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C H A P T E R

1
COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex
number system. We assume various corresponding properties of real numbers to be
known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)

correspond to points on the y axis and are called pure imaginary numbers when
y �= 0. The y axis is then referred to as the imaginary axis.

It is customary to denote a complex number (x, y) by z, so that (see Fig. 1)

z = (x, y).(1)

The real numbers x and y are, moreover, known as the real and imaginary parts of
z, respectively; and we write

x = Re z, y = Im z.(2)

Two complex numbers z1 and z2 are equal whenever they have the same real parts
and the same imaginary parts. Thus the statement z1 = z2 means that z1 and z2

correspond to the same point in the complex, or z, plane.
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z = (x, y)

i = (0, 1)

x = (x, 0) xO

y

FIGURE 1

The sum z1 + z2 and product z1z2 of two complex numbers

z1 = (x1, y1) and z2 = (x2, y2)

are defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),(3)

(x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).(4)

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(x1, 0) + (x2, 0) = (x1 + x2, 0),

(x1, 0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is
easy to see that (0, 1)(y, 0) = (0, y). Hence

z = (x, 0) + (0, 1)(y, 0);
and if we think of a real number as either x or (x, 0) and let i denote the pure
imaginary number (0,1), as shown in Fig. 1, it is clear that∗

z = x + iy.(5)

Also, with the convention that z2 = zz, z3 = z2z, etc., we have

i2 = (0, 1)(0, 1) = (−1, 0),

or

i2 = −1.(6)

∗In electrical engineering, the letter j is used instead of i.
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Because (x, y) = x + iy, definitions (3) and (4) become

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),(7)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + x1y2).(8)

Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i2 by −1 when it occurs. Also, observe how equation (8) tells us that any
complex number times zero is zero. More precisely,

z · 0 = (x + iy)(0 + i0) = 0 + i0 = 0

for any z = x + iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same
as for real numbers. We list here the more basic of these algebraic properties and
verify some of them. Most of the others are verified in the exercises.

The commutative laws

z1 + z2 = z2 + z1, z1z2 = z2z1(1)

and the associative laws

(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3)(2)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if

z1 = (x1, y1) and z2 = (x2, y2),

then
z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1.

Verification of the rest of the above laws, as well as the distributive law

z(z1 + z2) = zz1 + zz2,(3)

is similar.
According to the commutative law for multiplication, iy = yi. Hence one can

write z = x + yi instead of z = x + iy. Also, because of the associative laws, a
sum z1 + z2 + z3 or a product z1z2z3 is well defined without parentheses, as is the
case with real numbers.
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The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for
real numbers carry over to the entire complex number system. That is,

z + 0 = z and z · 1 = z(4)

for every complex number z. Furthermore, 0 and 1 are the only complex numbers
with such properties (see Exercise 8).

There is associated with each complex number z = (x, y) an additive inverse

−z = (−x, −y),(5)

satisfying the equation z + (−z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation

(x, y) + (u, v) = (0, 0)

implies that

u = −x and v = −y.

For any nonzero complex number z = (x, y), there is a number z−1 such that
zz−1 = 1. This multiplicative inverse is less obvious than the additive one. To find
it, we seek real numbers u and v, expressed in terms of x and y, such that

(x, y)(u, v) = (1, 0).

According to equation (4), Sec. 1, which defines the product of two complex num-
bers, u and v must satisfy the pair

xu − yv = 1, yu + xv = 0

of linear simultaneous equations; and simple computation yields the unique solution

u = x

x2 + y2
, v = −y

x2 + y2
.

So the multiplicative inverse of z = (x, y) is

z−1 =
(

x

x2 + y2
,

−y

x2 + y2

)
(z �= 0).(6)

The inverse z−1 is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0 ;
and this is not permitted in expression (6).
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in Sec. 2. Inasmuch as such properties continue to be anticipated because they
also apply to real numbers, the reader can easily pass to Sec. 4 without serious
disruption.

