Finally, show how the right-hand side here becomes

$$
z_{2}^{m+1}+\sum_{k=1}^{m}\binom{m+1}{k} z_{1}^{k} z_{2}^{m+1-k}+z_{1}^{m+1}=\sum_{k=0}^{m+1}\binom{m+1}{k} z_{1}^{k} z_{2}^{m+1-k} .
$$

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number $z=x+i y$ with the directed line segment, or vector, from the origin to the point (x, y) that represents z in the complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers $z=x+i y$ and $-2+i$ are displayed graphically as both points and radius vectors.

FIGURE 2

When $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, the sum

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)
$$

corresponds to the point $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$. It also corresponds to a vector with those coordinates as its components. Hence $z_{1}+z_{2}$ may be obtained vectorially as shown in Fig. 3.

FIGURE 3

Although the product of two complex numbers z_{1} and z_{2} is itself a complex number represented by a vector, that vector lies in the same plane as the vectors for z_{1} and z_{2}. Evidently, then, this product is neither the scalar nor the vector product used in ordinary vector analysis.

The vector interpretation of complex numbers is especially helpful in extending the concept of absolute values of real numbers to the complex plane. The modulus, or absolute value, of a complex number $z=x+i y$ is defined as the nonnegative real number $\sqrt{x^{2}+y^{2}}$ and is denoted by $|z|$; that is,

$$
\begin{equation*}
|z|=\sqrt{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

Geometrically, the number $|z|$ is the distance between the point (x, y) and the origin, or the length of the radius vector representing z. It reduces to the usual absolute value in the real number system when $y=0$. Note that while the inequality $z_{1}<z_{2}$ is meaningless unless both z_{1} and z_{2} are real, the statement $\left|z_{1}\right|<\left|z_{2}\right|$ means that the point z_{1} is closer to the origin than the point z_{2} is.

EXAMPLE 1. Since $|-3+2 i|=\sqrt{13}$ and $|1+4 i|=\sqrt{17}$, we know that the point $-3+2 i$ is closer to the origin than $1+4 i$ is.

The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left|z_{1}-z_{2}\right|$. This is clear from Fig. 4, since $\left|z_{1}-z_{2}\right|$ is the length of the vector representing the number

$$
z_{1}-z_{2}=z_{1}+\left(-z_{2}\right) ;
$$

and, by translating the radius vector $z_{1}-z_{2}$, one can interpret $z_{1}-z_{2}$ as the directed line segment from the point $\left(x_{2}, y_{2}\right)$ to the point $\left(x_{1}, y_{1}\right)$. Alternatively, it follows from the expression

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)
$$

and definition (1) that

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

FIGURE 4
The complex numbers z corresponding to the points lying on the circle with center z_{0} and radius R thus satisfy the equation $\left|z-z_{0}\right|=R$, and conversely. We refer to this set of points simply as the circle $\left|z-z_{0}\right|=R$.

EXAMPLE 2. The equation $|z-1+3 i|=2$ represents the circle whose center is $z_{0}=(1,-3)$ and whose radius is $R=2$.

It also follows from definition (1) that the real numbers $|z|, \operatorname{Re} z=x$, and $\operatorname{Im} z=y$ are related by the equation

$$
\begin{equation*}
|z|^{2}=(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2} . \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z| \quad \text { and } \quad \operatorname{Im} z \leq|\operatorname{Im} z| \leq|z| . \tag{3}
\end{equation*}
$$

We turn now to the triangle inequality, which provides an upper bound for the modulus of the sum of two complex numbers z_{1} and z_{2} :

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| . \tag{4}
\end{equation*}
$$

This important inequality is geometrically evident in Fig. 3, since it is merely a statement that the length of one side of a triangle is less than or equal to the sum of the lengths of the other two sides. We can also see from Fig. 3 that inequality (4) is actually an equality when $0, z_{1}$, and z_{2} are collinear. Another, strictly algebraic, derivation is given in Exercise 15, Sec. 5.

