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(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 65, which
justifies the term by term integration that is to be used, write the above integral as

∞∑
n=0

1

n!

∫
C

zn exp

(
1

z

)
dz.

(b) Apply the theorem in Sec. 70 to evaluate the integrals appearing in part (a) to
arrive at the desired result.

5. Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points z1, z2, . . . , zn. Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞ f (z) = 0.

6. Let the degrees of the polynomials

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

and
Q(z) = b0 + b1z + b2z

2 + · · · + bmzm (bm �= 0)

be such that m ≥ n + 2. Use the theorem in Sec. 71 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C, then∫

C

P (z)

Q(z)
dz = 0.

[Compare with Exercise 3(b).]

72. THE THREE TYPES OF ISOLATED SINGULAR POINTS
We saw in Sec. 69 that the theory of residues is based on the fact that if f has an
isolated singular point at z0, then f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)

in a punctured disk 0 < |z − z0| < R2. The portion

b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(2)

of the series, involving negative powers of z − z0, is called the principal part of f

at z0. We now use the principal part to identify the isolated singular point z0 as one
of three special types. This classification will aid us in the development of residue
theory that appears in following sections.

If the principal part of f at z0 contains at least one nonzero term but the number
of such terms is only finite, then there exists a positive integer m (m ≥ 1) such that

bm �= 0 and bm+1 = bm+2 = · · · = 0.
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That is, expansion (1) takes the form

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
(3)

(0 < |z − z0| < R2),

where bm �= 0. In this case, the isolated singular point z0 is called a pole of order
m.∗ A pole of order m = 1 is usually referred to as a simple pole.

EXAMPLE 1. Observe that the function

z2 − 2z + 3

z − 2
= z(z − 2) + 3

z − 2
= z + 3

z − 2
= 2 + (z − 2) + 3

z − 2
(0 < |z − 2| < ∞)

has a simple pole (m = 1) at z0 = 2. Its residue b1 there is 3.

When representation (1) is written in the form (see Sec. 60)

f (z) =
∞∑

n=−∞
cn(z − z0)

n (0 < |z − z0| < R2),

the residue of f at z0 is, of course, the coefficient c−1.

EXAMPLE 2. From the representation

f (z) = 1

z2(1 + z)
= 1

z2
· 1

1 − (−z)
= 1

z2
(1 − z + z2 − z3 + z4 − · · ·)

= 1

z2
− 1

z
+ 1 − z + z2 − · · · (0 < |z| < 1),

one can see that f has a pole of order m = 2 at the origin and that

Res
z=0

f (z) = −1.

EXAMPLE 3. The function

sinh z

z4
= 1

z4

(
z + z3

3!
+ z5

5!
+ z7

7!
+ · · ·

)
= 1

z3
+ 1

3!
· 1

z
+ z

5!
+ z3

7!
+ · · ·

(0 < |z| < ∞)

has a pole of order m = 3 at z0 = 0, with residue B = 1/6.

∗Reasons for the terminology pole are suggested on p. 70 of the book by R. P. Boas that is listed in
Appendix 1.
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There remain two extremes, the case in which every coefficient in the principal
part (2) is zero and the one in which an infinie number of them are nonzero.

When every bn is zero, so that

f (z) =
∞∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·(4)

(0 < |z − z0| < R2),

z0 is known as a removable singular point. Note that the residue at a removable
singular point is always zero. If we define, or possibly redefine, f at z0 so that
f (z0) = a0, expansion (4) becomes valid throughout the entire disk |z − z0| < R2.
Since a power series always represents an analytic function interior to its circle of
convergence (Sec. 65), it follows that f is analytic at z0 when it is assigned the
value a0 there. The singularity z0 is, therefore, removed.

EXAMPLE 4. The point z0 = 0 is a removable singular point of the function

f (z) = 1 − cos z

z2

because

f (z) = 1

z2

[
1 −

(
1 − z2

2!
+ z4

4!
− z6

6!
+ · · ·

)]
= 1

2!
− z2

4!
+ z4

6!
− · · ·
(0 < |z| < ∞).

When the value f (0) = 1/2 is assigned, f becomes entire.

If an infinite number of the coefficients bn in the principal part (2) are nonzero,
z0 is said to be an essential singular point of f .

EXAMPLE 5. We recall from Example 1 in Sec. 62 that

e1/z =
∞∑

n=0

1

n!
· 1

zn
= 1 + 1

1!
· 1

z
+ 1

2!
· 1

z2
+ · · · (0 < |z| < ∞).

