller the heat loss. We also know that a hot water tank will lose heat at a higher rate when the temperature of the room housing the tank is lowered. Further, the larger the tank, the larger the surface area and thus the rate of heat loss.

Consider steady heat conduction through a large plane wall of thickness $\Delta x=L$ and area A, as shown in Fig. 1-21. The temperature difference across the wall is $\Delta T=T_{2}-T_{1}$. Experiments have shown that the rate of heat transfer \dot{Q} through the wall is doubled when the temperature difference ΔT across the wall or the area A normal to the direction of heat transfer is doubled, but is halved when the wall thickness L is doubled. Thus we conclude that the rate of heat conduction through a plane layer is proportional to the temperature difference across the layer and the heat transfer area, but is inversely proportional to the thickness of the layer. That is,

$$
\text { Rate of heat conduction } \propto \frac{(\text { Area)(Temperature difference) }}{\text { Thickness }}
$$

or,

$$
\begin{equation*}
\dot{Q}_{\text {cond }}=k A \frac{T_{1}-T_{2}}{\Delta x}=-k A \frac{\Delta T}{\Delta x} \tag{W}
\end{equation*}
$$

where the constant of proportionality k is the thermal conductivity of the material, which is a measure of the ability of a material to conduct heat (Fig. 1-22). In the limiting case of $\Delta x \rightarrow 0$, the equation above reduces to the differential form

$$
\begin{equation*}
\dot{Q}_{\text {cond }}=-k A \frac{d T}{d x} \tag{W}
\end{equation*}
$$

which is called Fourier's law of heat conduction after J. Fourier, who expressed it first in his heat transfer text in 1822 . Here $d T / d x$ is the temperature gradient, which is the slope of the temperature curve on a $T-x$ diagram (the rate of change of T with x), at location x. The relation above indicates that the rate of heat conduction in a direction is proportional to the temperature gradient in that direction. Heat is conducted in the direction of decreasing temperature, and the temperature gradient becomes negative when temperature decreases with increasing x. The negative sign in Eq. 1-22 ensures that heat transfer in the positive x direction is a positive quantity.

The heat transfer area A is always normal to the direction of heat transfer. For heat loss through a $5-\mathrm{m}$-long, 3 -m-high, and $25-\mathrm{cm}$-thick wall, for example, the heat transfer area is $A=15 \mathrm{~m}^{2}$. Note that the thickness of the wall has no effect on A (Fig. 1-23).

EXAMPLE 1-5 The Cost of Heat Loss through a Roof

The roof of an electrically heated home is 6 m long, 8 m wide, and 0.25 m thick, and is made of a flat layer of concrete whose thermal conductivity is $k=0.8 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ (Fig. 1-24). The temperatures of the inner and the outer surfaces of the roof one night are measured to be $15^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$, respectively, for a period of 10 hours. Determine (a) the rate of heat loss through the roof that night and (b) the cost of that heat loss to the home owner if the cost of electricity is $\$ 0.08 / \mathrm{kWh}$.

SOLUTION The inner and outer surfaces of the flat concrete roof of an electrically heated home are maintained at specified temperatures during a night. The heat loss through the roof and its cost that night are to be determined.
Assumptions 1 Steady operating conditions exist during the entire night since the surface temperatures of the roof remain constant at the specified values. 2 Constant properties can be used for the roof.
Properties The thermal conductivity of the roof is given to be $k=0.8$ W/m $\cdot{ }^{\circ} \mathrm{C}$.
Analysis (a) Noting that heat transfer through the roof is by conduction and the area of the roof is $A=6 \mathrm{~m} \times 8 \mathrm{~m}=48 \mathrm{~m}^{2}$, the steady rate of heat transfer through the roof is determined to be

$$
\dot{Q}=k A \frac{T_{1}-T_{2}}{L}=\left(0.8 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)\left(48 \mathrm{~m}^{2}\right) \frac{(15-4)^{\circ} \mathrm{C}}{0.25 \mathrm{~m}}=1690 \mathrm{~W}=1.69 \mathrm{~kW}
$$

