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8. One interpretation of a function w = f (z) = u(x, y) + iv(x, y) is that of a vector field
in the domain of definition of f . The function assigns a vector w, with components
u(x, y) and v(x, y), to each point z at which it is defined. Indicate graphically the
vector fields represented by (a) w = iz; (b) w = z/|z|.

15. LIMITS

Let a function f be defined at all points z in some deleted neighborhood (Sec. l1)
of z0. The statement that the limit of f (z) as z approaches z0 is a number w0, or
that

lim
z→z0

f (z) = w0,(1)

means that the point w = f (z) can be made arbitrarily close to w0 if we choose
the point z close enough to z0 but distinct from it. We now express the definition
of limit in a precise and usable form.

Statement (1) means that for each positive number ε, there is a positive number
δ such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ.(2)

Geometrically, this definition says that for each ε neighborhood |w − w0| < ε of
w0, there is a deleted δ neighborhood 0 < |z − z0| < δ of z0 such that every point
z in it has an image w lying in the ε neighborhood (Fig. 23). Note that even though
all points in the deleted neighborhood 0 < |z − z0| < δ are to be considered, their
images need not fill up the entire neighborhood |w − w0| < ε. If f has the constant
value w0, for instance, the image of z is always the center of that neighborhood.
Note, too, that once a δ has been found, it can be replaced by any smaller positive
number, such as δ/2.
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It is easy to show that when a limit of a function f (z) exists at a point z0, it is
unique. To do this, we suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

f (z) = w1.

Then, for each positive number ε, there are positive numbers δ0 and δ1 such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ0
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and
|f (z) − w1| < ε whenever 0 < |z − z0| < δ1.

So if 0 < |z − z0| < δ, where δ is any positive number that is smaller than δ0 and
δ1, we find that

|w1 −w0| = |[f (z)−w0] − [f (z)−w1]| ≤ |f (z)−w0|+ |f (z)−w1| < ε + ε = 2ε.

But |w1 − w0| is a nonnegative constant, and ε can be chosen arbitrarily small.
Hence

w1 − w0 = 0, or w1 = w0.

Definition (2) requires that f be defined at all points in some deleted neigh-
borhood of z0. Such a deleted neighborhood, of course, always exists when z0 is
an interior point of a region on which f is defined. We can extend the definition of
limit to the case in which z0 is a boundary point of the region by agreeing that the
first of inequalities (2) need be satisfied by only those points z that lie in both the
region and the deleted neighborhood.

EXAMPLE 1. Let us show that if f (z) = iz/2 in the open disk |z| < 1, then

lim
z→1

f (z) = i

2
,(3)

the point 1 being on the boundary of the domain of definition of f . Observe that
when z is in the disk |z| < 1,∣∣∣∣f (z) − i

2

∣∣∣∣ =
∣∣∣∣ iz2 − i

2

∣∣∣∣ = |z − 1|
2

.

Hence, for any such z and each positive number ε (see Fig. 24),∣∣∣∣f (z) − i

2

∣∣∣∣ < ε whenever 0 < |z − 1| < 2ε.

Thus condition (2) is satisfied by points in the region |z| < 1 when δ is equal to 2ε

or any smaller positive number.
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If limit (1) exists, the symbol z → z0 implies that z is allowed to approach z0

in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE 2. If

f (z) = z

z
,(4)

the limit

lim
z→0

f (z)(5)

does not exist. For, if it did exist, it could be found by letting the point z = (x, y)

approach the origin in any manner. But when z = (x, 0) is a nonzero point on the
real axis (Fig. 25),

f (z) = x + i0

x − i0
= 1;

and when z = (0, y) is a nonzero point on the imaginary axis,

f (z) = 0 + iy

0 − iy
= −1.

Thus, by letting z approach the origin along the real axis, we would find that the
desired limit is 1. An approach along the imaginary axis would, on the other hand,
yield the limit −1. Since a limit is unique, we must conclude that limit (5) does not
exist.
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z = (0, y)

(0, 0)

y

FIGURE 25

While definition (2) provides a means of testing whether a given point w0 is
a limit, it does not directly provide a method for determining that limit. Theorems
on limits, presented in the next section, will enable us to actually find many
limits.
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16. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we use their definition
and properties freely.

Theorem 1. Suppose that

f (z) = u(x, y) + iv(x, y) (z = x + iy)

and
z0 = x0 + iy0, w0 = u0 + iv0.