From this we see that e1/z has an essential singular point at z0 = 0, where the
residue b1 is unity.

This example can be used to illustrate (see Exercise 4) an important result known
as Picard’s theorem. It concerns the behavior of a function near an essential singular
point and states that in each neighborhood of an essential singular point, a function
assumes every finite value, with one possible exception, an infinite number of times.∗

∗For a proof of Picard’s theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in
Appendix 1.
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In the remaining sections of this chapter, we shall develop in greater depth
the theory of the three types of isolated singular points just described. The empha-
sis will be on useful and efficient methods for identifying poles and finding the
corresponding residues.

EXERCISES
1. In each case, write the principal part of the function at its isolated singular point and

determine whether that point is a pole, a removable singular point, or an essential
singular point:

(a) z exp

(
1

z

)
; (b)

z2

1 + z
; (c)

sin z

z
; (d)

cos z

z
; (e)

1

(2 − z)3
.

2. Show that the singular point of each of the following functions is a pole. Determine
the order m of that pole and the corresponding residue B.

(a)
1 − cosh z

z3
; (b)

1 − exp(2z)

z4
; (c)

exp(2z)

(z − 1)2
.

Ans. (a) m = 1, B = −1/2 ; (b) m = 3, B = −4/3 ; (c) m = 2, B = 2e2.

3. Suppose that a function f is analytic at z0, and write g(z) = f (z)/(z − z0). Show that

(a) if f (z0) �= 0, then z0 is a simple pole of g, with residue f (z0);
(b) if f (z0) = 0, then z0 is a removable singular point of g.

Suggestion: As pointed out in Sec. 57, there is a Taylor series for f (z) about z0
since f is analytic there. Start each part of this exercise by writing out a few terms
of that series.

4. Use the fact (see Sec. 29) that ez = −1 when

z = (2n + 1)πi (n = 0,±1,±2, . . .)

to show that e1/z assumes the value −1 an infinite number of times in each neighbor-
hood of the origin. More precisely, show that e1/z = −1 when

z = − i

(2n + 1)π
(n = 0,±1,±2, . . .);

then note that if n is large enough, such points lie in any given ε neighborhood
of the origin. Zero is evidently the exceptional value in Picard’s theorem, stated in
Example 5, Sec. 72.

5. Write the function

f (z) = 8a3z2

(z2 + a2)3
(a > 0)

as

f (z) = φ(z)

(z − ai)3
where φ(z) = 8a3z2

(z + ai)3
.
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Point out why φ(z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

φ′′(ai)/2

z − ai
+ φ′(ai)

(z − ai)2
+ φ(ai)

(z − ai)3
= − i/2

z − ai
− a/2

(z − ai)2
− a2i

(z − ai)3
.

73. RESIDUES AT POLES
When a function f has an isolated singularity at a point z0 , the basic method for
identifying z0 as a pole and finding the residue there is to write the appropriate
Laurent series and to note the coefficient of 1/(z − z0). The following theorem
provides an alternative characterization of poles and a way of finding residues at
poles that is often more convenient.

Theorem. An isolated singular point z0 of a function f is a pole of order m

if and only if f (z) can be written in the form

f (z) = φ(z)

(z − z0)m
,(1)

where φ(z) is analytic and nonzero at z0 . Moreover,

Res
z=z0

f (z) = φ(z0) if m = 1(2)

and

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
if m ≥ 2.(3)

Observe that expression (2) need not have been written separately since, with
the convention that φ(0)(z0) = φ(z0) and 0! = 1, expression (3) reduces to it when
m = 1.

To prove the theorem, we first assume that f (z) has the form (1) and recall
(Sec. 57) that since φ(z) is analytic at z0, it has a Taylor series representation

φ(z) = φ(z0) + φ′(z0)

1!
(z − z0) + φ′′(z0)

2!
(z − z0)

2 + · · · + φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n

in some neighborhood |z − z0| < ε of z0; and from expression (1) it follows that

f (z) = φ(z0)

(z − z0)m
+ φ′(z0)/1!

(z − z0)m−1
+ φ′′(z0)/2!