(b) The amount of heat lost through the roof during a 10-hour period and its cost are determined from

$$
\begin{aligned}
Q & =\dot{Q} \Delta t=(1.69 \mathrm{~kW})(10 \mathrm{~h})=16.9 \mathrm{kWh} \\
\text { Cost } & =(\text { Amount of energy })(\mathrm{Unit} \text { cost of energy }) \\
& =(16.9 \mathrm{kWh})(\$ 0.08 / \mathrm{kWh})=\$ 1.35
\end{aligned}
$$

Discussion The cost to the home owner of the heat loss through the roof that night was $\$ 1.35$. The total heating bill of the house will be much larger since the heat losses through the walls are not considered in these calculations.

FIGURE 1-23
In heat conduction analysis, A represents the area normal to the direction of heat transfer.

FIGURE 1-24
Schematic for Example 1-5.

Thermal Conductivity

We have seen that different materials store heat differently, and we have defined the property specific heat C_{p} as a measure of a material's ability to store thermal energy. For example, $C_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ for water and $C_{p}=0.45$ $\mathrm{kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ for iron at room temperature, which indicates that water can store almost 10 times the energy that iron can per unit mass. Likewise, the thermal conductivity k is a measure of a material's ability to conduct heat. For example, $k=0.608 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ for water and $k=80.2 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ for iron at room temperature, which indicates that iron conducts heat more than 100 times faster than water can. Thus we say that water is a poor heat conductor relative to iron, although water is an excellent medium to store thermal energy.

Equation 1-22 for the rate of conduction heat transfer under steady conditions can also be viewed as the defining equation for thermal conductivity. Thus the thermal conductivity of a material can be defined as the rate of

TABLE 1-1

The thermal conductivities of some materials at room temperature

Material	$\mathrm{k}, \mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}^{*}$
Diamond	2300
Silver	429
Copper	401
Gold	317
Aluminum	237
Iron	80.2
Mercury (I)	8.54
Glass	0.78
Brick	0.72
Water (I)	0.613
Human skin	0.37
Wood (oak)	0.17
Helium (g)	0.152
Soft rubber	0.13
Glass fiber	0.043
Air (g)	0.026
Urethane, rigid foam	0.026

*Multiply by 0.5778 to convert to $\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$.

FIGURE 1-25
A simple experimental setup to determine the thermal conductivity of a material.
heat transfer through a unit thickness of the material per unit area per unit temperature difference. The thermal conductivity of a material is a measure of the ability of the material to conduct heat. A high value for thermal conductivity indicates that the material is a good heat conductor, and a low value indicates that the material is a poor heat conductor or insulator. The thermal conductivities of some common materials at room temperature are given in Table $1-1$. The thermal conductivity of pure copper at room temperature is $k=401 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, which indicates that a $1-\mathrm{m}$-thick copper wall will conduct heat at a rate of 401 W per m^{2} area per ${ }^{\circ} \mathrm{C}$ temperature difference across the wall. Note that materials such as copper and silver that are good electric conductors are also good heat conductors, and have high values of thermal conductivity. Materials such as rubber, wood, and styrofoam are poor conductors of heat and have low conductivity values.

A layer of material of known thickness and area can be heated from one side by an electric resistance heater of known output. If the outer surfaces of the heater are well insulated, all the heat generated by the resistance heater will be transferred through the material whose conductivity is to be determined. Then measuring the two surface temperatures of the material when steady heat transfer is reached and substituting them into Eq. 1-22 together with other known quantities give the thermal conductivity (Fig. 1-25).

The thermal conductivities of materials vary over a wide range, as shown in Fig. 1-26. The thermal conductivities of gases such as air vary by a factor of 10^{4} from those of pure metals such as copper. Note that pure crystals and metals have the highest thermal conductivities, and gases and insulating materials the lowest.

