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Finally, show how the right-hand side here becomes
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m∑
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)
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2 + zm+1

1 =
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k=0

(
m + 1

k

)
zk

1z
m+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed
line segment, or vector, from the origin to the point (x, y) that represents z in the
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2
the numbers z = x + iy and −2 + i are displayed graphically as both points and
radius vectors.

z = (x, y)

z = x + iy
–2 + i

xO–2

(–2, 1)
1

y

FIGURE 2

When z1 = x1 + iy1 and z2 = x2 + iy2, the sum

z1 + z2 = (x1 + x2) + i(y1 + y2)

corresponds to the point (x1 + x2, y1 + y2). It also corresponds to a vector with
those coordinates as its components. Hence z1 + z2 may be obtained vectorially as
shown in Fig. 3.

xO

y

z1

z 1 +
 z 2

z2

z2

FIGURE 3

Although the product of two complex numbers z1 and z2 is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for
z1 and z2. Evidently, then, this product is neither the scalar nor the vector product
used in ordinary vector analysis.
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The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x + iy is defined as the nonnegative
real number

√
x2 + y2 and is denoted by |z|; that is,

|z| =
√

x2 + y2.(1)

Geometrically, the number |z| is the distance between the point (x, y) and
the origin, or the length of the radius vector representing z. It reduces to the usual
absolute value in the real number system when y = 0. Note that while the inequality
z1 < z2 is meaningless unless both z1 and z2 are real, the statement |z1| < |z2|
means that the point z1 is closer to the origin than the point z2 is.

EXAMPLE 1. Since |− 3 + 2i| = √
13 and |1 + 4i| = √

17, we know that
the point −3 + 2i is closer to the origin than 1 + 4i is.

The distance between two points (x1, y1) and (x2, y2) is |z1 − z2|. This is
clear from Fig. 4, since |z1 − z2| is the length of the vector representing the
number

z1 − z2 = z1 + (−z2);
and, by translating the radius vector z1 − z2, one can interpret z1 − z2 as the directed
line segment from the point (x2, y2) to the point (x1, y1). Alternatively, it follows
from the expression

z1 − z2 = (x1 − x2) + i(y1 − y2)

and definition (1) that

|z1 − z2| =
√

(x1 − x2)
2 + (y1 − y2)

2.

xO

y

z1

|z1 – z2|

z1 – z2

z2

–z2

(x2, y2)

(x1, y1)

FIGURE 4

The complex numbers z corresponding to the points lying on the circle with
center z0 and radius R thus satisfy the equation |z − z0| = R, and conversely. We
refer to this set of points simply as the circle |z − z0| = R.

EXAMPLE 2. The equation |z − 1 + 3i| = 2 represents the circle whose
center is z0 = (1, −3) and whose radius is R = 2.
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It also follows from definition (1) that the real numbers |z|, Re z = x, and
Im z = y are related by the equation

|z|2 = (Re z)2 + (Im z)2.(2)

Thus

Re z ≤ |Re z| ≤ |z| and Im z ≤ |Im z| ≤ |z|.(3)

We turn now to the triangle inequality, which provides an upper bound for the
modulus of the sum of two complex numbers z1 and z2:

|z1 + z2| ≤ |z1| + |z2|.(4)

This important inequality is geometrically evident in Fig. 3, since it is merely a
statement that the length of one side of a triangle is less than or equal to the sum of
the lengths of the other two sides. We can also see from Fig. 3 that inequality (4)
is actually an equality when 0, z1, and z2 are collinear. Another, strictly algebraic,
derivation is given in Exercise 15, Sec. 5.

An immediate consequence of the triangle inequality is the fact that

|z1 + z2| ≥ ||z1| − |z2||.(5)

To derive inequality (5), we write

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + |− z2|,
which means that

|z1 + z2| ≥ |z1| − |z2|.(6)

This is inequality (5) when |z1| ≥ |z2|. If |z1| < |z2|, we need only interchange z1

and z2 in inequality (6) to arrive at

|z1 + z2| ≥ −(|z1| − |z2|),
which is the desired result. Inequality (5) tells us, of course, that the length of one
side of a triangle is greater than or equal to the difference of the lengths of the other
two sides.