(z − z0)m−2
+ · · · + φ(m−1)(z0)/(m − 1)!

z − z0

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n−m



Brown-chap06-v3 10/30/07 3:30pm 245

sec. 74 Examples 245

when 0 < |z − z0| < ε. This Laurent series representation, together with the fact
that φ(z0) �= 0, reveals that z0 is, indeed, a pole of order m of f (z). The coefficient
of 1/(z − z0) tells us, of course, that the residue of f (z) at z0 is as in the statement
of the theorem.

Suppose, on the other hand, that we know only that z0 is a pole of order m of
f , or that f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm−1

(z − z0)m−1
+ bm

(z − z0)m

(bm �= 0)

which is valid in a punctured disk 0 < |z − z0| < R2. The function φ(z) defined by
means of the equations

φ(z) =
{
(z − z0)

mf (z) when z �= z0,

bm when z = z0

evidently has the power series representation

φ(z) = bm + bm−1(z − z0) + · · · + b2(z − z0)
m−2 + b1(z − z0)

m−1

+
∞∑

n=0

an(z − z0)
m+n

throughout the entire disk |z − z0| < R2. Consequently, φ(z) is analytic in that disk
(Sec. 65) and, in particular, at z0. Inasmuch as φ(z0) = bm �= 0, expression (1) is
established; and the proof of the theorem is complete.

74. EXAMPLES
The following examples serve to illustrate the use of the theorem in Sec. 73.

EXAMPLE 1. The function

f (z) = z + 1

z2 + 9

has an isolated singular point at z = 3i and can be written

f (z) = φ(z)

z − 3i
where φ(z) = z + 1

z + 3i
.

Since φ(z) is analytic at z = 3i and φ(3i) �= 0, that point is a simple pole of the
function f ; and the residue there is

B1 = φ(3i) = 3i + 1

6i
· −i

−i
= 3 − i

6
.
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The point z = −3i is also a simple pole of f , with residue

B2 = 3 + i

6
.

EXAMPLE 2. If

f (z) = z3 + 2z

(z − i)3
,

then

f (z) = φ(z)

(z − i)3
where φ(z) = z3 + 2z.

The function φ(z) is entire, and φ(i) = i �= 0. Hence f has a pole of order 3 at
z = i, with residue

B = φ′′(i)
2!

= 6i

2!
= 3i.

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

f (z) = (log z)3

z2 + 1
,

where the branch

log z = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function is to be used. To find the residue of f at the singularity
z = i, we write

f (z) = φ(z)

z − i
where φ(z) = (log z)3

z + i
.

The function φ(z) is clearly analytic at z = i; and, since

φ(i) = (log i)3

2i
= (ln 1 + iπ/2)3

2i
= −π3

16
�= 0,

f has a simple pole there. The residue is

B = φ(i) = −π3

16
.

While the theorem in Sec. 73 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.
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EXAMPLE 4. If, for instance, the residue of the function

f (z) = sinh z

z4

is needed at the singularity z = 0, it would be incorrect to write

f (z) = φ(z)

z4
where φ(z) = sinh z

and to attempt an application of formula (3) in Sec. 73 with m = 4. For it is
necessary that φ(z0) �= 0 if that formula is to be used. In this case, the simplest way
to find the residue is to write out a few terms of the Laurent series for f (z), as was
done in Example 3 of Sec. 72. There it was shown that z = 0 is a pole of the third
order, with residue B = 1/6.

In some cases, the series approach can be effectively combined with the theorem
in Sec. 73.

EXAMPLE 5. Since z(ez − 1) is entire and its zeros are

z = 2nπi (n = 0, ±1,±2, . . .),

the point z = 0 is clearly an isolated singular point of the function

f (z) = 1

z(ez − 1)
.

From the Maclaurin series

ez = 1 + z

1!
+ z2

2!
+ z3

3!
+ · · · (|z| < ∞),

we see that

z(ez − 1) = z

(
z

1!
+ z2

2!
+ z3

3!
+ · · ·

)
= z2

(
1 + z

2!
+ z2

3!
+ · · ·

)
(|z| < ∞).

Thus

f (z) = φ(z)

z2
where φ(z) = 1

1 + z/2! + z2/3! + · · · .

Since φ(z) is analytic at z = 0 and φ(0) = 1 �= 0, the point z = 0 is a pole of the
second order; and, according to formula (3) in Sec. 73, the residue is B = φ ′(0).
Because

φ′(z) = −(1/2! + 2z/3! + · · ·)
(1 + z/2! + z2/3! + · · ·)2

in a neighborhood of the origin, then, B = −1/2.
This residue can also be found by dividing our series for z(ez − 1) into 1, or

by multiplying the Laurent series for 1/(ez − 1) in Exercise 3, Sec. 67, by 1/z.