Temperature is a measure of the kinetic energies of the particles such as the molecules or atoms of a substance. In a liquid or gas, the kinetic energy of the molecules is due to their random translational motion as well as their vibrational and rotational motions. When two molecules possessing different kinetic energies collide, part of the kinetic energy of the more energetic (higher-temperature) molecule is transferred to the less energetic (lowertemperature) molecule, much the same as when two elastic balls of the same mass at different velocities collide, part of the kinetic energy of the faster ball is transferred to the slower one. The higher the temperature, the faster the molecules move and the higher the number of such collisions, and the better the heat transfer.

The kinetic theory of gases predicts and the experiments confirm that the thermal conductivity of gases is proportional to the square root of the absolute temperature T, and inversely proportional to the square root of the molar mass M. Therefore, the thermal conductivity of a gas increases with increasing temperature and decreasing molar mass. So it is not surprising that the thermal conductivity of helium $(M=4)$ is much higher than those of air $(M=29)$ and argon $(M=40)$.

The thermal conductivities of gases at 1 atm pressure are listed in Table A-16. However, they can also be used at pressures other than 1 atm, since the thermal conductivity of gases is independent of pressure in a wide range of pressures encountered in practice.

The mechanism of heat conduction in a liquid is complicated by the fact that the molecules are more closely spaced, and they exert a stronger intermolecular force field. The thermal conductivities of liquids usually lie between those

of solids and gases. The thermal conductivity of a substance is normally highest in the solid phase and lowest in the gas phase. Unlike gases, the thermal conductivities of most liquids decrease with increasing temperature, with water being a notable exception. Like gases, the conductivity of liquids decreases with increasing molar mass. Liquid metals such as mercury and sodium have high thermal conductivities and are very suitable for use in applications where a high heat transfer rate to a liquid is desired, as in nuclear power plants.

In solids, heat conduction is due to two effects: the lattice vibrational waves induced by the vibrational motions of the molecules positioned at relatively fixed positions in a periodic manner called a lattice, and the energy transported via the free flow of electrons in the solid (Fig. 1-27). The thermal conductivity of a solid is obtained by adding the lattice and electronic components. The relatively high thermal conductivities of pure metals are primarily due to the electronic component. The lattice component of thermal conductivity strongly depends on the way the molecules are arranged. For example, diamond, which is a highly ordered crystalline solid, has the highest known thermal conductivity at room temperature.

Unlike metals, which are good electrical and heat conductors, crystalline solids such as diamond and semiconductors such as silicon are good heat conductors but poor electrical conductors. As a result, such materials find widespread use in the electronics industry. Despite their higher price, diamond heat sinks are used in the cooling of sensitive electronic components because of the

FIGURE 1-26
The range of thermal conductivity of various materials at room temperature.

FIGURE 1-27
The mechanisms of heat conduction in different phases of a substance.

TABLE 1-2

The thermal conductivity of an alloy is usually much lower than the thermal conductivity of either metal of which it is composed

Pure metal or alloy	$k, \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, at 300 K
Copper	401
Nickel Constantan $(55 \% \mathrm{Cu}, 45 \% \mathrm{Ni})$	91
	23
Copper	401
Aluminum Commercial bronze $(90 \% \mathrm{Cu}, 10 \% \mathrm{Al})$	237

TABLE 1-3
Thermal conductivities of materials vary with temperature

T, K	Copper	Aluminum
100	482	302
200	413	237
300	401	237
400	393	240
600	379	231
800	366	218

FIGURE 1-28
The variation of the thermal conductivity of various solids, liquids, and gases with temperature (from White, Ref. 10).
excellent thermal conductivity of diamond. Silicon oils and gaskets are commonly used in the packaging of electronic components because they provide both good thermal contact and good electrical insulation.

Pure metals have high thermal conductivities, and one would think that metal alloys should also have high conductivities. One would expect an alloy made of two metals of thermal conductivities k_{1} and k_{2} to have a conductivity k between k_{1} and k_{2}. But this turns out not to be the case. The thermal conductivity of an alloy of two metals is usually much lower than that of either metal, as shown in Table 1-2. Even small amounts in a pure metal of "foreign" molecules that are good conductors themselves seriously disrupt the flow of heat in that metal. For example, the thermal conductivity of steel containing just 1 percent of chrome is $62 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, while the thermal conductivities of iron and chromium are 83 and $95 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, respectively.

