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7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

|f (z)| = |w0|.

Suggestion: Observe how the first of inequalities (9), Sec. 4, enables one to write

||f (z)| − |w0|| ≤ |f (z) − w0|.
8. Write 	z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim
	z→0

f (z0 + 	z) = w0.

9. Show that
lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive number M such that |g(z)| ≤ M for all z in some
neighborhood of z0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞
z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) = az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞ T (z) = ∞ if c = 0;

(b) lim
z→∞ T (z) = a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a set S is unbounded (Sec. 11) if and only if every neighborhood of the
point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z − z0| < ε

of a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the function f is said to be differentiable at z0 when f ′(z0) exists.
By expressing the variable z in definition (1) in terms of the new complex

variable

	z = z − z0 (z �= z0),
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one can write that definition as

f ′(z0) = lim
	z→0

f (z0 + 	z) − f (z0)

	z
.(2)

Because f is defined throughout a neighborhood of z0, the number f (z0 + 	z) is
always defined for |	z| sufficiently small (Fig. 28).
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FIGURE 28

When taking form (2) of the definition of derivative, we often drop the subscript
on z0 and introduce the number

	w = f (z + 	z) − f (z),

which denotes the change in the value w = f (z) of f corresponding to a change 	z

in the point at which f is evaluated. Then, if we write dw/dz for f ′(z), equation
(2) becomes

dw

dz
= lim

	z→0

	w

	z
.(3)

EXAMPLE 1. Suppose that f (z) = z2. At any point z,

lim
	z→0

	w

	z
= lim

	z→0

(z + 	z)2 − z2

	z
= lim

	z→0
(2z + 	z) = 2z

since 2z + 	z is a polynomial in 	z. Hence dw/dz = 2z, or f ′(z) = 2z.

EXAMPLE 2. If f (z) = z, then

	w

	z
= z + 	z − z

	z
= z + 	z − z

	z
= 	z

	z
.(4)
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If the limit of 	w/	z exists, it can be found by letting the point
	z = (	x, 	y) approach the origin (0, 0) in the 	z plane in any manner. In par-
ticular, as 	z approaches (0, 0) horizontally through the points (	x, 0) on the real
axis (Fig. 29),

	z = 	x + i0 = 	x − i0 = 	x + i0 = 	z.

In that case, expression (4) tells us that

	w

	z
= 	z

	z
= 1.

Hence if the limit of 	w/	z exists, its value must be unity. However, when 	z

approaches (0, 0) vertically through the points (0, 	y) on the imaginary axis, so that

	z = 0 + i	y = 0 − i	y = −(0 + i	y) = −	z,

we find from expression (4) that

	w

	z
= −	z

	z
= −1.

Hence the limit must be −1 if it exists. Since limits are unique (Sec. 15), it follows
that dw/dz does not exist anywhere.

(0, 0)
FIGURE 29

EXAMPLE 3. Consider the real-valued function f (z) = |z|2. Here

	w

	z
= |z + 	z|2 − |z|2

	z
= (z + 	z)(z + 	z) − zz

	z
= z + 	z + z

	z

	z
.(5)

Proceeding as in Example 2, where horizontal and vertical approaches of 	z toward
the origin gave us

	z = 	z and 	z = −	z,
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respectively, we have the expressions

	w

	z
= z + 	z + z when 	z = (	x, 0)

and

	w

	z
= z − 	z − z when 	z = (0, 	y).

Hence if the limit of 	w/	z exists as 	z tends to zero, the uniqueness of limits,
used in Example 2, tells us that

z + z = z − z,

or z = 0. Evidently, then dw/dz cannot exist when z �= 0.

To show that dw/dz does, in fact, exist at z = 0, we need only observe that
expression (5) reduces to

	w

	z
= 	z

when z = 0. We conclude, therefore, that dw/dz exists only at z = 0, its value
there being 0.

Example 3 shows that a function f (z) = u(x, y) + iv(x, y) can be differen-
tiable at a point z = (x, y) but nowhere else in any neighborhood of that point.
Since

u(x, y) = x2 + y2 and v(x, y) = 0(6)

when f (z) = |z|2, it also shows that the real and imaginary components of a function
of a complex variable can have continuous partial derivatives of all orders at a point
z = (x, y) and yet the function may not be differentiable there.