Then

lim
z→z0

f (z) = w0(1)

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.(2)

To prove the theorem, we first assume that limits (2) hold and obtain limit (1).
Limits (2) tell us that for each positive number ε, there exist positive numbers δ1

and δ2 such that

|u − u0| <
ε

2
whenever 0 <

√
(x − x0)

2 + (y − y0)
2 < δ1(3)

and

|v − v0| <
ε

2
whenever 0 <

√
(x − x0)2 + (y − y0)2 < δ2.(4)

Let δ be any positive number smaller than δ1 and δ2. Since

|(u + iv) − (u0 + iv0)| = |(u − u0) + i(v − v0)| ≤ |u − u0| + |v − v0|
and√

(x − x0)2 + (y − y0)2 = |(x − x0) + i(y − y0)| = |(x + iy) − (x0 + iy0)|,
it follows from statements (3) and (4) that

|(u + iv) − (u0 + iv0)| <
ε

2
+ ε

2
= ε

whenever
0 < |(x + iy) − (x0 + iy0)| < δ.

That is, limit (1) holds.
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Let us now start with the assumption that limit (1) holds. With that assump-
tion, we know that for each positive number ε, there is a positive number δ such
that

|(u + iv) − (u0 + iv0)| < ε(5)

whenever

0 < |(x + iy) − (x0 + iy0)| < δ.(6)

But

|u − u0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,
|v − v0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,

and

|(x + iy) − (x0 + iy0)| = |(x − x0) + i(y − y0)| =
√

(x − x0)2 + (y − y0)2.

Hence it follows from inequalities (5) and (6) that

|u − u0| < ε and |v − v0| < ε

whenever
0 <

√
(x − x0)2 + (y − y0)2 < δ.

This establishes limits (2), and the proof of the theorem is complete.

Theorem 2. Suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

F(z) = W0.(7)

Then

lim
z→z0

[f (z) + F(z)] = w0 + W0,(8)

lim
z→z0

[f (z)F (z)] = w0W0 ;(9)

and, if W0 �= 0 ,

lim
z→z0

f (z)

F (z)
= w0

W0
.(10)

This important theorem can be proved directly by using the definition of the
limit of a function of a complex variable. But, with the aid of Theorem 1, it follows
almost immediately from theorems on limits of real-valued functions of two real
variables.
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To verify property (9), for example, we write

f (z) = u(x, y) + iv(x, y), F (z) = U(x, y) + iV (x, y),

z0 = x0 + iy0, w0 = u0 + iv0, W0 = U0 + iV0.

Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches
(x0, y0) of the functions u, v, U , and V exist and have the values u0, v0, U0, and
V0, respectively. So the real and imaginary components of the product

f (z)F (z) = (uU − vV ) + i(vU + uV )

have the limits u0U0 − v0V0 and v0U0 + u0V0, respectively, as (x, y) approaches
(x0, y0). Hence, by Theorem 1 again, f (z)F (z) has the limit

(u0U0 − v0V0) + i(v0U0 + u0V0)

as z approaches z0 ; and this is equal to w0W0. Property (9) is thus established.
Corresponding verifications of properties (8) and (10) can be given.

It is easy to see from definition (2), Sec. 15, of limit that

lim
z→z0

c = c and lim
z→z0

z = z0,

where z0 and c are any complex numbers; and, by property (9) and mathematical
induction, it follows that

lim
z→z0

zn = zn
0 (n = 1, 2, . . .).

So, in view of properties (8) and (9), the limit of a polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n

as z approaches a point z0 is the value of the polynomial at that point:

lim
z→z0

P(z) = P(z0).(11)

17. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity,
denoted by ∞, and to use limits involving it. The complex plane together with this
point is called the extended complex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered
at the origin (Fig. 26). To each point z in the plane there corresponds exactly one
point P on the surface of the sphere. The point P is the point where the line through
z and the north pole N intersects the sphere. In like manner, to each point P on the
surface of the sphere, other than the north pole N , there corresponds exactly one
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point z in the plane. By letting the point N of the sphere correspond to the point
at infinity, we obtain a one to one correspondence between the points of the sphere
and the points of the extended complex plane. The sphere is known as the Riemann
sphere, and the correspondence is called a stereographic projection.

