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double-valued function Z1/2. Each branch of Z1/2 yields a branch of (z − z0)
1/2.

More precisely, when Z = Reiθ , branches of Z1/2 are

Z1/2 =
√

R exp
iθ

2
(R > 0, α < θ < α + 2π),

according to equation (8) in Sec. 97. Hence if we write

R = |z − z0|, � = Arg (z − z0), and θ = arg(z − z0),

two branches of (z − z0)
1/2 are

G0(z) =
√

R exp
i�

2
(R > 0, −π < � < π)(1)

and

g0(z) =
√

R exp
iθ

2
(R > 0, 0 < θ < 2π).(2)

The branch of Z1/2 that was used in writing G0(z) is defined at all points in the
Z plane except for the origin and points on the ray Arg Z = π . The transformation
w = G0(z) is, therefore, a one to one mapping of the domain

|z − z0| > 0, −π < Arg (z − z0) < π

onto the right half Re w > 0 of the w plane (Fig. 126). The transformation w = g0(z)

maps the domain
|z − z0| > 0, 0 < arg(z − z0) < 2π

in a one to one manner onto the upper half plane Im w > 0.
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FIGURE 126
w = G0(z).

EXAMPLE 2. For an instructive but less elementary example, we now con-
sider the double-valued function (z2 − 1)1/2. Using established properties of loga-
rithms, we can write

(z2 − 1)1/2 = exp

[
1

2
log(z2 − 1)

]
= exp

[
1

2
log(z − 1) + 1

2
log(z + 1)

]
,
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or

(z2 − 1)1/2 = (z − 1)1/2(z + 1)1/2 (z �= ±1).(3)

Consequently, if f1(z) is a branch of (z − 1)1/2 defined on a domain D1 and f2(z)

is a branch of (z + 1)1/2 defined on a domain D2, the product f (z) = f1(z)f2(z) is
a branch of (z2 − 1)1/2 defined at all points lying in both D1 and D2.

In order to obtain a specific branch of (z2 − 1)1/2, we use the branch of
(z − 1)1/2 and the branch of (z + 1)1/2 given by equation (2). If we write

r1 = |z − 1| and θ1 = arg(z − 1),

that branch of (z − 1)1/2 is

f1(z) = √
r1 exp

iθ1

2
(r1 > 0, 0 < θ1 < 2π).

The branch of (z + 1)1/2 given by equation (2) is

f2(z) = √
r2 exp

iθ2

2
(r2 > 0, 0 < θ2 < 2π),

where
r2 = |z + 1| and θ2 = arg(z + 1).

The product of these two branches is, therefore, the branch f of (z2 − 1)1/2 defined
by means of the equation

f (z) = √
r1r2 exp

i(θ1 + θ2)

2
,(4)

where
rk > 0, 0 < θk < 2π (k = 1, 2).

As illustrated in Fig. 127, the branch f is defined everywhere in the z plane except
on the ray r2 ≥ 0, θ2 = 0, which is the portion x ≥ −1 of the x axis.
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FIGURE 127

The branch f of (z2 − 1)1/2 given in equation (4) can be extended to a function

F(z) = √
r1r2 exp

i(θ1 + θ2)

2
,(5)



Brown-chap08-v3 11/01/07 4:29pm 344

344 Mapping by Elementary Functions chap. 8

where
rk > 0, 0 ≤ θk < 2π (k = 1, 2) and r1 + r2 > 2.

As we shall now see, this function is analytic everywhere in its domain of definition,
which is the entire z plane except for the segment −1 ≤ x ≤ 1 of the x axis.

Since F(z) = f (z) for all z in the domain of definition of F except on the ray
r1 > 0, θ1 = 0, we need only show that F is analytic on that ray. To do this, we
form the product of the branches of (z − 1)1/2 and (z + 1)1/2 which are given by
equation (1). That is, we consider the function

G(z) = √
r1r2 exp

i(�1 + �2)

2
,

where

r1 = |z − 1|, r2 = |z + 1|, �1 = Arg (z − 1), �2 = Arg (z + 1)

and where
rk > 0, −π < �k < π (k = 1, 2).

Observe that G is analytic in the entire z plane except for the ray r1 ≥ 0, �1 = π .
Now F(z) = G(z) when the point z lies above or on the ray r1 > 0, �1 = 0 ; for
then θk = �k (k = 1, 2). When z lies below that ray, θk = �k + 2π (k = 1, 2).
Consequently, exp(iθk/2) = −exp(i�k/2); and this means that

exp
i(θ1 + θ2)

2
=

(
exp

iθ1

2

)(
exp

iθ2

2

)
= exp

i(�1 + �2)

2
.

So again, F(z) = G(z). Since F(z) and G(z) are the same in a domain containing
the ray r1 > 0, �1 = 0 and since G is analytic in that domain, F is analytic there.
Hence F is analytic everywhere except on the line segment P2P1 in Fig. 127.

The function F defined by equation (5) cannot itself be extended to a function
which is analytic at points on the line segment P2P1. This is because the value on
the right in equation (5) jumps from i

√
r1r2 to numbers near −i

√
r1r2 as the point

z moves downward across that line segment, and the extension would not even be
continuous there.

The transformation w = F(z) is, as we shall see, a one to one mapping of the
domain Dz consisting of all points in the z plane except those on the line segment
P2P1 onto the domain Dw consisting of the entire w plane with the exception of
the segment −1 ≤ v ≤ 1 of the v axis (Fig. 128).

Before verifying this, we note that if z = iy (y > 0), then

r1 = r2 > 1 and θ1 + θ2 = π;
hence the positive y axis is mapped by w = F(z) onto that part of the v axis for
which v > 1. The negative y axis is, moreover, mapped onto that part of the v axis
for which v < −1. Each point in the upper half y > 0 of the domain Dz is mapped
into the upper half v > 0 of the w plane, and each point in the lower half y < 0
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FIGURE 128
w = F(z).

of the domain Dz is mapped into the lower half v < 0 of the w plane. Also, the
ray r1 > 0, θ1 = 0 is mapped onto the positive real axis in the w plane, and the ray
r2 > 0, θ2 = π is mapped onto the negative real axis there.

To show that the transformation w = F(z) is one to one, we observe that if
F(z1) = F(z2), then z2

1 − 1 = z2
2 − 1. From this, it follows that z1 = z2 or z1 = −z2.

However, because of the manner in which F maps the upper and lower halves of the
domain Dz, as well as the portions of the real axis lying in Dz, the case z1 = −z2

is impossible. Thus, if F(z1) = F(z2), then z1 = z2; and F is one to one.
We can show that F maps the domain Dz onto the domain Dw by finding a

function H mapping Dw into Dz with the property that if z = H(w), then w = F(z).
This will show that for any point w in Dw, there exists a point z in Dz such that
F(z) = w; that is, the mapping F is onto. The mapping H will be the inverse of F .

To find H , we first note that if w is a value of (z2 − 1)1/2 for a specific z, then
w2 = z2 − 1; and z is, therefore, a value of (w2 + 1)1/2 for that w. The function H

will be a branch of the double-valued function

(w2 + 1)1/2 = (w − i)1/2(w + i)1/2 (w �= ±i).