We begin with the observation that the existence of multiplicative inverses
enables us to show that if a product z1z2 is zero, then so is at least one of the factors
z1 and z2. For suppose that z1z2 = 0 and z1 �= 0. The inverse z−1

1 exists; and any
complex number times zero is zero (Sec. 1). Hence

z2 = z2 · 1 = z2(z1z
−1
1 ) = (z−1

1 z1)z2 = z−1
1 (z1z2) = z−1

1 · 0 = 0.

That is, if z1z2 = 0, either z1 = 0 or z2 = 0; or possibly both of the numbers z1 and
z2 are zero. Another way to state this result is that if two complex numbers z1 and
z2 are nonzero, then so is their product z1z2.

Subtraction and division are defined in terms of additive and multiplicative
inverses:

z1 − z2 = z1 + (−z2),(1)

z1

z2
= z1z

−1
2 (z2 �= 0).(2)

Thus, in view of expressions (5) and (6) in Sec. 2,

z1 − z2 = (x1, y1) + (−x2,−y2) = (x1 − x2, y1 − y2)(3)

and

z1

z2
= (x1, y1)

(
x2

x2
2 + y2

2

,
−y2

x2
2 + y2

2

)
=

(
x1x2 + y1y2

x2
2 + y2

2

,
y1x2 − x1y2

x2
2 + y2

2

)
(4)

(z2 �= 0)

when z1 = (x1, y1) and z2 = (x2, y2).
Using z1 = x1 + iy1 and z2 = x2 + iy2, one can write expressions (3) and (4)

here as

z1 − z2 = (x1 − x2) + i(y1 − y2)(5)

and

z1

z2
= x1x2 + y1y2

x2
2 + y2

2

+ i
y1x2 − x1y2

x2
2 + y2

2

(z2 �= 0).(6)

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)

z1

z2
= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
,(7)
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EXERCISES
1. Verify that

(a) (
√

2 − i) − i(1 − √
2i) = −2i; (b) (2,−3)(−2, 1) = (−1, 8);

(c) (3, 1)(3,−1)

(
1

5
,

1

10

)
= (2, 1).

2. Show that

(a) Re(iz) = − Im z; (b) Im(iz) = Re z.

3. Show that (1 + z)2 = 1 + 2z + z2.

4. Verify that each of the two numbers z = 1 ± i satisfies the equation z2 − 2z + 2 = 0.

5. Prove that multiplication of complex numbers is commutative, as stated at the begin-
ning of Sec. 2.

6. Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

7. Use the associative law for addition and the distributive law to show that

z(z1 + z2 + z3) = zz1 + zz2 + zz3.

8. (a) Write (x, y) + (u, v) = (x, y) and point out how it follows that the complex num-
ber 0 = (0, 0) is unique as an additive identity.

(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1 = (1, 0) is a
unique multiplicative identity.

9. Use −1 = (−1, 0) and z = (x, y) to show that (−1)z = −z.

10. Use i = (0, 1) and y = (y, 0) to verify that −(iy) = (−i)y. Thus show that the addi-
tive inverse of a complex number z = x + iy can be written −z = −x − iy without
ambiguity.

11. Solve the equation z2 + z + 1 = 0 for z = (x, y) by writing

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to

show that y �= 0.

Ans. z =
(

−1

2
,±

√
3

2

)
.

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described
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multiplying out the products in the numerator and denominator on the right, and
then using the property

z1 + z2

z3
= (z1 + z2)z

−1
3 = z1z

−1
3 + z2z

−1
3 = z1

z3
+ z2

z3
(z3 �= 0).(8)

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:

4 + i

2 − 3i
= (4 + i)(2 + 3i)

(2 − 3i)(2 + 3i)
= 5 + 14i

13
= 5

13
+ 14

13
i.