Brown-chap06-v3 10/30/07 3:30pm 248

248 Residues and Poles chap. 6

EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the

order m of each pole, and find the corresponding residue B.

(a)
z2 + 2

z − 1
; (b)

(
z

2z + 1

)3

; (c)
exp z

z2 + π2
.

Ans. (a) m = 1, B = 3; (b) m = 3, B = −3/16 ; (c) m = 1, B = ± i/2π .

2. Show that

(a) Res
z=−1

z1/4

z + 1
= 1 + i√

2
(|z| > 0, 0 < arg z < 2π);

(b) Res
z=i

Log z

(z2 + 1)2
= π + 2i

8
;

(c) Res
z=i

z1/2

(z2 + 1)2
= 1 − i

8
√

2
(|z| > 0, 0 < arg z < 2π).

3. Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz ,

taken counterclockwise around the circle (a) |z − 2| = 2 ; (b) |z| = 4.
Ans. (a) πi; (b) 6πi.

4. Find the value of the integral ∫
C

dz

z3(z + 4)
,

taken counterclockwise around the circle (a) |z| = 2 ; (b) |z + 2| = 3.
Ans. (a) πi/32 ; (b) 0 .

5. Evaluate the integral ∫
C

cosh πz

z(z2 + 1)
dz

when C is the circle |z| = 2, described in the positive sense.
Ans. 4πi.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f (z)

around the positively oriented circle |z| = 3 when

(a) f (z) = (3z + 2)2

z(z − 1)(2z + 5)
; (b) f (z) = z3(1 − 3z)

(1 + z)(1 + 2z4)
; (c) f (z) = z3e1/z

1 + z3
.

Ans. (a) 9πi; (b) −3πi; (c) 2πi.

7. Let z0 be an isolated singular point of a function f and suppose that

f (z) = φ(z)

(z − z0)m
,

where m is a positive integer and φ(z) is analytic and nonzero at z0. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the function φ(z),



Brown-chap06-v3 10/30/07 3:30pm 249

sec. 75 Zeros of Analytic Functions 249

show that

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
,

as stated in the theorem of Sec. 73.
Suggestion: Since there is a neighborhood |z − z0| < ε throughout which φ(z) is

analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle |z − z0| = ε/2.

75. ZEROS OF ANALYTIC FUNCTIONS
Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z0. We know from Sec. 52 that
all of the derivatives f (n)(z) (n = 1, 2, . . .) exist at z0. If f (z0) = 0 and if there
is a positive integer m such that f (m)(z0) �= 0 and each derivative of lower order
vanishes at z0 , then f is said to have a zero of order m at z0. Our first theorem
here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point z0. It has a zero of order
m at z0 if and only if there is a function g, which is analytic and nonzero at z0 , such
that

f (z) = (z − z0)
mg(z).(1)

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a point z0, then it must have a Taylor series representation in powers of
z − z0 which is valid throughout a neighborhood |z − z0| < ε of z0.

We start the first part of the proof by assuming that expression (1) holds and
noting that since g(z) is analytic at z0 , it has a Taylor series representation

g(z) = g(z0) + g′(z0)

1!
(z − z0) + g′′(z0)

2!
(z − z0)

2 + · · ·

in some neighborhood |z − z0| < ε of z0. Expression (1) thus takes the form

f (z) = g(z0)(z − z0)
m + g′(z0)

1!
(z − z0)

m+1 + g′′(z0)

2!
(z − z0)

m+2 + · · ·

when |z − z0| < ε. Since this is actually a Taylor series expansion for f (z), accord-
ing to Theorem 1 in Sec. 66, it follows that

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0(2)
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and that

f (m)(z0) = m!g(z0) �= 0.(3)

Hence z0 is a zero of order m of f .
Conversely, if we assume that f has a zero of order m at z0 , the analyticity

of f at z0 and the fact that conditions (2) hold tell us that in some neighborhood
|z − z0| < ε, there is a Taylor series

f (z) =
∞∑

n=m

f (n)(z0)

n!
(z − z0)

n

= (z − z0)
m

[
f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
]
.

Consequently, f (z) has the form (1), where

g(z) = f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
(|z − z0| < ε).