Followingourprocedure forobtaining the functionF(z),wewritew − i = ρ1 exp(iφ1)

and w + i = ρ2 exp(iφ2). (See Fig. 128.) With the restrictions

ρk > 0, −π

2
≤ φk <

3π

2
(k = 1, 2) and ρ1 + ρ2 > 2,

we then write

H(w) = √
ρ1ρ2 exp

i(φ1 + φ2)

2
,(6)

the domain of definition being Dw. The transformation z = H(w) maps points of
Dw lying above or below the u axis onto points above or below the x axis, respec-
tively. It maps the positive u axis into that part of the x axis where x > 1 and the
negative u axis into that part of the negative x axis where x < −1. If z = H(w),
then z2 = w2 + 1; and so w2 = z2 − 1. Since z is in Dz and since F(z) and −F(z)

are the two values of (z2 − 1)1/2 for a point in Dz, we see that w = F(z) or
w = −F(z). But it is evident from the manner in which F and H map the upper
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and lower halves of their domains of definition, including the portions of the real
axes lying in those domains, that w = F(z).

Mappings by branches of double-valued functions

w = (z2 + Az + B)1/2 = [(z − z0)
2 − z2

1]1/2 (z1 �= 0),(7)

where A = −2z0 and B = z2
0 = z2

1, can be treated with the aid of the results found
for the function F in Example 2 just above and the successive transformations

Z = z − z0

z1
, W = (Z2 − 1)1/2, w = z1W.(8)

EXERCISES
1. The branch F of (z2 − 1)1/2 in Example 2, Sec. 98, was defined in terms of the coordi-

nates r1, r2, θ1, θ2. Explain geometrically why the conditions r1 > 0, 0 < θ1 + θ2 < π

describe the first quadrant x > 0, y > 0 of the z plane. Then show that w = F(z)

maps that quadrant onto the first quadrant u > 0, v > 0 of the w plane.
Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described,

note that θ1 + θ2 = π at each point on the positive y axis and that θ1 + θ2 decreases
as a point z moves to the right along a ray θ2 = c (0 < c < π/2).

2. For the mapping w = F(z) of the first quadrant in the z plane onto the first quadrant
in the w plane in Exercise 1, show that

u = 1√
2

√
r1r2 + x2 − y2 − 1 and v = 1√

2

√
r1r2 − x2 + y2 + 1,

where
(r1r2)

2 = (x2 + y2 + 1)2 − 4x2,

and that the image of the portion of the hyperbola x2 − y2 = 1 in the first quadrant is
the ray v = u (u > 0).

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first
quadrant of the z plane is described by the conditions r1 > 0, 0 < θ1 + θ2 < π/2.
Then show that the image of D is the octant 0 < v < u. Sketch the domain D and its
image.

4. Let F be the branch of (z2 − 1)1/2 that was defined in Example 2, Sec. 98, and let
z0 = r0 exp(iθ0) be a fixed complex number, where r0 > 0 and 0 ≤ θ0 < 2π . Show
that a branch F0 of (z2 − z2

0)
1/2 whose branch cut is the line segment between the

points z0 and −z0 can be written F0(z) = z0F(Z), where Z = z/z0.

5. Write z − 1 = r1 exp(iθ1) and z + 1 = r2 exp(i�2), where

0 < θ1 < 2π and − π < �2 < π,
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to define a branch of the function

(a) (z2 − 1)1/2 ; (b)

(
z − 1

z + 1

)1/2

.

In each case, the branch cut should consist of the two rays θ1 = 0 and �2 = π .

6. Using the notation in Sec. 98, show that the function

w =
(

z − 1

z + 1

)1/2

=
√

r1

r2
exp

i(θ1 − θ2)

2

is a branch with the same domain of definition Dz and the same branch cut as
the function w = F(z) in that section. Show that this transformation maps Dz onto the
right half plane ρ > 0,−π/2 < φ < π/2, where the point w = 1 is the image of the
point z = ∞. Also, show that the inverse transformation is

z = 1 + w2

1 − w2
(Re w > 0).

(Compare with Exercise 7, Sec. 97.)

7. Show that the transformation in Exercise 6 maps the region outside the unit circle
|z| = 1 in the upper half of the z plane onto the region in the first quadrant of the w

plane between the line v = u and the u axis. Sketch the two regions.

8. Write z = r exp(i�), z − 1 = r1 exp(i�1), and z + 1 = r2 exp(i�2), where the values
of all three arguments lie between −π and π . Then define a branch of the function
[z(z2 − 1)]1/2 whose branch cut consists of the two segments x ≤ −1 and 0 ≤ x ≤ 1
of the x axis.

99. RIEMANN SURFACES

The remaining two sections of this chapter constitute a brief introduction to the
concept of a mapping defined on a Riemann surface, which is a generalization of
the complex plane consisting of more than one sheet. The theory rests on the fact
that at each point on such a surface only one value of a given multiple-valued
function is assigned. The material in these two sections will not be used in the
chapters to follow, and the reader may skip to Chap. 9 without disruption.

Once a Riemann surface is devised for a given function, the function is single-
valued on the surface and the theory of single-valued functions applies there.
Complexities arising because the function is multiple-valued are thus relieved by a
geometric device. However, the description of those surfaces and the arrangement
of proper connections between the sheets can become quite involved. We limit our
attention to fairly simple examples and begin with a surface for log z.

EXAMPLE 1. Corresponding to each nonzero number z, the multiple-valued
function

log z = ln r + iθ(1)
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has infinitely many values. To describe log z as a single-valued function, we replace
the z plane, with the origin deleted, by a surface on which a new point is located
whenever the argument of the number z is increased or decreased by 2π , or an
integral multiple of 2π .

We treat the z plane, with the origin deleted, as a thin sheet R0 which is cut
along the positive half of the real axis. On that sheet, let θ range from 0 to 2π . Let
a second sheet R1 be cut in the same way and placed in front of the sheet R0 . The
lower edge of the slit in R0 is then joined to the upper edge of the slit in R1. On
R1, the angle θ ranges from 2π to 4π ; so, when z is represented by a point on R1,
the imaginary component of log z ranges from 2π to 4π .

A sheet R2 is then cut in the same way and placed in front of R1. The lower
edge of the slit in R1 is joined to the upper edge of the slit in this new sheet, and
similarly for sheets R3, R4, . . . . A sheet R−1 on which θ varies from 0 to −2π is
cut and placed behind R0, with the lower edge of its slit connected to the upper
edge of the slit in R0; the sheets R−2, R−3, . . . are constructed in like manner. The
coordinates r and θ of a point on any sheet can be considered as polar coordinates
of the projection of the point onto the original z plane, the angular coordinate θ

being restricted to a definite range of 2π radians on each sheet.
Consider any continuous curve on this connected surface of infinitely many

sheets. As a point z describes that curve, the values of log z vary continuously
since θ , in addition to r , varies continuously; and log z now assumes just one
value corresponding to each point on the curve. For example, as the point makes a
complete cycle around the origin on the sheet R0 over the path indicated in Fig. 129,
the angle changes from 0 to 2π . As it moves across the ray θ = 2π , the point passes
to the sheet R1 of the surface. As the point completes a cycle in R1, the angle θ varies
from 2π to 4π ; and as it crosses the ray θ = 4π , the point passes to the sheet R2.

xO

y

R1R0

FIGURE 129

The surface described here is a Riemann surface for log z. It is a connected
surface of infinitely many sheets, arranged so that log z is a single-valued function
of points on it.

The transformation w = log z maps the whole Riemann surface in a one to one
manner onto the entire w plane. The image of the sheet R0 is the strip 0 ≤ v ≤ 2π

(see Example 3, Sec. 95). As a point z moves onto the sheet R1 over the arc shown
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in Fig. 130, its image w moves upward across the line v = 2π , as indicated in that
figure.