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the point N deleted.
Moreover, for each small positive number ε, those points in the complex plane
exterior to the circle |z| = 1/ε correspond to points on the sphere close to N . We
thus call the set |z| > 1/ε an ε neighborhood, or neighborhood, of ∞.

Let us agree that in referring to a point z, we mean a point in the finite plane.
Hereafter, when the point at infinity is to be considered, it will be specifically
mentioned.

A meaning is now readily given to the statement

lim
z→z0

f (z) = w0

when either z0 or w0, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 15, we simply replace the appropriate
neighborhoods of z0 and w0 by neighborhoods of ∞. The proof of the following
theorem illustrates how this is done.

Theorem. If z0 and w0 are points in the z and w planes, respectively, then

lim
z→z0

f (z) = ∞ if and only if lim
z→z0

1

f (z)
= 0(1)

and

lim
z→∞ f (z) = w0 if and only if lim

z→0
f

(
1

z

)
= w0.(2)

Moreover,

lim
z→∞ f (z) = ∞ if and only if lim

z→0

1

f (1/z)
= 0.(3)
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We start the proof by noting that the first of limits (1) means that for each
positive number ε, there is a positive number δ such that

|f (z)| >
1

ε
whenever 0 < |z − z0| < δ.(4)

That is, the point w = f (z) lies in the ε neighborhood |w| > 1/ε of ∞ whenever
z lies in the deleted neighborhood 0 < |z − z0| < δ of z0. Since statement (4) can
be written ∣∣∣∣ 1

f (z)
− 0

∣∣∣∣ < ε whenever 0 < |z − z0| < δ,

the second of limits (1) follows.
The first of limits (2) means that for each positive number ε, a positive number

δ exists such that

|f (z) − w0| < ε whenever |z| >
1

δ
.(5)

Replacing z by 1/z in statement (5) and then writing the result as∣∣∣∣f
(

1

z

)
− w0

∣∣∣∣ < ε whenever 0 < |z − 0| < δ,

we arrive at the second of limits (2).
Finally, the first of limits (3) is to be interpreted as saying that for each positive

number ε, there is a positive number δ such that

|f (z)| >
1

ε
whenever |z| >

1

δ
.(6)

When z is replaced by 1/z, this statement can be put in the form∣∣∣∣ 1

f (1/z)
− 0

∣∣∣∣ < ε whenever 0 < |z − 0| < δ;

and this gives us the second of limits (3).

EXAMPLES. Observe that

lim
z→−1

iz + 3

z + 1
= ∞ since lim

z→−1

z + 1

iz + 3
= 0

and

lim
z→∞

2z + i

z + 1
= 2 since lim

z→0

(2/z) + i

(1/z) + 1
= lim

z→0

2 + iz

1 + z
= 2.

Furthermore,

lim
z→∞

2z3 − 1

z2 + 1
= ∞ since lim

z→0

(1/z2) + 1

(2/z3) − 1
= lim

z→0

z + z3

2 − z3
= 0.



sec. 18 Continuity 53

18. CONTINUITY

A function f is continuous at a point z0 if all three of the following conditions are
satisfied:

lim
z→z0

f (z) exists,(1)

f (z0) exists,(2)

lim
z→z0

f (z) = f (z0).(3)

Observe that statement (3) actually contains statements (1) and (2), since the exis-
tence of the quantity on each side of the equation there is needed. Statement (3)
says, of course, that for each positive number ε, there is a positive number δ such
that

|f (z) − f (z0)| < ε whenever |z − z0| < δ.(4)

A function of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.

If two functions are continuous at a point, their sum and product are also contin-
uous at that point; their quotient is continuous at any such point if the denominator
is not zero there. These observations are direct consequences of Theorem 2, Sec.
16. Note, too, that a polynomial is continuous in the entire plane because of limit
(11) in Sec. 16.

We turn now to two expected properties of continuous functions whose veri-
fications are not so immediate. Our proofs depend on definition (4) of continuity,
and we present the results as theorems.

Theorem 1. A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
w = f (z) be a function that is defined for all z in a neighborhood |z − z0| < δ of a
point z0 , and we let W = g(w) be a function whose domain of definition contains
the image (Sec. 13) of that neighborhood under f . The composition W = g[f (z)]
is, then, defined for all z in the neighborhood |z − z0| < δ. Suppose now that f

is continuous at z0 and that g is continuous at the point f (z0) in the w plane. In
view of the continuity of g at f (z0), there is, for each positive number ε, a positive
number γ such that

|g[f (z)] − g[f (z0)]| < ε whenever |f (z) − f (z0)| < γ.