Because |− z2| = |z2|, one can replace z2 by −z2 in inequalities (4) and (5) to
summarize these results in a particularly useful form:

|z1 ± z2| ≤ |z1| + |z2|,(7)

|z1 ± z2| ≥ ||z1| − |z2||.(8)

When combined, inequalities (7) and (8) become

||z1| − |z2|| ≤ |z1 ± z2| ≤ |z1| + |z2|.(9)
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EXAMPLE 3. If a point z lies on the unit circle |z| = 1 about the origin, it
follows from inequalities (7) and (8) that

|z − 2| ≤ |z| + 2 = 3

and
|z − 2| ≥ ||z| − 2| = 1.

The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number of terms:

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn| (n = 2, 3, . . .).(10)

To give details of the induction proof here, we note that when n = 2, inequality
(10) is just inequality (4). Furthermore, if inequality (10) is assumed to be valid
when n = m, it must also hold when n = m + 1 since, by inequality (4),

|(z1 + z2 + · · · + zm) + zm+1| ≤ |z1 + z2 + · · · + zm| + |zm+1|
≤ (|z1| + |z2| + · · · + |zm|) + |zm+1|.

EXERCISES
1. Locate the numbers z1 + z2 and z1 − z2 vectorially when

(a) z1 = 2i, z2 = 2

3
− i; (b) z1 = (−√

3, 1), z2 = (
√

3, 0);

(c) z1 = (−3, 1), z2 = (1, 4); (d) z1 = x1 + iy1, z2 = x1 − iy1.

2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z|.
3. Use established properties of moduli to show that when |z3| �= |z4|,

Re(z1 + z2)

|z3 + z4| ≤ |z1| + |z2|
||z3| − |z4|| .

4. Verify that
√

2 |z| ≥ |Re z| + |Im z|.
Suggestion: Reduce this inequality to (|x| − |y|)2 ≥ 0.

5. In each case, sketch the set of points determined by the given condition:

(a) |z − 1 + i| = 1; (b) |z + i| ≤ 3 ; (c) |z − 4i| ≥ 4.

6. Using the fact that |z1 − z2| is the distance between two points z1 and z2, give a
geometric argument that

(a) |z − 4i| + |z + 4i| = 10 represents an ellipse whose foci are (0,±4) ;
(b) |z − 1| = |z + i| represents the line through the origin whose slope is −1.
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5. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number z = x + iy

is defined as the complex number x − iy and is denoted by z ; that is,

z = x − iy.(1)

The number z is represented by the point (x, −y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

z = z and |z| = |z|
for all z.

xO

y

z

–z

(x, y)

(x, –y) FIGURE 5

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) − i(y1 + y2) = (x1 − iy1) + (x2 − iy2).

So the conjugate of the sum is the sum of the conjugates:

z1 + z2 = z1 + z2.(2)

In like manner, it is easy to show that

z1 − z2 = z1 − z2,(3)

z1z2 = z1 z2,(4)

and (
z1

z2

)
= z1

z2
(z2 �= 0).(5)

The sum z + z of a complex number z = x + iy and its conjugate z = x − iy

is the real number 2x, and the difference z − z is the pure imaginary number 2iy.
Hence

Re z = z + z

2
and Im z = z − z

2i
.(6)
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An important identity relating the conjugate of a complex number z = x + iy

to its modulus is

z z = |z|2,(7)

where each side is equal to x2 + y2. It suggests the method for determining a
quotient z1/z2 that begins with expression (7), Sec. 3. That method is, of course,
based on multiplying both the numerator and the denominator of z1/z2 by z2, so
that the denominator becomes the real number |z2|2.

EXAMPLE 1. As an illustration,

−1 + 3i

2 − i
= (−1 + 3i)(2 + i)

(2 − i)(2 + i)
= −5 + 5i

|2 − i|2 = −5 + 5i

5
= −1 + i.

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

|z1z2| = |z1||z2|(8)

and ∣∣∣∣z1

z2

∣∣∣∣ = |z1|
|z2| (z2 �= 0).(9)

Property (8) can be established by writing

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1 z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2

and recalling that a modulus is never negative. Property (9) can be verified in a
similar way.