The function f (z) = |z|2 is continuous at each point in the plane since its
components (6) are continuous at each point. So the continuity of a function at a
point does not imply the existence of a derivative there. It is, however, true that
the existence of the derivative of a function at a point implies the continuity of the
function at that point. To see this, we assume that f ′(z0) exists and write

lim
z→z0

[f (z) − f (z0)] = lim
z→z0

f (z) − f (z0)

z − z0
lim
z→z0

(z − z0) = f ′(z0) · 0 = 0,

from which it follows that
lim
z→z0

f (z) = f (z0).

This is the statement of continuity of f at z0 (Sec. 18).
Geometric interpretations of derivatives of functions of a complex variable are

not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.
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20. DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 19 is identical in form to that of the derivative
of a real-valued function of a real variable. In fact, the basic differentiation formulas
given below can be derived from the definition in Sec. 19 by essentially the same
steps as the ones used in calculus. In these formulas, the derivative of a function f

at a point z is denoted by either

d

dz
f (z) or f ′(z),

depending on which notation is more convenient.
Let c be a complex constant, and let f be a function whose derivative exists

at a point z. It is easy to show that

d

dz
c = 0,

d

dz
z = 1,

d

dz
[cf (z)] = cf ′(z).(1)

Also, if n is a positive integer,

d

dz
zn = nzn−1.(2)

This formula remains valid when n is a negative integer, provided that z �= 0.
If the derivatives of two functions f and g exist at a point z, then

d

dz
[f (z) + g(z)] = f ′(z) + g′(z),(3)

d

dz
[f (z)g(z)] = f (z)g′(z) + f ′(z)g(z) ;(4)

and, when g(z) �= 0,

d

dz

[
f (z)

g(z)

]
= g(z)f ′(z) − f (z)g′(z)

[g(z)]2
.(5)

Let us derive formula (4). To do this, we write the following expression for
the change in the product w = f (z)g(z):

	w = f (z + 	z)g(z + 	z) − f (z)g(z)

= f (z)[g(z + 	z) − g(z)] + [f (z + 	z) − f (z)]g(z + 	z).

Thus

	w

	z
= f (z)

g(z + 	z) − g(z)

	z
+ f (z + 	z) − f (z)

	z
g(z + 	z) ;

and, letting 	z tend to zero, we arrive at the desired formula for the derivative
of f (z)g(z). Here we have used the fact that g is continuous at the point z, since
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g′(z) exists; thus g(z + 	z) tends to g(z) as 	z tends to zero (see Exercise 8,
Sec. 18).

There is also a chain rule for differentiating composite functions. Suppose that
f has a derivative at z0 and that g has a derivative at the point f (z0). Then the
function F(z) = g[f (z)] has a derivative at z0, and

F ′(z0) = g′[f (z0)]f
′(z0).(6)

If we write w = f (z) and W = g(w), so that W = F(z), the chain rule becomes

dW

dz
= dW

dw

dw

dz
.

EXAMPLE. To find the derivative of (2z2 + i)5, write w = 2z2 + i and
W = w5. Then

d

dz
(2z2 + i)5 = 5w44z = 20z(2z2 + i)4.

To start the derivation of formula (6), choose a specific point z0 at which f ′(z0)

exists. Write w0 = f (z0) and also assume that g′(w0) exists. There is, then, some ε

neighborhood |w − w0| < ε of w0 such that for all points w in that neighborhood,
we can define a function 
 having the values 
(w0) = 0 and


(w) = g(w) − g(w0)

w − w0
− g′(w0) when w �= w0.(7)

Note that in view of the definition of derivative,

lim
w→w0


(w) = 0.(8)

Hence 
 is continuous at w0.
Now expression (7) can be put in the form

g(w) − g(w0) = [g′(w0) + 
(w)](w − w0) (|w − w0| < ε),(9)

which is valid even when w = w0; and since f ′(z0) exists and f is therefore
continuous at z0, we can choose a positive number δ such that the point f (z)

lies in the ε neighborhood |w − w0| < ε of w0 if z lies in the δ neighborhood
|z − z0| < δ of z0. Thus it is legitimate to replace the variable w in equation (9) by
f (z) when z is any point in the neighborhood |z − z0| < δ. With that substitution,
and with w0 = f (z0), equation (9) becomes

g[f (z)] − g[f (z0)]

z − z0
= {g′[f (z0)] + 
[f (z)]}f (z) − f (z0)

z − z0
(10)

(0 < |z − z0| < δ),



62 Analytic Functions chap. 2

where we must stipulate that z �= z0 so that we are not dividing by zero. As already
noted, f is continuous at z0 and 
 is continuous at the point w0 = f (z0). Hence
the composition 
[f (z)] is continuous at z0; and since 
(w0) = 0,

lim
z→z0


[f (z)] = 0.