Note that log z, defined on the sheet R1, represents the analytic continuation
(Sec. 27) of the single-valued analytic function

f (z) = ln r + iθ (0 < θ < 2π)

upward across the positive real axis. In this sense, log z is not only a single-valued
function of all points z on the Riemann surface but also an analytic function at all
points there.

The sheets could, of course, be cut along the negative real axis or along any
other ray from the origin, and properly joined along the slits, to form other Riemann
surfaces for log z.

EXAMPLE 2. Corresponding to each point in the z plane other than the
origin, the square root function

z1/2 = √
reiθ/2(2)

has two values. A Riemann surface for z1/2 is obtained by replacing the z plane
with a surface made up of two sheets R0 and R1, each cut along the positive real
axis and with R1 placed in front of R0. The lower edge of the slit in R0 is joined
to the upper edge of the slit in R1, and the lower edge of the slit in R1 is joined to
the upper edge of the slit in R0.

As a point z starts from the upper edge of the slit in R0 and describes a
continuous circuit around the origin in the counterclockwise direction (Fig. 131),

xO

y

R1

R0

R0

FIGURE 131
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the angle θ increases from 0 to 2π . The point then passes from the sheet R0 to
the sheet R1, where θ increases from 2π to 4π . As the point moves still further, it
passes back to the sheet R0, where the values of θ can vary from 4π to 6π or from
0 to 2π , a choice that does not affect the value of z1/2, etc. Note that the value of
z1/2 at a point where the circuit passes from the sheet R0 to the sheet R1 is different
from the value of z1/2 at a point where the circuit passes from the sheet R1 to the
sheet R0.

We have thus constructed a Riemann surface on which z1/2 is single-valued for
each nonzero z. In that construction, the edges of the sheets R0 and R1 are joined
in pairs in such a way that the resulting surface is closed and connected. The points
where two of the edges are joined are distinct from the points where the other two
edges are joined. Thus it is physically impossible to build a model of that Riemann
surface. In visualizing a Riemann surface, it is important to understand how we are
to proceed when we arrive at an edge of a slit.

The origin is a special point on this Riemann surface. It is common to both
sheets, and a curve around the origin on the surface must wind around it twice in
order to be a closed curve. A point of this kind on a Riemann surface is called a
branch point.

The image of the sheet R0 under the transformation w = z1/2 is the upper
half of the w plane since the argument of w is θ/2 on R0, where 0 ≤ θ/2 ≤ π .
Likewise, the image of the sheet R1 is the lower half of the w plane. As defined on
either sheet, the function is the analytic continuation, across the cut, of the function
defined on the other sheet. In this respect, the single-valued function z1/2 of points
on the Riemann surface is analytic at all points except the origin.

EXERCISES
1. Describe the Riemann surface for log z obtained by cutting the z plane along the

negative real axis. Compare this Riemann surface with the one obtained in Example 1,
Sec. 99.

2. Determine the image under the transformation w = log z of the sheet Rn, where n is
an arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 99.

3. Verify that under the transformation w = z1/2, the sheet R1 of the Riemann surface
for z1/2 given in Example 2, Sec. 99, is mapped onto the lower half of the w plane.

4. Describe the curve, on a Riemann surface for z1/2, whose image is the entire circle
|w| = 1 under the transformation w = z1/2.

5. Let C denote the positively oriented circle |z − 2| = 1 on the Riemann surface
described in Example 2, Sec. 99, for z1/2, where the upper half of that circle lies
on the sheet R0 and the lower half on R1. Note that for each point z on C, one can
write

z1/2 = √
reiθ/2 where 4π − π

2
< θ < 4π + π

2
.
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State why it follows that ∫
C

z1/2 dz = 0.

Generalize this result to fit the case of the other simple closed curves that cross from
one sheet to another without enclosing the branch points. Generalize to other functions,
thus extending the Cauchy–Goursat theorem to integrals of multiple-valued functions.

100. SURFACES FOR RELATED FUNCTIONS

We consider here Riemann surfaces for two composite functions involving simple
polynomials and the square root function.

EXAMPLE 1. Let us describe a Riemann surface for the double-valued func-
tion

f (z) = (z2 − 1)1/2 = √
r1r2 exp

i(θ1 + θ2)

2
,(1)

where z − 1 = r1exp(iθ1) and z + 1 = r2 exp(iθ2). A branch of this function, with
the line segment P2P1 between the branch points z = ±1 serving as a branch cut
(Fig. 132), was described in Example 2, Sec. 98. That branch is as written above,
with the restrictions rk > 0, 0 ≤ θk < 2π (k = 1, 2) and r1 + r2 > 2. The branch is
not defined on the segment P2P1.
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FIGURE 132

A Riemann surface for the double-valued function (1) must consist of two
sheets R0 and R1. Let both sheets be cut along the segment P2P1. The lower edge
of the slit in R0 is then joined to the upper edge of the slit in R1, and the lower
edge in R1 is joined to the upper edge in R0.

On the sheet R0, let the angles θ1 and θ2 range from 0 to 2π . If a point
on the sheet R0 describes a simple closed curve that encloses the segment P2P1

once in the counterclockwise direction, then both θ1 and θ2 change by the amount
2π upon the return of the point to its original position. The change in (θ1 + θ2)/2 is
also 2π , and the value of f is unchanged. If a point starting on the sheet R0 describes
a path that passes twice around just the branch point z = 1, it crosses from the sheet
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R0 onto the sheet R1 and then back onto the sheet R0 before it returns to its original
position. In this case, the value of θ1 changes by the amount 4π , while the value
of θ2 does not change at all. Similarly, for a circuit twice around the point z = −1,
the value of θ2 changes by 4π , while the value of θ1 remains unchanged. Again, the
change in (θ1 + θ2)/2 is 2π ; and the value of f is unchanged. Thus, on the sheet R0,
the range of the angles θ1 and θ2 may be extended by changing both θ1 and θ2 by
the same integral multiple of 2π or by changing just one of the angles by a multiple
of 4π . In either case, the total change in both angles is an even integral multiple
of 2π .

To obtain the range of values for θ1 and θ2 on the sheet R1, we note that if
a point starts on the sheet R0 and describes a path around just one of the branch
points once, it crosses onto the sheet R1 and does not return to the sheet R0. In this
case, the value of one of the angles is changed by 2π , while the value of the other
remains unchanged. Hence, on the sheet R1, one angle can range from 2π to 4π ,
while the other ranges from 0 to 2π . Their sum then ranges from 2π to 4π , and the
value of (θ1 + θ2)/2, which is the argument of f (z), ranges from π to 2π . Again,
the range of the angles is extended by changing the value of just one of the angles
by an integral multiple of 4π or by changing the value of both angles by the same
integral multiple of 2π .

The double-valued function (1) may now be considered as a single-valued
function of the points on the Riemann surface just constructed. The transformation
w = f (z) maps each of the sheets used in the construction of that surface onto the
entire w plane.

EXAMPLE 2. Consider the double-valued function

f (z) = [z(z2 − 1)]1/2 = √
rr1r2 exp

i(θ + θ1 + θ2)

2
(2)

(Fig. 133). The points z = 0, ±1 are branch points of this function. We note that if
the point z describes a circuit that includes all three of those points, the argument
of f (z) changes by the angle 3π and the value of the function thus changes. Con-
sequently, a branch cut must run from one of those branch points to the point at
infinity in order to describe a single-valued branch of f . Hence the point at infinity
is also a branch point, as one can show by noting that the function f (1/z) has a
branch point at z = 0.
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FIGURE 133
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Let two sheets be cut along the line segment L2 from z = −1 to z = 0 and
along the part L1 of the real axis to the right of the point z = 1. We specify that
each of the three angles θ, θ1, and θ2 may range from 0 to 2π on the sheet R0 and
from 2π to 4π on the sheet R1. We also specify that the angles corresponding to
a point on either sheet may be changed by integral multiples of 2π in such a way
that the sum of the three angles changes by an integral multiple of 4π . The value
of the function f is, therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining
the lower edges in R0 of the slits along L1 and L2 to the upper edges in R1 of
the slits along L1 and L2, respectively. The lower edges in R1 of the slits along
L1 and L2 are then joined to the upper edges in R0 of the slits along L1 and L2,
respectively. It is readily verified with the aid of Fig. 133 that one branch of the
function is represented by its values at points on R0 and the other branch at points
on R1.