The convergence of this last series when |z − z0| < ε ensures that g is analytic in
that neighborhood and, in particular, at z0 (Sec. 65). Moreover,

g(z0) = f (m)(z0)

m!
�= 0.

This completes the proof of the theorem.

EXAMPLE 1. The polynomial f (z) = z3 − 8 = (z − 2)(z2 + 2z + 4) has a
zero of order m = 1 at z0 = 2 since

f (z) = (z − 2)g(z),

where g(z) = z2 + 2z + 4, and because f and g are entire and g(2) = 12 �= 0.
Note how the fact that z0 = 2 is a zero of order m = 1 of f also follows from the
observations that f is entire and that

f (2) = 0 and f ′(2) = 12 �= 0.

EXAMPLE 2. The entire function f (z) = z(ez − 1) has a zero of order
m = 2 at the point z0 = 0 since

f (0) = f ′(0) = 0 and f ′′(0) = 2 �= 0.

In this case, expression (1) becomes

f (z) = (z − 0)2g(z),
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where g is the entire function (see Example 1, Sec. 65) defined by means of the
equations

g(z) =
{
(ez − 1)/z when z �= 0,

1 when z = 0.

Our next theorem tells us that the zeros of an analytic function are isolated
when the function is not identically equal to zero.

Theorem 2. Given a function f and a point z0 , suppose that

(a) f is analytic at z0 ;

(b) f (z0) = 0 but f (z) is not identically equal to zero in any neighborhood of z0 .

Then f (z) �= 0 throughout some deleted neighborhood 0 < |z − z0| < ε of z0 .

To prove this, let f be as stated and observe that not all of the derivatives of
f at z0 are zero. If they were, all of the coefficients in the Taylor series for f about
z0 would be zero ; and that would mean that f (z) is identically equal to zero in
some neighborhood of z0 . So it is clear from the definition of zeros of order m at
the beginning of this section that f must have a zero of some finite order m at z0.
According to Theorem 1, then,

f (z) = (z − z0)
mg(z)(4)

where g(z) is analytic and nonzero at z0 .
Now g is continuous, in addition to being nonzero, at z0 because it is ana-

lytic there. Hence there is some neighborhood |z − z0| < ε in which equation (4)
holds and in which g(z) �= 0 (see Sec. 18). Consequently, f (z) �= 0 in the deleted
neighborhood 0 < |z − z0| < ε; and the proof is complete.

Our final theorem here concerns functions with zeros that are not all isolated.
It was referred to earlier in Sec. 27 and makes an interesting contrast to Theorem 2
just above.

Theorem 3. Given a function f and a point z0 , suppose that

(a) f is analytic throughout a neighborhood N0 of z0 ;

(b) f (z) = 0 at each point z of a domain D or line segment L containing z0

(Fig. 90).

Then f (z) ≡ 0 in N0; that is, f (z) is identically equal to zero throughout N0.

We begin the proof with the observation that under the stated conditions,
f (z) ≡ 0 in some neighborhood N of z0. For, otherwise, there would be a deleted
neighborhood of z0 throughout which f (z) �= 0, according to Theorem 2 ; and that
would be inconsistent with the condition that f (z) = 0 everywhere in a domain D
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FIGURE 90

or on a line segment L containing z0 . Since f (z) ≡ 0 in the neighborhood N , then,
it follows that all of the coefficients

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .)

in the Taylor series for f (z) about z0 must be zero. Thus f (z) ≡ 0 in the neighborhood
N0, since the Taylor series also represents f (z) in N0. This completes the proof.

76. ZEROS AND POLES
The following theorem shows how zeros of order m can create poles of order m.

Theorem 1. Suppose that

(a) two functions p and q are analytic at a point z0 ;

(b) p(z0) �= 0 and q has a zero of order m at z0 .

Then the quotient p(z)/q(z) has a pole of order m at z0 .