So equation (10) becomes equation (6) in the limit as z approaches z0.

EXERCISES
1. Use results in Sec. 20 to find f ′(z) when

(a) f (z) = 3z2 − 2z + 4; (b) f (z) = (1 − 4z2)3 ;

(c) f (z) = z − 1

2z + 1
(z �= −1/2); (d) f (z) = (1 + z2)4

z2
(z �= 0).

2. Using results in Sec. 20, show that

(a) a polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degree n (n ≥ 1) is differentiable everywhere, with derivative

P ′(z) = a1 + 2a2z + · · · + nanz
n−1 ;

(b) the coefficients in the polynomial P (z) in part (a) can be written

a0 = P (0), a1 = P ′(0)

1!
, a2 = P ′′(0)

2!
, . . . , an = P (n)(0)

n!
.

3. Apply definition (3), Sec. 19, of derivative to give a direct proof that

dw

dz
= − 1

z2
when w = 1

z
(z �= 0).

4. Suppose that f (z0) = g(z0) = 0 and that f ′(z0) and g′(z0) exist, where g′(z0) �= 0.
Use definition (1), Sec. 19, of derivative to show that

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
.

5. Derive formula (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative of zn when n is a positive integer
by using

(a) mathematical induction and formula (4), Sec. 20, for the derivative of the product
of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).



sec. 21 Cauchy–Riemann Equations 63

7. Prove that expression (2), Sec. 20, for the derivative of zn remains valid when n is a
negative integer (n = −1,−2, . . .), provided that z �= 0.

Suggestion: Write m = −n and use the formula for the derivative of a quotient
of two functions.

8. Use the method in Example 2, Sec. 19, to show that f ′(z) does not exist at any point
z when
(a) f (z) = Re z; (b) f (z) = Im z.

9. Let f denote the function whose values are

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Show that if z = 0, then 	w/	z = 1 at each nonzero point on the real and imaginary
axes in the 	z, or 	x 	y, plane. Then show that 	w/	z = −1 at each nonzero point
(	x,	x) on the line 	y = 	x in that plane. Conclude from these observations that
f ′(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the 	z plane. (Compare with
Example 2, Sec. 19.)

21. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives
of the component functions u and v of a function

f (z) = u(x, y) + iv(x, y)(1)

must satisfy at a point z0 = (x0, y0) when the derivative of f exists there. We also
show how to express f ′(z0) in terms of those partial derivatives.

We start by writing

z0 = x0 + iy0, 	z = 	x + i	y,

and

	w = f (z0 + 	z) − f (z0)

= [u(x0 + 	x, y0 + 	y) − u(x0, y0)] + i[v(x0 + 	x, y0 + 	y) − v(x0, y0)].

Assuming that the derivative

f ′(z0) = lim
	z→0

	w

	z
(2)

exists, we know from Theorem 1 in Sec. 16 that

f ′(z0) = lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
+ i lim

(	x,	y)→(0,0)

(
Im

	w

	z

)
.(3)
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Now it is important to keep in mind that expression (3) is valid as (	x, 	y)

tends to (0, 0) in any manner that we may choose. In particular, we let (	x, 	y) tend
to (0, 0) horizontally through the points (	x, 0), as indicated in Fig. 29 (Sec. 19).
Inasmuch as 	y = 0, the quotient 	w/	z becomes

	w

	z
= u(x0 + 	x, y0) − u(x0, y0)

	x
+ i

v(x0 + 	x, y0) − v(x0, y0)

	x
.