An immediate consequence of the triangle inequality is the fact that

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{5}
\end{equation*}
$$

To derive inequality (5), we write

$$
\left|z_{1}\right|=\left|\left(z_{1}+z_{2}\right)+\left(-z_{2}\right)\right| \leq\left|z_{1}+z_{2}\right|+\left|-z_{2}\right|,
$$

which means that

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| . \tag{6}
\end{equation*}
$$

This is inequality (5) when $\left|z_{1}\right| \geq\left|z_{2}\right|$. If $\left|z_{1}\right|<\left|z_{2}\right|$, we need only interchange z_{1} and z_{2} in inequality (6) to arrive at

$$
\left|z_{1}+z_{2}\right| \geq-\left(\left|z_{1}\right|-\left|z_{2}\right|\right)
$$

which is the desired result. Inequality (5) tells us, of course, that the length of one side of a triangle is greater than or equal to the difference of the lengths of the other two sides.

Because $\left|-z_{2}\right|=\left|z_{2}\right|$, one can replace z_{2} by $-z_{2}$ in inequalities (4) and (5) to summarize these results in a particularly useful form:

$$
\begin{align*}
& \left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{7}\\
& \left|z_{1} \pm z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{8}
\end{align*}
$$

When combined, inequalities (7) and (8) become

$$
\begin{equation*}
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{9}
\end{equation*}
$$

EXAMPLE 3. If a point z lies on the unit circle $|z|=1$ about the origin, it follows from inequalities (7) and (8) that

$$
|z-2| \leq|z|+2=3
$$

and

$$
|z-2| \geq||z|-2|=1
$$

The triangle inequality (4) can be generalized by means of mathematical induction to sums involving any finite number of terms:

$$
\begin{equation*}
\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right| \quad(n=2,3, \ldots) . \tag{10}
\end{equation*}
$$

To give details of the induction proof here, we note that when $n=2$, inequality (10) is just inequality (4). Furthermore, if inequality (10) is assumed to be valid when $n=m$, it must also hold when $n=m+1$ since, by inequality (4),

$$
\begin{aligned}
\left|\left(z_{1}+z_{2}+\cdots+z_{m}\right)+z_{m+1}\right| & \leq\left|z_{1}+z_{2}+\cdots+z_{m}\right|+\left|z_{m+1}\right| \\
& \leq\left(\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{m}\right|\right)+\left|z_{m+1}\right| .
\end{aligned}
$$

EXERCISES

1. Locate the numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ vectorially when
(a) $z_{1}=2 i, \quad z_{2}=\frac{2}{3}-i$;
(b) $z_{1}=(-\sqrt{3}, 1), \quad z_{2}=(\sqrt{3}, 0)$;
(c) $z_{1}=(-3,1), \quad z_{2}=(1,4)$;
(d) $z_{1}=x_{1}+i y_{1}, \quad z_{2}=x_{1}-i y_{1}$.
2. Verify inequalities (3), Sec. 4, involving $\operatorname{Re} z, \operatorname{Im} z$, and $|z|$.
3. Use established properties of moduli to show that when $\left|z_{3}\right| \neq\left|z_{4}\right|$,

$$
\frac{\operatorname{Re}\left(z_{1}+z_{2}\right)}{\left|z_{3}+z_{4}\right|} \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|} .
$$

4. Verify that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$.

Suggestion: Reduce this inequality to $(|x|-|y|)^{2} \geq 0$.
5. In each case, sketch the set of points determined by the given condition:
(a) $|z-1+i|=1$;
(b) $|z+i| \leq 3$;
(c) $|z-4 i| \geq 4$.
6. Using the fact that $\left|z_{1}-z_{2}\right|$ is the distance between two points z_{1} and z_{2}, give a geometric argument that
(a) $|z-4 i|+|z+4 i|=10$ represents an ellipse whose foci are $(0, \pm 4)$;
(b) $|z-1|=|z+i|$ represents the line through the origin whose slope is -1 .

5. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number $z=x+i y$ is defined as the complex number $x-i y$ and is denoted by \bar{z}; that is,

$$
\begin{equation*}
\bar{z}=x-i y . \tag{1}
\end{equation*}
$$

The number \bar{z} is represented by the point $(x,-y)$, which is the reflection in the real axis of the point (x, y) representing z (Fig. 5). Note that

$$
\overline{\bar{z}}=z \quad \text { and } \quad|\bar{z}|=|z|
$$

for all z.