The thermal conductivities of materials vary with temperature (Table 1-3). The variation of thermal conductivity over certain temperature ranges is negligible for some materials, but significant for others, as shown in Fig. 1-28. The thermal conductivities of certain solids exhibit dramatic increases at temperatures near absolute zero, when these solids become superconductors. For example, the conductivity of copper reaches a maximum value of about $20,000 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ at 20 K , which is about 50 times the conductivity at room temperature. The thermal conductivities and other thermal properties of various materials are given in Tables A-3 to A-16.

The temperature dependence of thermal conductivity causes considerable complexity in conduction analysis. Therefore, it is common practice to evaluate the thermal conductivity k at the average temperature and treat it as a constant in calculations.
In heat transfer analysis, a material is normally assumed to be isotropic; that is, to have uniform properties in all directions. This assumption is realistic for most materials, except those that exhibit different structural characteristics in different directions, such as laminated composite materials and wood. The thermal conductivity of wood across the grain, for example, is different than that parallel to the grain.

Thermal Diffusivity

The product ρC_{p}, which is frequently encountered in heat transfer analysis, is called the heat capacity of a material. Both the specific heat C_{p} and the heat capacity ρC_{p} represent the heat storage capability of a material. But C_{p} expresses it per unit mass whereas ρC_{p} expresses it per unit volume, as can be noticed from their units $\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ and $\mathrm{J} / \mathrm{m}^{3} \cdot{ }^{\circ} \mathrm{C}$, respectively.

Another material property that appears in the transient heat conduction analysis is the thermal diffusivity, which represents how fast heat diffuses through a material and is defined as

$$
\begin{equation*}
\alpha=\frac{\text { Heat conducted }}{\text { Heat stored }}=\frac{k}{\rho C_{p}} \quad\left(\mathrm{~m}^{2} / \mathrm{s}\right) \tag{1-23}
\end{equation*}
$$

Note that the thermal conductivity k represents how well a material conducts heat, and the heat capacity ρC_{p} represents how much energy a material stores per unit volume. Therefore, the thermal diffusivity of a material can be viewed as the ratio of the heat conducted through the material to the heat stored per unit volume. A material that has a high thermal conductivity or a low heat capacity will obviously have a large thermal diffusivity. The larger the thermal diffusivity, the faster the propagation of heat into the medium. A small value of thermal diffusivity means that heat is mostly absorbed by the material and a small amount of heat will be conducted further.
The thermal diffusivities of some common materials at $20^{\circ} \mathrm{C}$ are given in Table 1-4. Note that the thermal diffusivity ranges from $\alpha=0.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ for water to $174 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ for silver, which is a difference of more than a thousand times. Also note that the thermal diffusivities of beef and water are the same. This is not surprising, since meat as well as fresh vegetables and fruits are mostly water, and thus they possess the thermal properties of water.

EXAMPLE 1-6 Measuring the Thermal Conductivity of a Material

A common way of measuring the thermal conductivity of a material is to sandwich an electric thermofoil heater between two identical samples of the material, as shown in Fig. 1-29. The thickness of the resistance heater, including its cover, which is made of thin silicon rubber, is usually less than 0.5 mm . A circulating fluid such as tap water keeps the exposed ends of the samples at constant temperature. The lateral surfaces of the samples are well insulated to ensure that heat transfer through the samples is one-dimensional. Two thermocouples are embedded into each sample some distance L apart, and a

TABLE 1-4

The thermal diffusivities of some materials at room temperature

Material	$\alpha, \mathrm{m}^{2} / \mathrm{s}^{*}$
Silver	149×10^{-6}
Gold	127×10^{-6}
Copper	113×10^{-6}
Aluminum	97.5×10^{-6}
Iron	22.8×10^{-6}
Mercury (I)	4.7×10^{-6}
Marble	1.2×10^{-6}
Ice	1.2×10^{-6}
Concrete	0.75×10^{-6}
Brick	0.52×10^{-6}
Heavy soil (dry)	0.52×10^{-6}
Glass	0.34×10^{-6}
Glass wool	0.23×10^{-6}
Water (I)	0.14×10^{-6}
Beef	0.14×10^{-6}
Wood (oak)	0.13×10^{-6}

*Multiply by 10.76 to convert to $\mathrm{ft}^{2} / \mathrm{s}$.