Thus

lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
= lim

	x→0

u(x0 + 	x, y0) − u(x0, y0)

	x
= ux(x0, y0)

and

lim
(	x,	y)→(0,0)

(
Im

	w

	z

)
= lim

	x→0

v(x0 + 	x, y0) − v(x0, y0)

	x
= vx(x0, y0),

where ux(x0, y0) and vx(x0, y0) denote the first-order partial derivatives with respect
to x of the functions u and v, respectively, at (x0, y0). Substitution of these limits
into expression (3) tells us that

f ′(z0) = ux(x0, y0) + ivx(x0, y0).(4)

We might have let 	z tend to zero vertically through the points (0, 	y). In
that case, 	x = 0 and

	w

	z
= u(x0, y0 + 	y) − u(x0, y0)

i	y
+ i

v(x0, y0 + 	y) − v(x0, y0)

i	y

= v(x0, y0 + 	y) − v(x0, y0)

	y
− i

u(x0, y0 + 	y) − u(x0, y0)

	y
.

Evidently, then,

lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
= lim

	y→0

v(x0, y0 + 	y) − v(x0, y0)

	y
= vy(x0, y0)

and

lim
(	x,	y)→(0,0)

(
Im

	w

	z

)
= − lim

	y→0

u(x0, y0 + 	y) − u(x0, y0)

	y
= −uy(x0, y0).

Hence it follows from expression (3) that

f ′(z0) = vy(x0, y0) − iuy(x0, y0),(5)

where the partial derivatives of u and v are, this time, with respect to y. Note that
equation (5) can also be written in the form

f ′(z0) = −i[uy(x0, y0) + ivy(x0, y0)].
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Equations (4) and (5) not only give f ′(z0) in terms of partial derivatives of the
component functions u and v, but they also provide necessary conditions for the
existence of f ′(z0). To obtain those conditions, we need only equate the real parts
and then the imaginary parts on the right-hand sides of equations (4) and (5) to see
that the existence of f ′(z0) requires that

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).(6)

Equations (6) are the Cauchy–Riemann equations, so named in honor of the French
mathematician A. L. Cauchy (1789–1857), who discovered and used them, and
in honor of the German mathematician G. F. B. Riemann (1826–1866), who made
them fundamental in his development of the theory of functions of a complex
variable.

We summarize the above results as follows.

Theorem. Suppose that

f (z) = u(x, y) + iv(x, y)

and that f ′(z) exists at a point z0 = x0 + iy0. Then the first-order partial derivatives
of u and v must exist at (x0, y0), and they must satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx(7)

there. Also, f ′(z0) can be written

f ′(z0) = ux + ivx,(8)

where these partial derivatives are to be evaluated at (x0, y0).

EXAMPLE 1. In Example 1, Sec. 19, we showed that the function

f (z) = z2 = x2 − y2 + i2xy

is differentiable everywhere and that f ′(z) = 2z. To verify that the Cauchy–Riemann
equations are satisfied everywhere, write

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Thus
ux = 2x = vy, uy = −2y = −vx.

Moreover, according to equation (8),

f ′(z) = 2x + i2y = 2(x + iy) = 2z.
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Since the Cauchy–Riemann equations are necessary conditions for the existence
of the derivative of a function f at a point z0, they can often be used to locate points
at which f does not have a derivative.

EXAMPLE 2. When f (z) = |z|2, we have

u(x, y) = x2 + y2 and v(x, y) = 0.

If the Cauchy–Riemann equations are to hold at a point (x, y), it follows that 2x = 0
and 2y = 0, or that x = y = 0. Consequently, f ′(z) does not exist at any nonzero
point, as we already know from Example 3 in Sec. 19. Note that the theorem just
proved does not ensure the existence of f ′(0). The theorem in the next section will,
however, do this.

22. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy–Riemann equations at a point z0 = (x0, y0) is not suffi-
cient to ensure the existence of the derivative of a function f (z) at that point. (See
Exercise 6, Sec. 23.) But, with certain continuity conditions, we have the following
useful theorem.

Theorem. Let the function

f (z) = u(x, y) + iv(x, y)

be defined throughout some ε neighborhood of a point z0 = x0 + iy0, and suppose
that

(a) the first-order partial derivatives of the functions u and v with respect to x and
y exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (x0, y0) and satisfy the Cauchy–
Riemann equations

ux = vy, uy = −vx

at (x0, y0).

Then f ′(z0) exists, its value being

f ′(z0) = ux + ivx

where the right-hand side is to be evaluated at (x0, y0).