(See Fig. 27.) But the continuity of f at z0 ensures that the neighborhood |z − z0| < δ

can be made small enough that the second of these inequalities holds. The continuity
of the composition g[f (z)] is, therefore, established.
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Theorem 2. If a function f (z) is continuous and nonzero at a point z0 , then
f (z) �= 0 throughout some neighborhood of that point.

Assuming that f (z) is, in fact, continuous and nonzero at z0, we can prove
Theorem 2 by assigning the positive value |f (z0)|/2 to the number ε in statement
(4). This tells us that there is a positive number δ such that

|f (z) − f (z0)| <
|f (z0)|

2
whenever |z − z0| < δ.

So if there is a point z in the neighborhood |z − z0| < δ at which f (z) = 0, we
have the contradiction

|f (z0)| <
|f (z0)|

2
;

and the theorem is proved.
The continuity of a function

f (z) = u(x, y) + iv(x, y)(5)

is closely related to the continuity of its component functions u(x, y) and v(x, y).
We note, for instance, how it follows from Theorem 1 in Sec. 16 that the function
(5) is continuous at a point z0 = (x0, y0) if and only if its component functions are
continuous there. Our proof of the next theorem illustrates the use of this state-
ment. The theorem is extremely important and will be used often in later chapters,
especially in applications. Before stating the theorem, we recall from Sec. 11 that a
region R is closed if it contains all of its boundary points and that it is bounded if
it lies inside some circle centered at the origin.

Theorem 3. If a function f is continuous throughout a region R that is both
closed and bounded, there exists a nonnegative real number M such that

|f (z)| ≤ M for all points z inR,(6)

where equality holds for at least one such z.
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To prove this, we assume that the function f in equation (5) is continuous and
note how it follows that the function√

[u(x, y)]2 + [v(x, y)]2

is continuous throughout R and thus reaches a maximum value M somewhere in
R.∗ Inequality (6) thus holds, and we say that f is bounded on R.

EXERCISES
1. Use definition (2), Sec. 15, of limit to prove that

(a) lim
z→z0

Re z = Re z0 ; (b) lim
z→z0

z = z0 ; (c) lim
z→0

z2

z
= 0.

2. Let a, b, and c denote complex constants. Then use definition (2), Sec. 15, of limit to
show that
(a) lim

z→z0
(az + b) = az0 + b; (b) lim

z→z0
(z2 + c) = z2

0 + c;

(c) lim
z→1−i

[x + i(2x + y)] = 1 + i (z = x + iy).

3. Let n be a positive integer and let P (z) and Q(z) be polynomials, where Q(z0) �= 0.
Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find

(a) lim
z→z0

1

zn
(z0 �= 0); (b) lim

z→i

iz3 − 1

z + i
; (c) lim

z→z0

P (z)

Q(z)
.

Ans. (a) 1/zn
0; (b) 0; (c) P (z0)/Q(z0).

4. Use mathematical induction and property (9), Sec. 16, of limits to show that

lim
z→z0

zn = zn
0

when n is a positive integer (n = 1, 2, . . .).

5. Show that the limit of the function

f (z) =
(

z

z

)2

as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and
z = (x, x) approach the origin. [Note that it is not sufficient to simply consider points
z = (x, 0) and z = (0, y), as it was in Example 2, Sec. 15.]

6. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125–126 and
p. 529, 1983.
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7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

|f (z)| = |w0|.

Suggestion: Observe how the first of inequalities (9), Sec. 4, enables one to write

||f (z)| − |w0|| ≤ |f (z) − w0|.
8. Write 	z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim
	z→0

f (z0 + 	z) = w0.

9. Show that
lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive number M such that |g(z)| ≤ M for all z in some
neighborhood of z0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞
z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) = az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞ T (z) = ∞ if c = 0;

(b) lim
z→∞ T (z) = a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a set S is unbounded (Sec. 11) if and only if every neighborhood of the
point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z − z0| < ε

of a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the function f is said to be differentiable at z0 when f ′(z0) exists.
By expressing the variable z in definition (1) in terms of the new complex

variable

	z = z − z0 (z �= z0),
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