FIGURE 1-29
Apparatus to measure the thermal conductivity of a material using two identical samples and a thin resistance heater (Example 1-6).
differential thermometer reads the temperature drop ΔT across this distance along each sample. When steady operating conditions are reached, the total rate of heat transfer through both samples becomes equal to the electric power drawn by the heater, which is determined by multiplying the electric current by the voltage.

In a certain experiment, cylindrical samples of diameter 5 cm and length 10 cm are used. The two thermocouples in each sample are placed 3 cm apart. After initial transients, the electric heater is observed to draw 0.4 A at 110 V , and both differential thermometers read a temperature difference of $15^{\circ} \mathrm{C}$. Determine the thermal conductivity of the sample.

SOLUTION The thermal conductivity of a material is to be determined by ensuring one-dimensional heat conduction, and by measuring temperatures when steady operating conditions are reached.
Assumptions 1 Steady operating conditions exist since the temperature readings do not change with time. 2 Heat losses through the lateral surfaces of the apparatus are negligible since those surfaces are well insulated, and thus the entire heat generated by the heater is conducted through the samples. 3 The apparatus possesses thermal symmetry.
Analysis The electrical power consumed by the resistance heater and converted to heat is

$$
\dot{W}_{e}=V I=(110 \mathrm{~V})(0.4 \mathrm{~A})=44 \mathrm{~W}
$$

The rate of heat flow through each sample is

$$
\dot{Q}=\frac{1}{2} \dot{W}_{e}=\frac{1}{2} \times(44 \mathrm{~W})=22 \mathrm{~W}
$$

since only half of the heat generated will flow through each sample because of symmetry. Reading the same temperature difference across the same distance in each sample also confirms that the apparatus possesses thermal symmetry. The heat transfer area is the area normal to the direction of heat flow, which is the cross-sectional area of the cylinder in this case:

$$
A=\frac{1}{4} \pi D^{2}=\frac{1}{4} \pi(0.05 \mathrm{~m})^{2}=0.00196 \mathrm{~m}^{2}
$$

Noting that the temperature drops by $15^{\circ} \mathrm{C}$ within 3 cm in the direction of heat flow, the thermal conductivity of the sample is determined to be

$$
\dot{Q}=k A \frac{\Delta T}{L} \rightarrow k=\frac{\dot{Q} L}{A \Delta T}=\frac{(22 \mathrm{~W})(0.03 \mathrm{~m})}{\left(0.00196 \mathrm{~m}^{2}\right)\left(15^{\circ} \mathrm{C}\right)}=\mathbf{2 2 . 4} \mathbf{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
$$

Discussion Perhaps you are wondering if we really need to use two samples in the apparatus, since the measurements on the second sample do not give any additional information. It seems like we can replace the second sample by insulation. Indeed, we do not need the second sample; however, it enables us to verify the temperature measurements on the first sample and provides thermal symmetry, which reduces experimental error.

EXAMPLE 1-7 Conversion between SI and English Units

An engineer who is working on the heat transfer analysis of a brick building in English units needs the thermal conductivity of brick. But the only value he can
find from his handbooks is $0.72 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, which is in SI units. To make matters worse, the engineer does not have a direct conversion factor between the two unit systems for thermal conductivity. Can you help him out?

SOLUTION The situation this engineer is facing is not unique, and most engineers often find themselves in a similar position. A person must be very careful during unit conversion not to fall into some common pitfalls and to avoid some costly mistakes. Although unit conversion is a simple process, it requires utmost care and careful reasoning.