To prove the theorem, we assume that conditions (a) and (b) in its hypothesis
are satisfied and write 	z = 	x + i	y, where 0 < |	z| < ε, as well as

	w = f (z0 + 	z) − f (z0).
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Thus

	w = 	u + i	v,(1)

where
	u = u(x0 + 	x, y0 + 	y) − u(x0, y0)

and
	v = v(x0 + 	x, y0 + 	y) − v(x0, y0).

The assumption that the first-order partial derivatives of u and v are continuous at
the point (x0, y0) enables us to write∗

	u = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(2)

and

	v = vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y,(3)

where ε1, ε2, ε3, and ε4 tend to zero as (	x, 	y) approaches (0, 0) in the 	z plane.
Substitution of expressions (2) and (3) into equation (1) now tells us that

	w = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(4)

+ i[vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y].

Because the Cauchy–Riemann equations are assumed to be satisfied at (x0, y0),

one can replace uy(x0, y0) by −vx(x0, y0) and vy(x0, y0) by ux(x0, y0) in equation
(4) and then divide through by the quantity 	z = 	x + i	y to get

	w

	z
= ux(x0, y0) + ivx(x0, y0) + (ε1 + iε3)

	x

	z
+ (ε2 + iε4)

	y

	z
.(5)

But |	x| ≤ |	z| and |	y| ≤ |	z|, according to inequalities (3) in Sec. 4, and so∣∣∣∣	x

	z

∣∣∣∣ ≤ 1 and

∣∣∣∣	y

	z

∣∣∣∣ ≤ 1.

Consequently, ∣∣∣∣(ε1 + iε3)
	x

	z

∣∣∣∣ ≤ |ε1 + iε3| ≤ |ε1| + |ε3|

and ∣∣∣∣(ε2 + iε4)
	y

	z

∣∣∣∣ ≤ |ε2 + iε4| ≤ |ε2| + |ε4|;

∗See, for instance, W. Kaplan, “Advanced Calculus,” 5th ed., pp. 86ff, 2003.
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and this means that the last two terms on the right in equation (5) tend to zero
as the variable 	z = 	x + i	y approaches zero. The expression for f ′(z0) in the
statement of the theorem is now established.

EXAMPLE 1. Consider the exponential function

f (z) = ez = exeiy (z = x + iy),

some of whose mapping properties were discussed in Sec. 14. In view of Euler’s
formula (Sec. 6), this function can, of course, be written

f (z) = ex cos y + iex sin y,

where y is to be taken in radians when cos y and sin y are evaluated. Then

u(x, y) = ex cos y and v(x, y) = ex sin y.

Since ux = vy and uy = −vx everywhere and since these derivatives are everywhere
continuous, the conditions in the above theorem are satisfied at all points in the
complex plane. Thus f ′(z) exists everywhere, and

f ′(z) = ux + ivx = ex cos y + iex sin y.

Note that f ′(z) = f (z) for all z.

EXAMPLE 2. It also follows from our theorem that the function f (z) = |z|2,
whose components are

u(x, y) = x2 + y2 and v(x, y) = 0,

has a derivative at z = 0. In fact, f ′(0) = 0 + i0 = 0. We saw in Example 2,
Sec. 21, that this function cannot have a derivative at any nonzero point since
the Cauchy–Riemann equations are not satisfied at such points. (See also Example
3, Sec. 19.)

23. POLAR COORDINATES

Assuming that z0 �= 0, we shall in this section use the coordinate transformation

x = r cos θ, y = r sin θ(1)

to restate the theorem in Sec. 22 in polar coordinates.
Depending on whether we write

z = x + iy or z = reiθ (z �= 0)
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when w = f (z), the real and imaginary components of w = u + iv are expressed
in terms of either the variables x and y or r and θ . Suppose that the first-order
partial derivatives of u and v with respect to x and y exist everywhere in some
neighborhood of a given nonzero point z0 and are continuous at z0. The first-order
partial derivatives of u and v with respect to r and θ also have those properties,
and the chain rule for differentiating real-valued functions of two real variables can
be used to write them in terms of the ones with respect to x and y. More precisely,
since

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
,

∂u

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
,

one can write

ur = ux cos θ + uy sin θ, uθ = −ux r sin θ + uy r cos θ.(2)

Likewise,

vr = vx cos θ + vy sin θ, vθ = −vx r sin θ + vy r cos θ.(3)

If the partial derivatives of u and v with respect to x and y also satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx(4)

at z0, equations (3) become

vr = −uy cos θ + ux sin θ, vθ = uy r sin θ + ux r cos θ(5)

at that point. It is then clear from equations (2) and (5) that

rur = vθ , uθ = −rvr(6)

at z0.
If, on the other hand, equations (6) are known to hold at z0, it is straightforward

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore,
an alternative form of the Cauchy–Riemann equations (4).