FIGURE 5

$$
\begin{aligned}
& \text { If } z_{1}=x_{1}+i y_{1} \text { and } z_{2}=x_{2}+i y_{2} \text {, then } \\
& \qquad \overline{z_{1}+z_{2}}=\left(x_{1}+x_{2}\right)-i\left(y_{1}+y_{2}\right)=\left(x_{1}-i y_{1}\right)+\left(x_{2}-i y_{2}\right)
\end{aligned}
$$

So the conjugate of the sum is the sum of the conjugates:

$$
\begin{equation*}
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}} \tag{2}
\end{equation*}
$$

In like manner, it is easy to show that

$$
\begin{align*}
\overline{z_{1}-z_{2}} & =\overline{z_{1}}-\overline{z_{2}}, \tag{3}\\
\overline{z_{1} z_{2}} & =\overline{z_{1}} \overline{z_{2}}, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}} \quad\left(z_{2} \neq 0\right) \tag{5}
\end{equation*}
$$

The sum $z+\bar{z}$ of a complex number $z=x+i y$ and its conjugate $\bar{z}=x-i y$ is the real number $2 x$, and the difference $z-\bar{z}$ is the pure imaginary number $2 i y$. Hence

$$
\begin{equation*}
\operatorname{Re} z=\frac{z+\bar{z}}{2} \quad \text { and } \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i} \tag{6}
\end{equation*}
$$

An important identity relating the conjugate of a complex number $z=x+i y$ to its modulus is

$$
\begin{equation*}
z \bar{z}=|z|^{2} \tag{7}
\end{equation*}
$$

where each side is equal to $x^{2}+y^{2}$. It suggests the method for determining a quotient z_{1} / z_{2} that begins with expression (7), Sec. 3. That method is, of course, based on multiplying both the numerator and the denominator of z_{1} / z_{2} by $\overline{z_{2}}$, so that the denominator becomes the real number $\left|z_{2}\right|^{2}$.

EXAMPLE 1. As an illustration,

$$
\frac{-1+3 i}{2-i}=\frac{(-1+3 i)(2+i)}{(2-i)(2+i)}=\frac{-5+5 i}{|2-i|^{2}}=\frac{-5+5 i}{5}=-1+i .
$$

See also the example in Sec. 3.
Identity (7) is especially useful in obtaining properties of moduli from properties of conjugates noted above. We mention that

$$
\begin{equation*}
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad\left(z_{2} \neq 0\right) \tag{9}
\end{equation*}
$$

Property (8) can be established by writing

$$
\left|z_{1} z_{2}\right|^{2}=\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)=\left(z_{1} z_{2}\right)\left(\overline{z_{1}} \overline{z_{2}}\right)=\left(z_{1} \overline{z_{1}}\right)\left(z_{2} \overline{z_{2}}\right)=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left(\left|z_{1}\right|\left|z_{2}\right|\right)^{2}
$$

and recalling that a modulus is never negative. Property (9) can be verified in a similar way.

EXAMPLE 2. Property (8) tells us that $\left|z^{2}\right|=|z|^{2}$ and $\left|z^{3}\right|=|z|^{3}$. Hence if z is a point inside the circle centered at the origin with radius 2 , so that $|z|<2$, it follows from the generalized triangle inequality (10) in Sec. 4 that

$$
\left|z^{3}+3 z^{2}-2 z+1\right| \leq|z|^{3}+3|z|^{2}+2|z|+1<25 .
$$

EXERCISES

1. Use properties of conjugates and moduli established in Sec. 5 to show that
(a) $\overline{\bar{z}+3 i}=z-3 i$;
(b) $\overline{i z}=-i \bar{z}$;
(c) $\overline{(2+i)^{2}}=3-4 i$;
(d) $|(2 \bar{z}+5)(\sqrt{2}-i)|=\sqrt{3}|2 z+5|$.
2. Sketch the set of points determined by the condition
(a) $\operatorname{Re}(\bar{z}-i)=2$;
(b) $|2 \bar{z}+i|=4$.
3. Verify properties (3) and (4) of conjugates in Sec. 5 .
4. Use property (4) of conjugates in Sec. 5 to show that
(a) $\overline{z_{1} z_{2} z_{3}}=\overline{z_{1}} \overline{z_{2}} \overline{z_{3}}$;
(b) $\overline{z^{4}}=\bar{z}^{4}$.
5. Verify property (9) of moduli in Sec. 5 .
6. Use results in Sec. 5 to show that when z_{2} and z_{3} are nonzero,
(a) $\overline{\left(\frac{z_{1}}{z_{2} z_{3}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}} \overline{z_{3}}}$;
(b) $\left|\frac{z_{1}}{z_{2} z_{3}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|\left|z_{3}\right|}$.
7. Show that

$$
\left|\operatorname{Re}\left(2+\bar{z}+z^{3}\right)\right| \leq 4 \quad \text { when }|z| \leq 1 .
$$