EXERCISES
1. Describe a Riemann surface for the triple-valued function w = (z − 1)1/3, and point

out which third of the w plane represents the image of each sheet of that surface.

2. Corresponding to each point on the Riemann surface described in Example 2, Sec.
100, for the function w = f (z) in that example, there is just one value of w. Show that
corresponding to each value of w, there are, in general, three points on the surface.

3. Describe a Riemann surface for the multiple-valued function

f (z) =
(

z − 1

z

)1/2

.

4. Note that the Riemann surface described in Example 1, Sec. 100, for (z2 − 1)1/2 is
also a Riemann surface for the function

g(z) = z + (z2 − 1)1/2.

Let f0 denote the branch of (z2 − 1)1/2 defined on the sheet R0, and show that the
branches g0 and g1 of g on the two sheets are given by the equations

g0(z) = 1

g1(z)
= z + f0(z).

5. In Exercise 4, the branch f0 of (z2 − 1)1/2 can be described by means of the equation

f0(z) = √
r1r2

(
exp

iθ1

2

)(
exp

iθ2

2

)
,

where θ1 and θ2 range from 0 to 2π and

z − 1 = r1 exp(iθ1), z + 1 = r2 exp(iθ2).
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Note that
2z = r1 exp(iθ1) + r2 exp(iθ2),

and show that the branch g0 of the function g(z) = z + (z2 − 1)1/2 can be written in
the form

g0(z) = 1

2

(√
r1 exp

iθ1

2
+ √

r2 exp
iθ2

2

)2

.

Find g0(z)g0(z) and note that r1 + r2 ≥ 2 and cos[(θ1 − θ2)/2] ≥ 0 for all z, to prove
that |g0(z)| ≥ 1. Then show that the transformation w = z + (z2 − 1)1/2 maps the
sheet R0 of the Riemann surface onto the region |w| ≥ 1, the sheet R1 onto the region
|w| ≤ 1, and the branch cut between the points z = ±1 onto the circle |w| = 1. Note
that the transformation used here is an inverse of the transformation

z = 1

2

(
w + 1

w

)
.
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C H A P T E R

9
CONFORMAL MAPPING

In this chapter, we introduce and develop the concept of a conformal mapping, with
emphasis on connections between such mappings and harmonic functions (Sec. 26).
Applications to physical problems will follow in Chap. 10.

101. PRESERVATION OF ANGLES

Let C be a smooth arc (Sec. 39), represented by the equation

z = z(t) (a ≤ t ≤ b),

and let f (z) be a function defined at all points z on C. The equation

w = f [z(t)] (a ≤ t ≤ b)

is a parametric representation of the image � of C under the transformation w = f (z).
Suppose that C passes through a point z0 = z(t0) (a < t0 < b) at which f is

analytic and that f ′(z0) �= 0. According to the chain rule verified in Exercise 5,
Sec. 39, if w(t) = f [z(t)] , then

w′(t0) = f ′[z(t0)]z′(t0);(1)

and this means that (see Sec. 8)

arg w′(t0) = arg f ′[z(t0)] + arg z′(t0).(2)

355
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Statement (2) is useful in relating the directions of C and � at the points z0 and
w0 = f (z0), respectively.

To be specific, let θ0 denote a value of arg z′(t0) and let φ0 be a value of
arg w′(t0). According to the discussion of unit tangent vectors T near the end of
Sec. 39, the number θ0 is the angle of inclination of a directed line tangent to
C at z0 and φ0 is the angle of inclination of a directed line tangent to � at the
point w0 = f (z0). (See Fig. 134.) In view of statement (2), there is a value ψ0 of
arg f ′[z(t0)] such that

φ0 = ψ0 + θ0.(3)

Thus φ0 − θ0 = ψ0, and we find that the angles φ0 and θ0 differ by the angle of
rotation

ψ0 = arg f ′(z0).(4)

x

z0 w0

O

y

C

uO

v

FIGURE 134
φ0 = ψ0 + θ0.

Now let C1 and C2 be two smooth arcs passing through z0 , and let θ1 and θ2

be angles of inclination of directed lines tangent to C1 and C2, respectively, at z0 .
We know from the preceding paragraph that the quantities

φ1 = ψ0 + θ1 and φ2 = ψ0 + θ2

are angles of inclination of directed lines tangent to the image curves �1 and �2 ,
respectively, at the point w0 = f (z0). Thus φ2 − φ1 = θ2 − θ1; that is, the angle
φ2 − φ1 from �1 to �2 is the same in magnitude and sense as the angle θ2 − θ1

from C1 to C2. Those angles are denoted by α in Fig. 135.

x

z0

w0

O

y
C2

C1α

uO

v
Γ2

Γ1
α

FIGURE 135
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Because of this angle-preserving property, a transformation w = f (z) is said
to be conformal at a point z0 if f is analytic there and f ′(z0) �= 0. Such a trans-
formation is actually conformal at each point in some neighborhood of z0. For it
must be analytic in a neighborhood of z0 (Sec. 24); and since its derivative f ′ is
continuous in that neighborhood (Sec. 52), Theorem 2 in Sec. 18 tells us that there
is also a neighborhood of z0 throughout which f ′(z) �= 0.

A transformation w = f (z), defined on a domain D, is referred to as a con-
formal transformation, or conformal mapping, when it is conformal at each point in
D. That is, the mapping is conformal in D if f is analytic in D and its derivative
f ′ has no zeros there. Each of the elementary functions studied in Chap. 3 can be
used to define a transformation that is conformal in some domain.

EXAMPLE 1. The mapping w = ez is conformal throughout the entire z

plane since (ez)′ = ez �= 0 for each z. Consider any two lines x = c1 and y = c2 in
the z plane, the first directed upward and the second directed to the right. According
to Example 1 in Sec. 14, their images under the mapping w = ez are a positively
oriented circle centered at the origin and a ray from the origin, respectively. As illus-
trated in Fig. 20 (Sec. 14), the angle between the lines at their point of intersection
is a right angle in the negative direction, and the same is true of the angle between
the circle and the ray at the corresponding point in the w plane. The conformality
of the mapping w = ez is also illustrated in Figs. 7 and 8 of Appendix 2.

EXAMPLE 2. Consider two smooth arcs which are level curves u(x, y) = c1

and v(x, y) = c2 of the real and imaginary components, respectively, of a function

f (z) = u(x, y) + iv(x, y),

and suppose that they intersect at a point z0 where f is analytic and f ′(z0) �= 0.
The transformation w = f (z) is conformal at z0 and maps these arcs into the lines
u = c1 and v = c2, which are orthogonal at the point w0 = f (z0). According to our
theory, then, the arcs must be orthogonal at z0. This has already been verified and
illustrated in Exercises 7 through 11 of Sec. 26.

A mapping that preserves the magnitude of the angle between two smooth arcs
but not necessarily the sense is called an isogonal mapping.