In view of equations (6) and the expression for f ′(z0) that is found in Exercise 8,
we are now able to restate the theorem in Sec. 22 using r and θ.

Theorem. Let the function

f (z) = u(r, θ) + iv(r, θ)

be defined throughout some ε neighborhood of a nonzero point z0 = r0 exp(iθ0),

and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to r and
θ exist everywhere in the neighborhood;
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(b) those partial derivatives are continuous at (r0, θ0) and satisfy the polar form

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations at (r0, θ0).

Then f ′(z0) exists, its value being

f ′(z0) = e−iθ (ur + ivr ),

where the right-hand side is to be evaluated at (r0, θ0).

EXAMPLE 1. Consider the function

f (z) = 1

z
= 1

reiθ
= 1

r
e−iθ = 1

r
(cos θ − i sin θ) (z �= 0).

Since

u(r, θ) = cos θ

r
and v(r, θ) = − sin θ

r
,

the conditions in this theorem are satisfied at every nonzero point z = reiθ in the
plane. In particular, the Cauchy–Riemann equations

rur = −cos θ

r
= vθ and uθ = − sin θ

r
= −rvr

are satisfied. Hence the derivative of f exists when z �= 0; and, according to the
theorem,

f ′(z) = e−iθ

(
−cos θ

r2
+ i

sin θ

r2

)
= −e−iθ e−iθ

r2
= − 1

(reiθ )2
= − 1

z2
.

EXAMPLE 2. The theorem can be used to show that when α is a fixed real
number, the function

f (z) = 3
√

reiθ/3 (r > 0, α < θ < α + 2π)

has a derivative everywhere in its domain of definition. Here

u(r, θ) = 3
√

r cos
θ

3
and v(r, θ) = 3

√
r sin

θ

3
.

Inasmush as

rur =
3
√

r

3
cos

θ

3
= vθ and uθ = −

3
√

r

3
sin

θ

3
= −rvr



sec. 23 Exercises 71

and since the other conditions in the theorem are satisfied, the derivative f ′(z) exists
at each point where f (z) is defined. The theorem tells us, moreover, that

f ′(z) = e−iθ

[
1

3( 3
√

r)2
cos

θ

3
+ i

1

3( 3
√

r)2
sin

θ

3

]
,

or

f ′(z) = e−iθ

3( 3
√

r)2
eiθ/3 = 1

3( 3
√

reiθ/3)2
= 1

3[f (z)]2
.

Note that when a specific point z is taken in the domain of definition of f, the
value f (z) is one value of z1/3 (see Sec. 9). Hence this last expression for f ′(z) can
be put in the form

d

dz
z1/3 = 1

3(z1/3)2

when that value is taken. Derivatives of such power functions will be elaborated on
in Chap. 3 (Sec. 33).

EXERCISES
1. Use the theorem in Sec. 21 to show that f ′(z) does not exist at any point if

(a) f (z) = z ; (b) f (z) = z − z ;
(c) f (z) = 2x + ixy2 ; (d) f (z) = exe−iy .

2. Use the theorem in Sec. 22 to show that f ′(z) and its derivative f ′′(z) exist every-
where, and find f ′′(z) when

(a) f (z) = iz + 2; (b) f (z) = e−xe−iy ;
(c) f (z) = z3; (d) f (z) = cos x cosh y − i sin x sinh y.

Ans. (b) f ′′(z) = f (z); (d) f ′′(z) = −f (z).

3. From results obtained in Secs. 21 and 22, determine where f ′(z) exists and find its
value when

(a) f (z) = 1/z; (b) f (z) = x2 + iy2; (c) f (z) = z Im z.

Ans. (a) f ′(z) = −1/z2 (z �= 0); (b) f ′(x + ix) = 2x; (c) f ′(0) = 0.