The proof is easy. Let p and q be as in the statement of the theorem. Since q has
a zero of order m at z0, we know from Theorem 2 in Sec. 75 that there is a deleted
neighborhood of z0 throughout which q(z) �= 0 ; and so z0 is an isolated singular
point of the quotient p(z)/q(z). Theorem 1 in Sec. 75 tells us, moreover, that

q(z) = (z − z0)
mg(z),

where g is analytic and nonzero at z0 ; and this enables us to write

p(z)

q(z)
= φ(z)

(z − z0)m
where φ(z) = p(z)

g(z)
.(1)

Since φ(z) is analytic and nonzero at z0 , it now follows from the theorem in Sec.
73 that z0 is a pole of order m of p(z)/q(z).
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EXAMPLE 1. The two functions

p(z) = 1 and q(z) = z(ez − 1)

are entire; and we know from Example 2 in Sec. 75 that q has a zero of order
m = 2 at the point z0 = 0. Hence it follows from Theorem 1 that the quotient

p(z)

q(z)
= 1

z(ez − 1)

has a pole of order 2 at that point. This was demonstrated in another way in
Example 5, Sec. 74.

Theorem 1 leads us to another method for identifying simple poles and find-
ing the corresponding residues. This method, stated just below as Theorem 2, is
sometimes easier to use than the theorem in Sec. 73.

Theorem 2. Let two functions p and q be analytic at a point z0 . If

p(z0) �= 0, q(z0) = 0, and q ′(z0) �= 0,

then z0 is a simple pole of the quotient p(z)/q(z) and

Res
z=z0

p(z)

q(z)
= p(z0)

q ′(z0)
.(2)

To show this, we assume that p and q are as stated and observe that because of
the conditions on q, the point z0 is a zero of order m = 1 of that function. According
to Theorem 1 in Sec. 75, then,

q(z) = (z − z0)g(z)(3)

where g(z) is analytic and nonzero at z0. Furthermore, Theorem 1 in this section
tells us that z0 is a simple pole of p(z)/q(z); and expression (1) for p(z)/q(z) in
the proof of that theorem becomes

p(z)

q(z)
= φ(z)

z − z0
where φ(z) = p(z)

g(z)
.

Since this φ(z) is analytic and nonzero at z0, we know from the theorem in Sec. 73
that

Res
z=z0

p(z)

q(z)
= p(z0)

g(z0)
.(4)

But g(z0) = q ′(z0), as is seen by differentiating each side of equation (3) and then
setting z = z0. Expression (4) thus takes the form (2).

EXAMPLE 2. Consider the function

f (z) = cot z = cos z

sin z
,
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which is a quotient of the entire functions p(z) = cos z and q(z) = sin z. Its singu-
larities occur at the zeros of q, or at the points

z = nπ (n = 0, ±1, ±2, . . .).

Since

p(nπ) = (−1)n �= 0, q(nπ) = 0, and q ′(nπ) = (−1)n �= 0,

each singular point z = nπ of f is a simple pole, with residue

Bn = p(nπ)

q ′(nπ)
= (−1)n

(−1)n
= 1.

EXAMPLE 3. The residue of the function

f (z) = tanh z

z2
= sinh z

z2 cosh z

at the zero z = πi/2 of cosh z (see Sec. 35) is readily found by writing

p(z) = sinh z and q(z) = z2 cosh z.

Since

p

(
πi

2

)
= sinh

(
πi

2

)
= i sin

π

2
= i �= 0

and

q

(
πi

2

)
= 0, q ′

(
πi

2

)
=

(
πi

2

)2

sinh

(
πi

2

)
= −π2

4
i �= 0,

we find that z = πi/2 is a simple pole of f and that the residue there is

B = p(πi/2)

q ′(πi/2)
= − 4

π2
.

EXAMPLE 4. Since the point

z0 =
√

2eiπ/4 = 1 + i

is a zero of the polynomial z4 + 4 (see Exercise 6, Sec. 10), it is also an isolated
singularity of the function

f (z) = z

z4 + 4
.

Writing p(z) = z and q(z) = z4 + 4, we find that

p(z0) = z0 �= 0, q(z0) = 0, and q ′(z0) = 4z3
0 �= 0
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and hence that z0 is a simple pole of f . The residue there is, moreover,

B0 = p(z0)

q ′(z0)
= z0

4z3
0

= 1

4z2
0

= 1

8i
= − i

8
.

Although this residue can also be found by the method in Sec. 73, the computation
is somewhat more involved.

There are formulas similar to formula (2) for residues at poles of higher order,
but they are lengthier and, in general, not practical.

EXERCISES
1. Show that the point z = 0 is a simple pole of the function

f (z) = csc z = 1

sin z

and that the residue there is unity by appealing to

(a) Theorem 2 in Sec. 76 ;
(b) the Laurent series for csc z that was found in Exercise 2, Sec. 67.