EXAMPLE 3. The transformation w = z, which is a reflection in the real
axis, is isogonal but not conformal. If it is followed by a conformal transformation,
the resulting transformation w = f (z) is also isogonal but not conformal.

Suppose that f is not a constant function and is analytic at a point z0 . If,
in addition, f ′(z0) = 0, then z0 is called a critical point of the transformation
w = f (z).
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EXAMPLE 4. The point z0 = 0 is a critical point of the transformation

w = 1 + z2,

which is a composition of the mappings

Z = z2 and w = 1 + Z.

A ray θ = α from the point z0 = 0 is evidently mapped onto the ray from the point
w0 = 1 whose angle of inclination is 2α, and the angle between any two rays drawn
from z0 = 0 is doubled by the transformation.

More generally, it can be shown that if z0 is a critical point of a transformation
w = f (z), there is an integer m (m ≥ 2) such that the angle between any two smooth
arcs passing through z0 is multiplied by m under that transformation. The integer
m is the smallest positive integer such that f (m)(z0) �= 0. Verification of these facts
is left to the exercises.

102. SCALE FACTORS

Another property of a transformation w = f (z) that is conformal at a point z0 is
obtained by considering the modulus of f ′(z0). From the definition of derivative
and a property of limits involving moduli that was derived in Exercise 7, Sec. 18,
we know that

|f ′(z0)| =
∣∣∣∣ lim
z→z0

f (z) − f (z0)

z − z0

∣∣∣∣ = lim
z→z0

|f (z) − f (z0)|
|z − z0| .(1)

Now |z − z0| is the length of a line segment joining z0 and z , and |f (z) − f (z0)|
is the length of the line segment joining the points f (z0) and f (z) in the w plane.
Evidently, then, if z is near the point z0 , the ratio

|f (z) − f (z0)|
|z − z0|

of the two lengths is approximately the number |f ′(z0)|. Note that |f ′(z0)| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation arg f ′(z) (Sec. 101) and the scale factor |f ′(z)|
vary, in general, from point to point, it follows from the continuity of f ′ (see
Sec. 52) that their values are approximately arg f ′(z0) and |f ′(z0)| at points z near
z0. Hence the image of a small region in a neighborhood of z0 conforms to the
original region in the sense that it has approximately the same shape. A large region
may, however, be transformed into a region that bears no resemblance to the original
one.

EXAMPLE. When f (z) = z2, the transformation

w = f (z) = x2 − y2 + i2xy
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is conformal at the point z = 1 + i, where the half lines

y = x (x ≥ 0) and x = 1 (y ≥ 0)

intersect. We denote those half lines by C1 and C2 (Fig. 136), with positive sense
upward. Observe that the angle from C1 to C2 is π/4 at their point of intersection.
Since the image of a point z = (x, y) is a point in the w plane whose rectangular
coordinates are

u = x2 − y2 and v = 2xy,

the half line C1 is transformed into the curve �1 with parametric representation

u = 0, v = 2x2 (0 ≤ x < ∞).(2)

Thus �1 is the upper half v ≥ 0 of the v axis. The half line C2 is transformed into
the curve �2 represented by the equations

u = 1 − y2, v = 2y (0 ≤ y < ∞).(3)

Hence �2 is the upper half of the parabola v2 = −4(u − 1). Note that in each case,
the positive sense of the image curve is upward.

xO 1

1 + i

2i

y

C2
C1

C3

π–4

π–2
uO 1

v

Γ3

Γ1

Γ2
π–4

π–2 FIGURE 136
w = z2.

If u and v are the variables in representation (3) for the image curve �2 , then

dv

du
= dv/dy

du/dy
= 2

−2y
= −2

v
.

In particular, dv/du = −1 when v = 2. Consequently, the angle from the image
curve �1 to the image curve �2 at the point w = f (1 + i) = 2i is π/4, as required
by the conformality of the mapping at z = 1 + i. The angle of rotation π/4 at the
point z = 1 + i is, of course, a value of

arg[f ′(1 + i)] = arg[2(1 + i)] = π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

The scale factor at that point is the number

|f ′(1 + i)| = |2(1 + i)| = 2
√

2.



Brown-chap09-v3 11/05/07 11:40am 360

360 Conformal Mapping chap. 9

To illustrate how the angle of rotation and the scale factor can change from
point to point, we note that they are 0 and 2, respectively, at the point z = 1 since
f ′(1) = 2. See Fig. 136, where the curves C2 and �2 are the ones just discussed
and where the nonnegative x axis C3 is transformed into the nonnegative u axis �3.

103. LOCAL INVERSES

A transformation w = f (z) that is conformal at a point z0 has a local inverse
there. That is, if w0 = f (z0), then there exists a unique transformation z = g(w),
which is defined and analytic in a neighborhood N of w0, such that g(w0) = z0 and
f [g(w)] = w for all points w in N . The derivative of g(w) is, moreover,

g′(w) = 1

f ′(z)
.(1)

We note from expression (1) that the transformation z = g(w) is itself conformal
at w0.

Assuming that w = f (z) is, in fact, conformal at z0 , let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calculus.∗
As noted in Sec. 101, the conformality of the transformation w = f (z) at z0 implies
that there is some neighborhood of z0 throughout which f is analytic. Hence if we
write

z = x + iy, z0 = x0 + iy0, and f (z) = u(x, y) + iv(x, y),

we know that there is a neighborhood of the point (x0, y0) throughout which the
functions u(x, y) and v(x, y), along with their partial derivatives of all orders, are
continuous (see Sec. 52).

Now the pair of equations

u = u(x, y), v = v(x, y)(2)

represents a transformation from the neighborhood just mentioned into the uv plane.
Moreover, the determinant

J =
∣∣∣∣ux uy

vx vy

∣∣∣∣ = uxvy − vxuy,

which is known as the Jacobian of the transformation, is nonzero at the point
(x0, y0). For, in view of the Cauchy–Riemann equations ux = vy and uy = −vx ,
one can write J as

J = (ux)
2 + (vx)

2 = |f ′(z)|2 ;
and f ′(z0) �= 0 since the transformation w = f (z) is conformal at z0 . The above
continuity conditions on the functions u(x, y) and v(x, y) and their derivatives,

∗The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R.
Mann, “Advanced Calculus,” 3d ed., pp. 241–247, 1983.
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together with this condition on the Jacobian, are sufficient to ensure the existence
of a local inverse of transformation (2) at (x0, y0). That is, if

u0 = u(x0, y0) and v0 = v(x0, y0),(3)

then there is a unique continuous transformation

x = x(u, v), y = y(u, v),(4)

defined on a neighborhood N of the point (u0, v0) and mapping that point onto
(x0, y0), such that equations (2) hold when equations (4) hold. Also, in addition to
being continuous, the functions (4) have continuous first-order partial derivatives
satisfying the equations

xu = 1

J
vy, xv = − 1

J
uy, yu = − 1

J
vx, yv = 1

J
ux(5)

throughout N .
If we write w = u + iv and w0 = u0 + iv0, as well as

g(w) = x(u, v) + iy(u, v),(6)

the transformation z = g(w) is evidently the local inverse of the original transfor-
mation w = f (z) at z0. Transformations (2) and (4) can be written

u + iv = u(x, y) + iv(x, y) and x + iy = x(u, v) + iy(u, v);
and these last two equations are the same as

w = f (z) and z = g(w),

where g has the desired properties. Equations (5) can be used to show that g is
analytic in N . Details are left to the exercises, where expression (1) for g ′(w) is
also derived.