8. It is shown in Sec. 3 that if $z_{1} z_{2}=0$, then at least one of the numbers z_{1} and z_{2} must be zero. Give an alternative proof based on the corresponding result for real numbers and using identity (8), Sec. 5 .
9. By factoring $z^{4}-4 z^{2}+3$ into two quadratic factors and using inequality (8), Sec. 4, show that if z lies on the circle $|z|=2$, then

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3}
$$

10. Prove that
(a) z is real if and only if $\bar{z}=z$;
(b) z is either real or pure imaginary if and only if $\bar{z}^{2}=z^{2}$.
11. Use mathematical induction to show that when $n=2,3, \ldots$,
(a) $\overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}$;
(b) $\overline{z_{1} z_{2} \cdots z_{n}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{n}}$.
12. Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}(n \geq 1)$ denote real numbers, and let z be any complex number. With the aid of the results in Exercise 11, show that

$$
\overline{a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}}=a_{0}+a_{1} \bar{z}+a_{2} \bar{z}^{2}+\cdots+a_{n} \bar{z}^{n} .
$$

13. Show that the equation $\left|z-z_{0}\right|=R$ of a circle, centered at z_{0} with radius R, can be written

$$
|z|^{2}-2 \operatorname{Re}\left(z \overline{z_{0}}\right)+\left|z_{0}\right|^{2}=R^{2}
$$

14. Using expressions (6), Sec. 5 , for $\operatorname{Re} z$ and $\operatorname{Im} z$, show that the hyperbola $x^{2}-y^{2}=1$ can be written

$$
z^{2}+\bar{z}^{2}=2
$$

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

(a) Show that

$$
\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)=z_{1} \overline{z_{1}}+\left(z_{1} \overline{z_{2}}+\overline{z_{1} \overline{z_{2}}}\right)+z_{2} \overline{z_{2}} .
$$

(b) Point out why

$$
z_{1} \overline{z_{2}}+\overline{z_{1} \overline{z_{2}}}=2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \leq 2\left|z_{1}\right|\left|z_{2}\right| .
$$

(c) Use the results in parts (a) and (b) to obtain the inequality

$$
\left|z_{1}+z_{2}\right|^{2} \leq\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2},
$$

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero complex number $z=x+i y$. Since $x=r \cos \theta$ and $y=r \sin \theta$, the number z can be written in polar form as

$$
\begin{equation*}
z=r(\cos \theta+i \sin \theta) \tag{1}
\end{equation*}
$$

If $z=0$, the coordinate θ is undefined; and so it is understood that $z \neq 0$ whenever polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the length of the radius vector for z; that is, $r=|z|$. The real number θ represents the angle, measured in radians, that z makes with the positive real axis when z is interpreted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible values, including negative ones, that differ by integral multiples of 2π. Those values can be determined from the equation $\tan \theta=y / x$, where the quadrant containing the point corresponding to z must be specified. Each value of θ is called an argument of z, and the set of all such values is denoted by $\arg z$. The principal value $\operatorname{of} \arg z$, denoted by $\operatorname{Arg} z$, is that unique value Θ such that $-\pi<\Theta \leq \pi$. Evidently, then,

$$
\begin{equation*}
\arg z=\operatorname{Arg} z+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots) \tag{2}
\end{equation*}
$$

Also, when z is a negative real number, $\operatorname{Arg} z$ has value π, not $-\pi$.

FIGURE 6
EXAMPLE 1. The complex number $-1-i$, which lies in the third quadrant, has principal argument $-3 \pi / 4$. That is,

$$
\operatorname{Arg}(-1-i)=-\frac{3 \pi}{4}
$$