2. Show that

(a) Res
z=πi

z − sinh z

z2 sinh z
= i

π
;

(b) Res
z=πi

exp(zt)

sinh z
+ Res

z=−πi

exp(zt)

sinh z
= −2 cos (πt).

3. Show that

(a) Res
z=zn

(z sec z) = (−1)n+1 zn where zn = π

2
+ nπ (n = 0,±1,±2, . . .);

(b) Res
z=zn

(tanh z) = 1 where zn =
(π

2
+ nπ

)
i (n = 0,±1,±2, . . .).

4. Let C denote the positively oriented circle |z| = 2 and evaluate the integral

(a)
∫

C

tan z dz; (b)
∫

C

dz

sinh 2z
.

Ans. (a) −4πi; (b) −πi.

5. Let CN denote the positively oriented boundary of the square whose edges lie along
the lines

x = ±
(

N + 1

2

)
π and y = ±

(
N + 1

2

)
π,

where N is a positive integer. Show that

∫
CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]
.
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Then, using the fact that the value of this integral tends to zero as N tends to infinity
(Exercise 8, Sec. 43), point out how it follows that

∞∑
n=1

(−1)n+1

n2
= π2

12
.

6. Show that ∫
C

dz

(z2 − 1)2 + 3
= π

2
√

2
,

where C is the positively oriented boundary of the rectangle whose sides lie along the
lines x = ±2, y = 0, and y = 1.

Suggestion: By observing that the four zeros of the polynomial q(z) = (z2 − 1)2 + 3
are the square roots of the numbers 1 ± √

3i, show that the reciprocal 1/q(z) is analytic
inside and on C except at the points

z0 =
√

3 + i√
2

and − z0 = −√
3 + i√
2

.

Then apply Theorem 2 in Sec. 76.

7. Consider the function

f (z) = 1

[q(z)]2

where q is analytic at z0, q(z0) = 0, and q ′(z0) �= 0. Show that z0 is a pole of order
m = 2 of the function f , with residue

B0 = − q ′′(z0)

[q ′(z0)]3
.

Suggestion: Note that z0 is a zero of order m = 1 of the function q, so that

q(z) = (z − z0)g(z)

where g(z) is analytic and nonzero at z0. Then write

f (z) = φ(z)

(z − z0)2
where φ(z) = 1

[g(z)]2
.

The desired form of the residue B0 = φ′(z0) can be obtained by showing that

q ′(z0) = g(z0) and q ′′(z0) = 2g′(z0).

8. Use the result in Exercise 7 to find the residue at z = 0 of the function

(a) f (z) = csc2 z; (b) f (z) = 1

(z + z2)2
.

Ans. (a) 0 ; (b) −2.

9. Let p and q denote functions that are analytic at a point z0 , where p(z0) �= 0 and
q(z0) = 0. Show that if the quotient p(z)/q(z) has a pole of order m at z0 , then z0 is
a zero of order m of q. (Compare with Theorem 1 in Sec. 76.)
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Suggestion: Note that the theorem in Sec. 73 enables one to write

p(z)

q(z)
= φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0 . Then solve for q(z).

10. Recall (Sec. 11) that a point z0 is an accumulation point of a set S if each deleted neigh-
borhood of z0 contains at least one point of S. One form of the Bolzano–Weierstrass
theorem can be stated as follows: an infinite set of points lying in a closed bounded
region R has at least one accumulation point in R.∗ Use that theorem and Theorem 2
in Sec. 75 to show that if a function f is analytic in the region R consisting of all
points inside and on a simple closed contour C, except possibly for poles inside C,
and if all the zeros of f in R are interior to C and are of finite order, then those zeros
must be finite in number.

11. Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano–Weierstrass theorem (see Exercise 10) and the fact that poles are
isolated singular points to show that if f is analytic in the region R except for poles
interior to C, then those poles must be finite in number.

77. BEHAVIOR OF FUNCTIONS NEAR ISOLATED
SINGULAR POINTS

As already indicated in Sec. 72, the behavior of a function f near an isolated singular
point z0 varies, depending on whether z0 is a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not be used elsewhere in the
book, the reader who wishes to reach applications of residue theory more quickly
may pass directly to Chap. 7 without disruption.