EXAMPLE. We know from Example 1, Sec. 101, that if f (z) = ez, the
transformation w = f (z) is conformal everywhere in the z plane and, in particular,
at the point z0 = 2πi. The image of this choice of z0 is the point w0 = 1. When
points in the w plane are expressed in the form w = ρ exp(iφ), the local inverse at
z0 can be obtained by writing g(w) = log w, where log w denotes the branch

log w = ln ρ + iφ (ρ > 0, π < θ < 3π)

of the logarithmic function, restricted to any neighborhood of w0 that does not
contain the origin. Observe that

g(1) = ln 1 + i2π = 2πi
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and that when w is in the neighborhood,

f [g(w)] = exp(log w) = w.

Also
g′(w) = d

dw
log w = 1

w
= 1

exp z
,

in accordance with equation (1).
Note that if the point z0 = 0 is chosen, one can use the principal branch

Log w = ln ρ + iφ (ρ > 0, −π < φ < π)

of the logarithmic function to define g. In this case, g(1) = 0.

EXERCISES
1. Determine the angle of rotation at the point z0 = 2 + i when w = z2, and illustrate it

for some particular curve. Show that the scale factor at that point is 2
√

5.

2. What angle of rotation is produced by the transformation w = 1/z at the point

(a) z0 = 1; (b) z0 = i?

Ans. (a) π ; (b) 0.

3. Show that under the transformation w = 1/z , the images of the lines y = x − 1 and
y = 0 are the circle u2 + v2 − u − v = 0 and the line v = 0, respectively. Sketch all
four curves, determine corresponding directions along them, and verify the conformal-
ity of the mapping at the point z0 = 1.

4. Show that the angle of rotation at a nonzero point z0 = r0 exp(iθ0) under the trans-
formation w = zn (n = 1, 2, . . .) is (n − 1)θ0. Determine the scale factor of the trans-
formation at that point.

Ans. nrn−1
0 .

5. Show that the transformation w = sin z is conformal at all points except

z = π

2
+ nπ (n = 0,±1,±2, . . .).

Note that this is in agreement with the mapping of directed line segments shown in
Figs. 9, 10, and 11 of Appendix 2.

6. Find the local inverse of the transformation w = z2 at the point

(a) z0 = 2 ; (b) z0 = −2 ; (c) z0 = −i.

Ans. (a) w1/2 = √
ρ eiφ/2 (ρ > 0,−π < φ < π);

(c) w1/2 = √
ρ eiφ/2 (ρ > 0, 2π < φ < 4π).

7. In Sec. 103, it was pointed out that the components x(u, v) and y(u, v) of the inverse
function g(w) defined by equation (6) there are continuous and have continuous first-
order partial derivatives in a neighborhood N . Use equations (5), Sec. 103, to show
that the Cauchy–Riemann equations xu = yv, xv = −yu hold in N . Then conclude that
g(w) is analytic in that neighborhood.
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8. Show that if z = g(w) is the local inverse of a conformal transformation w = f (z) at
a point z0, then

g′(w) = 1

f ′(z)

at points w in a neighborhood N where g is analytic (Exercise 7) .
Suggestion: Start with the fact that f [g(w)] = w, and apply the chain rule for

differentiating composite functions.

9. Let C be a smooth arc lying in a domain D throughout which a transformation
w = f (z) is conformal , and let � denote the image of C under that transformation.
Show that � is also a smooth arc.

10. Suppose that a function f is analytic at z0 and that

f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) �= 0

for some positive integer m(m ≥ 1). Also, write w0 = f (z0).

(a) Use the Taylor series for f about the point z0 to show that there is a neighborhood
of z0 in which the difference f (z) − w0 can be written

f (z) − w0 = (z − z0)
m f (m)(z0)

m!
[1 + g(z)] ,

where g(z) is continuous at z0 and g(z0) = 0.
(b) Let � be the image of a smooth arc C under the transformation w = f (z), as

shown in Fig. 134 (Sec. 101), and note that the angles of inclination θ0 and φ0
in that figure are limits of arg(z − z0) and arg[f (z) − w0] , respectively, as z

approaches z0 along the arc C. Then use the result in part (a) to show that θ0 and
φ0 are related by the equation

φ0 = mθ0 + arg f (m)(z0).

(c) Let α denote the angle between two smooth arcs C1 and C2 passing through z0 ,
as shown on the left in Fig. 135 (Sec. 101). Show how it follows from the relation
obtained in part (b) that the corresponding angle between the image curves �1
and �2 at the point w0 = f (z0) is mα. (Note that the transformation is conformal
at z0 when m = 1 and that z0 is a critical point when m ≥ 2.)

104. HARMONIC CONJUGATES

We saw in Sec. 26 that if a function

f (z) = u(x, y) + iv(x, y)

is analytic in a domain D, then the real-valued functions u and v are harmonic in
that domain. That is, they have continuous partial derivatives of the first and second
order in D and satisfy Laplace’s equation there:

uxx + uyy = 0, vxx + vyy = 0.(1)
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We had seen earlier that the first-order partial derivatives of u and v satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx ;(2)

and, as pointed out in Sec. 26, v is called a harmonic conjugate of u.
Suppose now that u(x, y) is any given harmonic function defined on a simply

connected (Sec. 48) domain D. In this section, we show that u(x, y) always has a
harmonic conjugate v(x, y) in D by deriving an expression for v(x, y).

To accomplish this, we first recall some important facts about line integrals in
advanced calculus.∗ Suppose that P(x, y) and Q(x, y) have continuous first-order
partial derivatives in a simply connected domain D of the xy plane, and let (x0, y0)

and (x, y) be any two points in D. If Py = Qx everywhere in D, then the line
integral ∫

C

P (s, t) ds + Q(s, t) dt

from (x0, y0) to (x, y) is independent of the contour C that is taken as long as
the contour lies entirely in D. Furthermore, when the point (x0, y0) is kept fixed
and (x, y) is allowed to vary throughout D, the integral represents a single-valued
function

F(x, y) =
∫ (x,y)

(x0,y0)

P (s, t) ds + Q(s, t) dt(3)

of x and y whose first-order partial derivatives are given by the equations

Fx(x, y) = P(x, y), Fy(x, y) = Q(x, y).(4)

Note that the value of F is changed by an additive constant when a different starting
point (x0, y0) is taken.

Returning to the given harmonic function u(x, y), observe how it follows from
Laplace’s equation uxx + uyy = 0 that

(−uy)y = (ux)x

everywhere in D. Also, the second-order partial derivatives of u are continuous
in D; and this means that the first-order partial derivatives of −uy and ux are
continuous there. Thus, if (x0, y0) is a fixed point in D, the function

v(x, y) =
∫ (x,y)

(x0,y0)

−ut (s, t) ds + us(s, t) dt(5)

is well defined for all (x, y) in D; and, according to equations (4),

vx(x, y) = −uy(x, y), vy(x, y) = ux(x, y).(6)

∗See, for example, W. Kaplan, “Advanced Mathematics for Engineers,” pp. 546–550, 1992.
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These are the Cauchy–Riemann equations. Since the first-order partial derivatives
of u are continuous, it is evident from equations (6) that those derivatives of v are
also continuous. Hence (Sec. 22) u(x, y) + iv(x, y) is an analytic function in D;
and v is, therefore, a harmonic conjugate of u.

The function v defined by equation (5) is, of course, not the only harmonic
conjugate of u. The function v(x, y) + c, where c is any real constant, is also a
harmonic conjugate of u. [Recall Exercise 2, Sec. 26.]