There are some expected properties involving quotients that follow from the
relation

1

z2
= z−1

2 (z2 �= 0),(9)

which is equation (2) when z1 = 1. Relation (9) enables us, for instance, to write
equation (2) in the form

z1

z2
= z1

(
1

z2

)
(z2 �= 0).(10)

Also, by observing that (see Exercise 3)

(z1z2)(z
−1
1 z−1

2 ) = (z1z
−1
1 )(z2z

−1
2 ) = 1 (z1 �= 0, z2 �= 0),

and hence that z−1
1 z−1

2 = (z1z2)
−1, one can use relation (9) to show that(

1

z1

)(
1

z2

)
= z−1

1 z−1
2 = (z1z2)

−1 = 1

z1z2
(z1 �= 0, z2 �= 0).(11)

Another useful property, to be derived in the exercises, is(
z1

z3

)(
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).(12)

Finally, we note that the binomial formula involving real numbers remains
valid with complex numbers. That is, if z1 and z2 are any two nonzero complex
numbers, then

(z1 + z2)
n =

n∑
k=0

(n

k

)
zk

1z
n−k
2 (n = 1, 2, . . .)(13)

where (n

k

)
= n!

k!(n − k)!
(k = 0, 1, 2, . . . , n)

and where it is agreed that 0! = 1. The proof is left as an exercise.
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EXERCISES
1. Reduce each of these quantities to a real number:

(a)
1 + 2i

3 − 4i
+ 2 − i

5i
; (b)

5i

(1 − i)(2 − i)(3 − i)
; (c) (1 − i)4.

Ans. (a) −2/5; (b) −1/2; (c) −4.

2. Show that
1

1/z
= z (z �= 0).

3. Use the associative and commutative laws for multiplication to show that

(z1z2)(z3z4) = (z1z3)(z2z4).

4. Prove that if z1z2z3 = 0, then at least one of the three factors is zero.
Suggestion: Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two

factors.

5. Derive expression (6), Sec. 3, for the quotient z1/z2 by the method described just after
it.

6. With the aid of relations (10) and (11) in Sec. 3, derive the identity(
z1

z3

) (
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).

7. Use the identity obtained in Exercise 6 to derive the cancellation law

z1z

z2z
= z1

z2
(z2 �= 0, z �= 0).

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true when n = 1. Then, assuming that it is valid
when n = m where m denotes any positive integer, show that it must hold when
n = m + 1.

Suggestion: When n = m + 1, write

(z1 + z2)
m+1 = (z1 + z2)(z1 + z2)

m = (z2 + z1)

m∑
k=0

(
m

k

)
zk

1z
m−k
2

=
m∑

k=0

(
m

k

)
zk

1z
m+1−k
2 +

m∑
k=0

(
m

k

)
zk+1

1 zm−k
2

and replace k by k − 1 in the last sum here to obtain

(z1 + z2)
m+1 = zm+1

2 +
m∑

k=1

[(
m

k

)
+

(
m

k − 1

)]
zk

1z
m+1−k
2 + zm+1

1 .
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Finally, show how the right-hand side here becomes

zm+1
2 +

m∑
k=1

(
m + 1

k

)
zk

1z
m+1−k
2 + zm+1

1 =
m+1∑
k=0

(
m + 1

k

)
zk

1z
m+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed
line segment, or vector, from the origin to the point (x, y) that represents z in the
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2
the numbers z = x + iy and −2 + i are displayed graphically as both points and
radius vectors.

z = (x, y)

z = x + iy
–2 + i

xO–2

(–2, 1)
1

y

FIGURE 2

When z1 = x1 + iy1 and z2 = x2 + iy2, the sum

z1 + z2 = (x1 + x2) + i(y1 + y2)

corresponds to the point (x1 + x2, y1 + y2). It also corresponds to a vector with
those coordinates as its components. Hence z1 + z2 may be obtained vectorially as
shown in Fig. 3.

xO

y

z1

z 1 +
 z 2

z2

z2

FIGURE 3

Although the product of two complex numbers z1 and z2 is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for
z1 and z2. Evidently, then, this product is neither the scalar nor the vector product
used in ordinary vector analysis.
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