Theorem 1. If z0 is a pole of a function f , then

lim
z→z0

f (z) = ∞.(1)

To verify limit (1), we assume that f has a pole of order m at z0 and use the
theorem in Sec. 73. It tells us that

f (z) = φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0. Since

lim
z→z0

1

f (z)
= lim

z→z0

(z − z0)
m

φ(z)
=

lim
z→z0

(z − z0)
m

lim
z→z0

φ(z)
= 0

φ(z0)
= 0,

∗See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521,
1983.
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then, limit (1) holds, according to the theorem in Sec. 17 regarding limits that
involve the point at infinity.

The next theorem emphasizes how the behavior of f near a removable singular
point is fundamentally different from behavior near a pole.

Theorem 2. If z0 is a removable singular point of a functionf , thenf is analytic
and bounded in some deleted neighborhood 0 < |z − z0| < ε of z0 .

The proof is easy and is based on the fact that the function f here is analytic
in a disk |z − z0| < R2 when f (z0) is properly defined ; f is then continuous in
any closed disk |z − z0| ≤ ε where ε < R2. Consequently, f is bounded in that
disk, according to Theorem 3 in Sec. 18; and this means that, in addition to being
analytic, f must be bounded in the deleted neighborhood 0 < |z − z0| < ε.

The proof of our final theorem, regarding the behavior of a function near an
essential singular point, relies on the following lemma, which is closely related to
Theorem 2 and is known as Riemann’s theorem.

Lemma. Suppose that a function f is analytic and bounded in some deleted
neighborhood 0 < |z − z0| < ε of a point z0 . If f is not analytic at z0 , then it has
a removable singularity there.

To prove this, we assume that f is not analytic at z0. As a consequence, the
point z0 must be an isolated singularity of f ; and f (z) is represented by a Laurent
series

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(2)

throughout the deleted neighborhood 0 < |z − z0| < ε. If C denotes a positively
oriented circle |z − z0| = ρ, where ρ < ε (Fig. 91), we know from Sec. 60 that the

x

z0

C

O

y

ε

FIGURE 91
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coefficients bn in expansion (2) can be written

bn = 1

2πi

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

Now the boundedness condition on f tells us that there is a positive constant M

such that |f (z)| ≤ M whenever 0 < |z − z0| < ε. Hence it follows from expression
(3) that

|bn| ≤ 1

2π
· M

ρ−n+1
2πρ = Mρn (n = 1, 2, . . .).

Since the coefficients bn are constants and since ρ can be chosen arbitrarily small,
we may conclude that bn = 0 (n = 1, 2, . . .) in the Laurent series (2). This tells us
that z0 is a removable singularity of f , and the proof of the lemma is complete.

We know from Sec. 72 that the behavior of a function near an essential singular
point is quite irregular. The next theorem, regarding such behavior, is related to
Picard’s theorem in that earlier section and is usually referred to as the Casorati–
Weierstrass theorem. It states that in each deleted neighborhood of an essential
singular point, a function assumes values arbitrarily close to any given number.

Theorem 3. Suppose that z0 is an essential singularity of a function f , and
let w0 be any complex number. Then, for any positive number ε, the inequality

|f (z) − w0| < ε(4)

is satisfied at some point z in each deleted neighborhood 0 < |z − z0| < δ of z0

(Fig. 92).

x uO

y

z0z

O

v

w0

f (z)

ε

FIGURE 92

The proof is by contradiction. Since z0 is an isolated singularity of f , there
is a deleted neighborhood 0 < |z − z0| < δ throughout which f is analytic; and we
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assume that condition (4) is not satisfied for any point z there. Thus |f (z) − w0| ≥ ε

when 0 < |z − z0| < δ; and so the function

g(z) = 1

f (z) − w0
(0 < |z − z0| < δ)(5)

is bounded and analytic in its domain of definition. Hence, according to our lemma,
z0 is a removable singularity of g; and we let g be defined at z0 so that it is analytic
there.

If g(z0) �= 0, the function f (z), which can be written

f (z) = 1

g(z)
+ w0(6)

when 0 < |z − z0| < δ, becomes analytic at z0 when it is defined there as

f (z0) = 1

g(z0)
+ w0.

But this means that z0 is a removable singularity of f , not an essential one, and we
have a contradiction.

If g(z0) = 0, the function g must have a zero of some finite order m (Sec. 75)
at z0 because g(z) is not identically equal to zero in the neighborhood |z − z0| < δ.
In view of equation (6), then, f has a pole of order m at z0 (see Theorem 1 in
Sec. 76). So, once again, we have a contradiction; and Theorem 3 here is proved.
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