EXAMPLE. Consider the function u(x, y) = xy, which is harmonic through-
out the entire xy plane. According to equation (5), the function

v(x, y) =
∫ (x,y)

(0,0)

−s ds + t dt

is a harmonic conjugate of u(x, y). The integral here is readily evaluated by inspec-
tion. It can also be evaluated by integrating first along the horizontal path from the
point (0, 0) to the point (x, 0) and then along the vertical path from (x, 0) to the
point (x, y). The result is

v(x, y) = −1

2
x2 + 1

2
y2,

and the corresponding analytic function is

f (z) = xy − i

2
(x2 − y2) = − i

2
z2.

105. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The problem of finding a function that is harmonic in a specified domain and
satisfies prescribed conditions on the boundary of the domain is prominent in applied
mathematics. If the values of the function are prescribed along the boundary, the
problem is known as a boundary value problem of the first kind, or a Dirichlet
problem. If the values of the normal derivative of the function are prescribed on
the boundary, the boundary value problem is one of the second kind, or a Neumann
problem. Modifications and combinations of those types of boundary conditions also
arise.

The domains most frequently encountered in the applications are simply con-
nected; and, since a function that is harmonic in a simply connected domain always
has a harmonic conjugate (Sec. 104), solutions of boundary value problems for such
domains are the real or imaginary components of analytic functions.

EXAMPLE 1. In Example 1, Sec. 26, we saw that the function

T (x, y) = e−y sin x
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satisfies a certain Dirichlet problem for the strip 0 < x < π, y > 0 and noted that it
represents a solution of a temperature problem. The function T (x, y), which is actu-
ally harmonic throughout the xy plane, is the real component of the entire function

−ieiz = e−y sin x − ie−y cos x.

It is also the imaginary component of the entire function eiz.

Sometimes a solution of a given boundary value problem can be discovered
by identifying it as the real or imaginary component of an analytic function. But
the success of that procedure depends on the simplicity of the problem and on
one’s familiarity with the real and imaginary components of a variety of analytic
functions. The following theorem is an important aid.

Theorem. Suppose that an analytic function

w = f (z) = u(x, y) + iv(x, y)(1)

maps a domain Dz in the z plane onto a domain Dw in the w plane. If h(u, v) is a
harmonic function defined on Dw, then the function

H(x, y) = h[u(x, y), v(x, y)](2)

is harmonic in Dz.

We first prove the theorem for the case in which the domain Dw is simply con-
nected. According to Sec. 104, that property of Dw ensures that the given harmonic
function h(u, v) has a harmonic conjugate g(u, v). Hence the function

�(w) = h(u, v) + ig(u, v)(3)

is analytic in Dw. Since the function f (z) is analytic in Dz , the composite function
�[f (z)] is also analytic in Dz. Consequently, the real part h[u(x, y), v(x, y)] of
this composition is harmonic in Dz.

If Dw is not simply connected, we observe that each point w0 in Dw has
a neighborhood |w − w0| < ε lying entirely in Dw. Since that neighborhood is
simply connected, a function of the type (3) is analytic in it. Furthermore, since
f is continuous at a point z0 in Dz whose image is w0 , there is a neighborhood
|z − z0| < δ whose image is contained in the neighborhood |w − w0| < ε. Hence it
follows that the composition �[f (z)] is analytic in the neighborhood |z − z0| < δ,
and we may conclude that h[u(x, y), v(x, y)] is harmonic there. Finally, since w0

was arbitrarily chosen in Dw and since each point in Dz is mapped onto such a
point under the transformation w = f (z), the function h[u(x, y), v(x, y)] must be
harmonic throughout Dz.

The proof of the theorem for the general case in which Dw is not necessarily
simply connected can also be accomplished directly by means of the chain rule
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for partial derivatives. The computations are, however, somewhat involved (see
Exercise 8, Sec. 106).

EXAMPLE 2. The function h(u, v) = e−v sin u is harmonic in the domain
Dw consisting of all points in the upper half plane v > 0 (see Example 1). If the
transformation is w = z2, we have u(x, y) = x2 − y2 and v(x, y) = 2xy; moreover,
the domain Dz consisting of the points in the first quadrant x > 0, y > 0 of the z

plane is mapped onto the domain Dw, as shown in Example 3, Sec. 13. Hence the
function

H(x, y) = e−2xy sin(x2 − y2)

is harmonic in Dz.

EXAMPLE 3. A minor modification of Fig. 114 in Example 3, Sec. 95,
reveals that as a point z = r exp(i�0) (−π/2 < �0 < π/2) travels outward from
the origin along a ray � = �0 in the z plane, its image under the transformation

w = Log z = ln r + i� (r > 0, −π < � < π)

travels along the entire length of the horizontal line v = �0 in the w plane. So the
right half plane x > 0 is mapped onto the horizontal strip −π/2 < v < π/2. By
considering the function

h(u, v) = Im w = v,

which is harmonic in the strip, and writing

Log z = ln
√

x2 + y2 + iarctan
y

x
,

where −π/2 < arctan t < π/2, we find that

H(x, y) = arctan
y

x

is harmonic in the half plane x > 0.

106. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal derivative have prescribed values along
the boundary of a domain in which it is harmonic are the most common, although
not the only, important types of boundary conditions. In this section, we show that
certain of these conditions remain unaltered under the change of variables associated
with a conformal transformation. These results will be used in Chap. 10 to solve
boundary value problems. The basic technique there is to transform a given boundary
value problem in the xy plane into a simpler one in the uv plane and then to use
the theorems of this and Sec. 105 to write the solution of the original problem in
terms of the solution obtained for the simpler one.



Brown-chap09-v3 11/05/07 11:40am 368

368 Conformal Mapping chap. 9

Theorem. Suppose that a transformation

w = f (z) = u(x, y) + iv(x, y)(1)

is conformal on a smooth arc C, and let � be the image of C under that transfor-
mation. If a function h(u, v) satisfies either of the conditions

h = h0 or
dh

dn
= 0(2)

along � , where h0 is a real constant and dh/dn denotes derivatives normal to �,
then the function

H(x, y) = h[u(x, y), v(x, y)](3)

satisfies the corresponding condition

H = h0 or
dH

dN
= 0(4)

along C, where dH/dN denotes derivatives normal to C.

To show that the condition h = h0 on � implies that H = h0 on C, we note
from equation (3) that the value of H at any point (x, y) on C is the same as the
value of h at the image (u, v) of (x, y) under transformation (1). Since the image
point (u, v) lies on � and since h = h0 along that curve, it follows that H = h0

along C.
Suppose, on the other hand, that dh/dn = 0 on �. From calculus, we know

that

dh

dn
= (grad h) · n,(5)

where grad h denotes the gradient of h at a point (u, v) on � and n is a unit vector
normal to � at (u, v). Since dh/dn = 0 at (u, v), equation (5) tells us that grad h

is orthogonal to n at (u, v). That is, grad h is tangent to � there (Fig. 137). But
gradients are orthogonal to level curves; and, because grad h is tangent to �, we
see that � is orthogonal to a level curve h(u, v) = c passing through (u, v).

xO

y
C

N

grad H

H(x, y) = c 

(x, y)

uO

v

Γ

n
grad h

h(u,v) = c 

(u,v)

FIGURE 137
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Now, according to equation (3), the level curve H(x, y) = c in the z plane can
be written

h[u(x, y), v(x, y)] = c ;
and so it is evidently transformed into the level curve h(u, v) = c under transfor-
mation (1). Furthermore, since C is transformed into � and � is orthogonal to
the level curve h(u, v) = c, as demonstrated in the preceding paragraph, it fol-
lows from the conformality of transformation (1) that C is orthogonal to the level
curve H(x, y) = c at the point (x, y) corresponding to (u, v). Because gradients
are orthogonal to level curves, this means that grad H is tangent to C at (x, y) (see
Fig. 137). Consequently, if N denotes a unit vector normal to C at (x, y), grad H

is orthogonal to N. That is,

(grad H) · N = 0.(6)

Finally, since
dH

dN
= (grad H) · N,

we may conclude from equation (6) that dH/dN = 0 at points on C.
In this discussion, we have tacitly assumed that grad h �= 0. If grad h = 0, it

follows from the identity

|grad H(x, y)| = |grad h(u, v)||f ′(z)|,
derived in Exercise 10(a) of this section, that grad H = 0; hence dh/dn and the
corresponding normal derivative dH/dN are both zero. We have also assumed that

(a) grad h and grad H always exist ;

(b) the level curve H(x, y) = c is smooth when grad h �= 0 at (u, v).