The conversion factors for W and m are straightforward and are given in conversion tables to be

$$
\begin{aligned}
1 \mathrm{~W} & =3.41214 \mathrm{Btu} / \mathrm{h} \\
1 \mathrm{~m} & =3.2808 \mathrm{ft}
\end{aligned}
$$

But the conversion of ${ }^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$ is not so simple, and it can be a source of error if one is not careful. Perhaps the first thought that comes to mind is to replace ${ }^{\circ} \mathrm{C}$ by $\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$ since $T\left({ }^{\circ} \mathrm{C}\right)=\left[T\left({ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$. But this will be wrong since the ${ }^{\circ} \mathrm{C}$ in the unit $\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ represents per ${ }^{\circ} \mathrm{C}$ change in temperature. Noting that $1^{\circ} \mathrm{C}$ change in temperature corresponds to $1.8^{\circ} \mathrm{F}$, the proper conversion factor to be used is

$$
1^{\circ} \mathrm{C}=1.8^{\circ} \mathrm{F}
$$

Substituting, we get

$$
1 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}=\frac{3.41214 \mathrm{Btu} / \mathrm{h}}{(3.2808 \mathrm{ft})\left(1.8^{\circ} \mathrm{F}\right)}=0.5778 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}
$$

which is the desired conversion factor. Therefore, the thermal conductivity of the brick in English units is

$$
\begin{aligned}
k_{\text {brick }} & =0.72 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C} \\
& =0.72 \times\left(0.5778 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right) \\
& =\mathbf{0 . 4 2} \mathbf{~ B t u} / \mathbf{h} \cdot \mathbf{f t} \cdot{ }^{\circ} \mathbf{F}
\end{aligned}
$$

Discussion Note that the thermal conductivity value of a material in English units is about half that in SI units (Fig. 1-30). Also note that we rounded the result to two significant digits (the same number in the original value) since expressing the result in more significant digits (such as 0.4160 instead of 0.42) would falsely imply a more accurate value than the original one.

FIGURE 1-30
The thermal conductivity value in English units is obtained by multiplying the value in SI units by 0.5778 .

1-7 : CONVECTION

Convection is the mode of energy transfer between a solid surface and the adjacent liquid or gas that is in motion, and it involves the combined effects of conduction and fluid motion. The faster the fluid motion, the greater the convection heat transfer. In the absence of any bulk fluid motion, heat transfer between a solid surface and the adjacent fluid is by pure conduction. The presence of bulk motion of the fluid enhances the heat transfer between the solid surface and the fluid, but it also complicates the determination of heat transfer rates.

FIGURE 1-31
Heat transfer from a hot surface to air by convection.

FIGURE 1-32
The cooling of a boiled egg by forced and natural convection.

TABLE 1-5

Typical values of convection heat transfer coefficient
Type of
convection $\quad h, W / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}^{*}$

Free convection of
gases 2-25

Free convection of liquids

10-1000
Forced convection of gases 25-250
Forced convection of liquids 50-20,000
Boiling and condensation 2500-100,000
*Multiply by 0.176 to convert to $\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$.

Consider the cooling of a hot block by blowing cool air over its top surface (Fig. 1-31). Energy is first transferred to the air layer adjacent to the block by conduction. This energy is then carried away from the surface by convection, that is, by the combined effects of conduction within the air that is due to random motion of air molecules and the bulk or macroscopic motion of the air that removes the heated air near the surface and replaces it by the cooler air.

Convection is called forced convection if the fluid is forced to flow over the surface by external means such as a fan, pump, or the wind. In contrast, convection is called natural (or free) convection if the fluid motion is caused by buoyancy forces that are induced by density differences due to the variation of temperature in the fluid (Fig. 1-32). For example, in the absence of a fan, heat transfer from the surface of the hot block in Fig. 1-31 will be by natural convection since any motion in the air in this case will be due to the rise of the warmer (and thus lighter) air near the surface and the fall of the cooler (and thus heavier) air to fill its place. Heat transfer between the block and the surrounding air will be by conduction if the temperature difference between the air and the block is not large enough to overcome the resistance of air to movement and thus to initiate natural convection currents.