4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in
the indicated domain of definition, and also to find f ′(z):

(a) f (z) = 1/z4 (z �= 0);

(b) f (z) = √
reiθ/2 (r > 0, α < θ < α + 2π);

(c) f (z) = e−θ cos(ln r) + ie−θ sin(ln r) (r > 0, 0 < θ < 2π).

Ans. (b) f ′(z) = 1

2f (z)
; (c) f ′(z) = i

f (z)

z
.
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5. Show that when f (z) = x3 + i(1 − y)3, it is legitimate to write

f ′(z) = ux + ivx = 3x2

only when z = i.

6. Let u and v denote the real and imaginary components of the function f defined by
means of the equations

f (z) =
{
z2/z when z �= 0,

0 when z = 0.

Verify that the Cauchy–Riemann equations ux = vy and uy = −vx are satisfied at the
origin z = (0, 0). [Compare with Exercise 9, Sec. 20, where it is shown that f ′(0)

nevertheless fails to exist.]

7. Solve equations (2), Sec. 23 for ux and uy to show that

ux = ur cos θ − uθ

sin θ

r
, uy = ur sin θ + uθ

cos θ

r
.

Then use these equations and similar ones for vx and vy to show that in Sec. 23
equations (4) are satisfied at a point z0 if equations (6) are satisfied there. Thus com-
plete the verification that equations (6), Sec. 23, are the Cauchy–Riemann equations
in polar form.

8. Let a function f (z) = u + iv be differentiable at a nonzero point z0 = r0 exp(iθ0).
Use the expressions for ux and vx found in Exercise 7, together with the polar form
(6), Sec. 23, of the Cauchy–Riemann equations, to rewrite the expression

f ′(z0) = ux + ivx

in Sec. 22 as
f ′(z0) = e−iθ (ur + ivr ),

where ur and vr are to be evaluated at (r0, θ0).

9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy–Riemann equations,
derive the alternative form

f ′(z0) = −i

z0
(uθ + ivθ )

of the expression for f ′(z0) found in Exercise 8.
(b) Use the expression for f ′(z0) in part (a) to show that the derivative of the function

f (z) = 1/z (z �= 0) in Example 1, Sec. 23, is f ′(z) = −1/z2.

10. (a) Recall (Sec. 5) that if z = x + iy, then

x = z + z

2
and y = z − z

2i
.
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By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression

∂F

∂z
= ∂F

∂x

∂x

∂z
+ ∂F

∂y

∂y

∂z
= 1

2

(
∂F

∂x
+ i

∂F

∂y

)
.

(b) Define the operator
∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

suggested by part (a), to show that if the first-order partial derivatives of the
real and imaginary components of a function f (z) = u(x, y) + iv(x, y) satisfy
the Cauchy–Riemann equations, then

∂f

∂z
= 1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive the complex form ∂f/∂z = 0 of the Cauchy–Riemann equations.

24. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic at a point z0 if it has a derivative at each point
in some neighborhood of z0.

∗ It follows that if f is analytic at a point z0, it must
be analytic at each point in some neighborhood of z0. A function f is analytic in
an open set if it has a derivative everywhere in that set. If we should speak of a
function f that is analytic in a set S which is not open, it is to be understood that
f is analytic in an open set containing S.

Note that the function f (z) = 1/z is analytic at each nonzero point in the finite
plane. But the function f (z) = |z|2 is not analytic at any point since its derivative
exists only at z = 0 and not throughout any neighborhood. (See Example 3, Sec. 19.)

An entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows that every
polynomial is an entire function.

If a function f fails to be analytic at a point z0 but is analytic at some point
in every neighborhood of z0, then z0 is called a singular point, or singularity, of
f . The point z = 0 is evidently a singular point of the function f (z) = 1/z. The
function f (z) = |z|2, on the other hand, has no singular points since it is nowhere
analytic.

A necessary, but by no means sufficient, condition for a function f to be
analytic in a domain D is clearly the continuity of f throughout D. Satisfaction
of the Cauchy–Riemann equations is also necessary, but not sufficient. Sufficient
conditions for analyticity in D are provided by the theorems in Secs. 22 and 23.

Other useful sufficient conditions are obtained from the differentiation formulas
in Sec. 20. The derivatives of the sum and product of two functions exist wherever

∗The terms regular and holomorphic are also used in the literature to denote analyticity.
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