Condition (b) ensures that angles between arcs are preserved by transformation
(1) when it is conformal. In all of our applications, both conditions (a) and (b) will
be satisfied.

EXAMPLE. Consider, for instance, the function h(u, v) = v + 2. The trans-
formation

w = iz2 = −2xy + i(x2 − y2)

is conformal when z �= 0. It maps the half line y = x (x > 0) onto the negative
u axis, where h = 2, and the positive x axis onto the positive v axis, where the
normal derivative hu is 0 (Fig. 138). According to the above theorem, the function

H(x, y) = x2 − y2 + 2

must satisfy the condition H = 2 along the half line y = x (x > 0) and Hy = 0
along the positive x axis, as one can verify directly.
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A boundary condition that is not of one of the two types mentioned in the
theorem may be transformed into a condition that is substantially different from the
original one (see Exercise 6). New boundary conditions for the transformed problem
can be obtained for a particular transformation in any case. It is interesting to note
that under a conformal transformation , the ratio of a directional derivative of H

along a smooth arc C in the z plane to the directional derivative of h along the
image curve � at the corresponding point in the w plane is |f ′(z)|; usually, this
ratio is not constant along a given arc. (See Exercise 10.)

EXERCISES
1. Use expression (5), Sec. 104, to find a harmonic conjugate of the harmonic function

u(x, y) = x3 − 3xy2. Write the resulting analytic function in terms of the complex
variable z.

2. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results
in Secs. 104 and 52, show that its partial derivatives of all orders are continuous
throughout that domain.

3. The transformation w = exp z maps the horizontal strip 0 < y < π onto the upper half
plane v > 0, as shown in Fig. 6 of Appendix 2 ; and the function

h(u, v) = Re(w2) = u2 − v2

is harmonic in that half plane. With the aid of the theorem in Sec. 105, show that the
function H(x, y) = e2x cos 2y is harmonic in the strip. Verify this result directly.

4. Under the transformation w = exp z, the image of the segment 0 ≤ y ≤ π of the y

axis is the semicircle u2 + v2 = 1, v ≥ 0 (see Sec. 14). Also, the function

h(u, v) = Re

(
2 − w + 1

w

)
= 2 − u + u

u2 + v2

is harmonic everywhere in the w plane except for the origin; and it assumes the value
h = 2 on the semicircle. Write an explicit expression for the function H(x, y) in the
theorem of Sec. 106. Then illustrate the theorem by showing directly that H = 2 along
the segment 0 ≤ y ≤ π of the y axis.
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5. The transformation w = z2 maps the positive x and y axes and the origin in the z

plane onto the u axis in the w plane. Consider the harmonic function

h(u, v) = Re(e−w) = e−u cos v,

and observe that its normal derivative hv along the u axis is zero. Then illustrate the
theorem in Sec. 106 when f (z) = z2 by showing directly that the normal derivative
of the function H(x, y) defined in that theorem is zero along both positive axes in the
z plane. (Note that the transformation w = z2 is not conformal at the origin.)

6. Replace the function h(u, v) in Exercise 5 by the harmonic function

h(u, v) = Re(−2iw + e−w) = 2v + e−u cos v.

Then show that hv = 2 along the u axis but that Hy = 4x along the positive x axis
and Hx = 4y along the positive y axis. This illustrates how a condition of the type

dh

dn
= h0 �= 0

is not necessarily transformed into a condition of the type dH/dN = h0.

7. Show that if a function H(x, y) is a solution of a Neumann problem (Sec. 105), then
H(x, y) + A, where A is any real constant, is also a solution of that problem.

8. Suppose that an analytic function w = f (z) = u(x, y) + iv(x, y) maps a domain Dz

in the z plane onto a domain Dw in the w plane; and let a function h(u, v), with
continuous partial derivatives of the first and second order, be defined on Dw . Use the
chain rule for partial derivatives to show that if H(x, y) = h[u(x, y), v(x, y)], then

Hxx(x, y) + Hyy(x, y) = [huu(u, v) + hvv(u, v)] |f ′(z)|2.
Conclude that the function H(x, y) is harmonic in Dz when h(u, v) is harmonic in
Dw . This is an alternative proof of the theorem in Sec. 105, even when the domain
Dw is multiply connected.

Suggestion: In the simplifications, it is important to note that since f is analytic ,
the Cauchy–Riemann equations ux = vy, uy = −vx hold and that the functions u and v

both satisfy Laplace’s equation. Also, the continuity conditions on the derivatives of
h ensure that hvu = huv .

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second
order and satisfies Poisson’s equation

puu(u, v) + pvv(u, v) = �(u, v)

in a domain Dw of the w plane, where � is a prescribed function. Show how it follows
from the identity obtained in Exercise 8 that if an analytic function

w = f (z) = u(x, y) + iv(x, y)

maps a domain Dz onto the domain Dw , then the function

P (x, y) = p[u(x, y), v(x, y)]
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satisfies the Poisson equation

Pxx(x, y) + Pyy(x, y) = �[u(x, y), v(x, y)] |f ′(z)|2

in Dz.

10. Suppose that w = f (z) = u(x, y) + iv(x, y) is a conformal mapping of a smooth arc
C onto a smooth arc � in the w plane. Let the function h(u, v) be defined on �, and
write

H(x, y) = h[u(x, y), v(x, y)].

(a) From calculus, we know that the x and y components of grad H are the partial
derivatives Hx and Hy , respectively; likewise, grad h has components hu and hv .
By applying the chain rule for partial derivatives and using the Cauchy–Riemann
equations, show that if (x, y) is a point on C and (u, v) is its image on �, then

|grad H(x, y)| = |grad h(u, v)||f ′(z)|.

(b) Show that the angle from the arc C to grad H at a point (x, y) on C is equal to
the angle from � to grad h at the image (u, v) of the point (x, y).

(c) Let s and σ denote distance along the arcs C and �, respectively; and let t and
τ denote unit tangent vectors at a point (x, y) on C and its image (u, v), in the
direction of increasing distance. With the aid of the results in parts (a) and (b)
and using the fact that

dH

ds
= (grad H) · t and

dh

dσ
= (grad h) · τ ,

show that the directional derivative along the arc � is transformed as follows:

dH

ds
= dh

dσ
|f ′(z)|.


	8 Mapping by Elementary Functions
	Riemann Surfaces
	Surfaces for Related Functions

	9 Conformal Mapping
	Preservation of Angles
	Scale Factors
	Local Inverses
	Harmonic Conjugates
	Transformations of Harmonic Functions
	Transformations of Boundary Conditions