Heat transfer processes that involve change of phase of a fluid are also considered to be convection because of the fluid motion induced during the process, such as the rise of the vapor bubbles during boiling or the fall of the liquid droplets during condensation.

Despite the complexity of convection, the rate of convection heat transfer is observed to be proportional to the temperature difference, and is conveniently expressed by Newton's law of cooling as

$$
\begin{equation*}
\dot{Q}_{\text {conv }}=h A_{s}\left(T_{s}-T_{\infty}\right) \tag{1-24}
\end{equation*}
$$

where h is the convection heat transfer coefficient in $\mathrm{W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$ or $\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$, A_{s} is the surface area through which convection heat transfer takes place, T_{s} is the surface temperature, and T_{∞} is the temperature of the fluid sufficiently far from the surface. Note that at the surface, the fluid temperature equals the surface temperature of the solid.

The convection heat transfer coefficient h is not a property of the fluid. It is an experimentally determined parameter whose value depends on all the variables influencing convection such as the surface geometry, the nature of fluid motion, the properties of the fluid, and the bulk fluid velocity. Typical values of h are given in Table 1-5.

Some people do not consider convection to be a fundamental mechanism of heat transfer since it is essentially heat conduction in the presence of fluid motion. But we still need to give this combined phenomenon a name, unless we are willing to keep referring to it as "conduction with fluid motion." Thus, it is practical to recognize convection as a separate heat transfer mechanism despite the valid arguments to the contrary.

EXAMPLE 1-8 Measuring Convection Heat Transfer Coefficient

A 2-m-long, $0.3-\mathrm{cm}$-diameter electrical wire extends across a room at $15^{\circ} \mathrm{C}$, as shown in Fig. 1-33. Heat is generated in the wire as a result of resistance heating, and the surface temperature of the wire is measured to be $152^{\circ} \mathrm{C}$ in steady
operation. Also, the voltage drop and electric current through the wire are measured to be 60 V and 1.5 A , respectively. Disregarding any heat transfer by radiation, determine the convection heat transfer coefficient for heat transfer between the outer surface of the wire and the air in the room.

SOLUTION The convection heat transfer coefficient for heat transfer from an electrically heated wire to air is to be determined by measuring temperatures when steady operating conditions are reached and the electric power consumed. Assumptions 1 Steady operating conditions exist since the temperature readings do not change with time. 2 Radiation heat transfer is negligible.
Analysis When steady operating conditions are reached, the rate of heat loss from the wire will equal the rate of heat generation in the wire as a result of resistance heating. That is,

$$
\dot{Q}=\dot{E}_{\text {generated }}=V I=(60 \mathrm{~V})(1.5 \mathrm{~A})=90 \mathrm{~W}
$$

The surface area of the wire is

$$
A_{s}=\pi D L=\pi(0.003 \mathrm{~m})(2 \mathrm{~m})=0.01885 \mathrm{~m}^{2}
$$

Newton's law of cooling for convection heat transfer is expressed as

$$
\dot{Q}_{\text {conv }}=h A_{s}\left(T_{s}-T_{\infty}\right)
$$

Disregarding any heat transfer by radiation and thus assuming all the heat loss from the wire to occur by convection, the convection heat transfer coefficient is determined to be

$$
h=\frac{\dot{Q}_{\text {conv }}}{A_{s}\left(T_{s}-T_{\infty}\right)}=\frac{90 \mathrm{~W}}{\left(0.01885 \mathrm{~m}^{2}\right)(152-15)^{\circ} \mathrm{C}}=34.9 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}
$$

Discussion Note that the simple setup described above can be used to determine the average heat transfer coefficients from a variety of surfaces in air. Also, heat transfer by radiation can be eliminated by keeping the surrounding surfaces at the temperature of the wire.

FIGURE 1-33
Schematic for Example 1-8.