EXAMPLE 2. Property (8) tells us that |z2| = |z|2 and |z3| = |z|3. Hence if
z is a point inside the circle centered at the origin with radius 2, so that |z| < 2, it
follows from the generalized triangle inequality (10) in Sec. 4 that

|z3 + 3z2 − 2z + 1| ≤ |z|3 + 3|z|2 + 2|z| + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 5 to show that

(a) z + 3i = z − 3i; (b) iz = −iz;

(c) (2 + i)2 = 3 − 4i; (d) |(2z + 5)(
√

2 − i)| = √
3 |2z + 5|.

2. Sketch the set of points determined by the condition

(a) Re(z − i) = 2; (b) |2z + i| = 4.
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3. Verify properties (3) and (4) of conjugates in Sec. 5.

4. Use property (4) of conjugates in Sec. 5 to show that

(a) z1z2z3 = z1 z2 z3 ; (b) z4 = z4.

5. Verify property (9) of moduli in Sec. 5.

6. Use results in Sec. 5 to show that when z2 and z3 are nonzero,

(a)

(
z1

z2z3

)
= z1

z2 z3
; (b)

∣∣∣∣ z1

z2z3

∣∣∣∣ = |z1|
|z2||z3| .

7. Show that
|Re(2 + z + z3)| ≤ 4 when |z| ≤ 1.

8. It is shown in Sec. 3 that if z1z2 = 0, then at least one of the numbers z1 and z2 must
be zero. Give an alternative proof based on the corresponding result for real numbers
and using identity (8), Sec. 5.

9. By factoring z4 − 4z2 + 3 into two quadratic factors and using inequality (8), Sec. 4,
show that if z lies on the circle |z| = 2, then∣∣∣∣ 1

z4 − 4z2 + 3

∣∣∣∣ ≤ 1

3
.

10. Prove that

(a) z is real if and only if z = z;
(b) z is either real or pure imaginary if and only if z2 = z2.

11. Use mathematical induction to show that when n = 2, 3, . . . ,

(a) z1 + z2 + · · · + zn = z1 + z2 + · · · + zn; (b) z1z2 · · · zn = z1 z2 · · · zn.

12. Let a0, a1, a2, . . . , an (n ≥ 1) denote real numbers, and let z be any complex number.
With the aid of the results in Exercise 11, show that

a0 + a1z + a2z2 + · · · + anzn = a0 + a1z + a2z
2 + · · · + anz

n.

13. Show that the equation |z − z0| = R of a circle, centered at z0 with radius R, can be
written

|z|2 − 2 Re(zz0) + |z0|2 = R2.

14. Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x2 − y2 = 1
can be written

z2 + z2 = 2.

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

|z1 + z2| ≤ |z1| + |z2|.
(a) Show that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + (z1z2 + z1z2) + z2z2.
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(b) Point out why
z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1||z2|.

(c) Use the results in parts (a) and (b) to obtain the inequality

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x + iy. Since x = r cos θ and y = r sin θ , the number z can
be written in polar form as

z = r(cos θ + i sin θ).(1)

If z = 0, the coordinate θ is undefined; and so it is understood that z �= 0 whenever
polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z ; that is, r = |z|. The real number θ represents the
angle, measured in radians, that z makes with the positive real axis when z is inter-
preted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible
values, including negative ones, that differ by integral multiples of 2π . Those values
can be determined from the equation tan θ = y/x, where the quadrant containing the
point corresponding to z must be specified. Each value of θ is called an argument
of z, and the set of all such values is denoted by arg z. The principal value of arg z,
denoted by Arg z, is that unique value � such that −π < � ≤ π . Evidently, then,

arg z = Arg z + 2nπ (n = 0, ±1, ±2, . . .).(2)

Also, when z is a negative real number, Arg z has value π , not −π .

x

y

z = x + iy

r

FIGURE 6

EXAMPLE 1. The complex number −1 − i, which lies in the third quadrant,
has principal argument −3π/4. That is,

Arg(−1 − i) = −3π

4
.
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