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a b s t r a c t

Designers in industries need to generate splines which can interpolate the data points in
such a way that they preserve the inherited shape characteristics (positivity, monotonicity,
convexity) of data. Among the properties that the spline for curves and surfaces need to
satisfy, smoothness and shape preservation of given data are mostly needed by all the
designers. In this paper, a rational cubic function with three shape parameters has been
developed. Data dependent sufficient constraints are derived for one of these shape param-
eters to preserve the inherited shape feature like monotonicity of data. Remaining two
shape parameters are left free for designer to refine the shape of the monotone curve as
desired. Numerical examples and interpolation error analysis show that the interpolant
is not only C2, local, computationally economical and visually pleasant but also smooth.
The error of rational cubic function is also calculated when the arbitrary function being
interpolated is C3 in an interpolating interval. The order of approximation of interpolant
is Oðh3

i Þ.
� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Spline interpolation is a significant tool in Computer Graphics, Computer Aided Geometric Design and Engineering as
well. The problem of shape preserving of given data plays imperative role in the field of data visualization. Data visualization
is the study of visual display of data. The main purpose of data visualization is a graphical representation of information in
pretty effective and clear way. These graphical representations of data have great significance in many fields including engi-
neering, military, education, art, medicine, advertising, transport, etc. Therefore, in these fields, it is often needed to generate
a monotonicity-preserving interpolating curve and surface through given monotone data. The objective of this paper is to
preserve the hereditary attribute that is the monotonicity of data.

Monotonicity is a prevailing shape property of curve. There are many physical situations that arise from different
sciences and art where entities only have a meaning when their values are monotone. Examples include approximations
of couple and quasi couples in statistics, approximation of potential functions in physical and chemical systems and dose
response curves in biochemistry and pharmacology. The specification of certain devices like digital-to-analog (DAC-used
in audio/video devices) and analog-to-digital (ADC-used in music recordings, digital signal processing) requires monotonic-
ity, which seems to be a sort of confusion. In these devices the output direction is supposed to be the same as that of input
direction. In terms of monotonicity, as the input to the device increases (decreases) the output must also increase (decrease)
accordingly. Monotonicity of monotone data is also involved in some other areas like, the level of blood uric acid in gout
patients, data generated from stress and strain of a material, graphical display of Newton’s law of cooling, medical diagnosis
and economic forecasting.
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The ordinary spline interpolating curve schemes are not appropriate to preserve the inherent shape feature (monotonic-
ity) of shaped data as shown in the Figs. 1 and 4. Since the traditional interpolating schemes merely depend on the data
points, so just a change in data points can cause a modification or an alteration in the shape of curves. For this reason the
need for some proficient shape preserving interpolating schemes arises which not only preserve the shape of the input data
but also pay heed to the underlying smoothness of curves. This motivates to come up with the scheme which can preserve
the inherent shape feature of data. In this paper an interpolating scheme is developed which not only provide the smooth-
ness in the shape preserving curves but also control the shape of data everywhere. The scheme preserves the monotonicity of
monotone data only.

Some work [1–11] on shape preservation has been published in recent years. Abbas et al. [1] developed a C1 piecewise
rational cubic function with three shape parameters. Data dependent conditions were derived for shape parameter to main-
tain the shape of monotone data. Butt [2] produced the flexibility of cubic Hermite interpolant by insertion of extra knots
rather than by particular choice of slopes. Convexity, monotonicity and positivity were considered in turn and the author
derived the conditions on the positions of the knots and the slopes of the cubic Hermite interpolant at these knots to
preserve the shape. Cripps and Hussain [3] developed a monotonicity preserving curve interpolant based on rational cubic
Bézier basis functions. Sufficient conditions, expressed in terms of the weights, were derived for the C1 cubic Hermite
interpolation to preserve the monotonicity. Duan et al. [4] developed rational interpolation based on function values and also
discussed constrained control of the interpolanting curves. They obtained conditions on function values for constraining the
interpolating curves to lie above, below or between the given straight lines. The authors assumed suitable values of param-
eters to obtain C2 continuous curve and the method worked for equally spaced data only.

Fiorot and Tabka [5] used C2 cubic polynomial spline to preserve the shape of convex or monotone data. The authors
obtained the values of derivative parameters by solving three systems of linear equations. Lamberti and Manni [7] presented
and investigated the approximation order of a global C2 shape preserving interpolating function using parametric cubic
curves. The tension parameters were used to control the shape of curve. The authors derived the necessary and sufficient
conditions for convexity whereas only sufficient conditions for positivity and monotonocity of data. Sarfraz et al. [9]
developed a C2 rational cubic spline with two families of free parameters for positive, monotone and convex curve. Sufficient
data dependent constraints were made for free parameters to maintain the shape of data. The scheme did not provide a
liberty to designer for the refinement of positivity, monotonicity and convexity preserving curves.

Wang and Tan [11] constructed a C2 piecewise rational quartic spline function (quartic/linear) with two shape parame-
ters. Sufficient conditions were derived for the derivative parameters to produce a monotonicity preserving curve for given
monotone data. Piah and Unsworth [8] constructed a Bernstein-Bézier quartic rational (quartic/ linear) interpolant with
single shape parameter to preserve the monotonicity of the data, without any error estimation of the interpolant. They
improved the sufficient conditions for the derivative parameters and monotonicity region proposed by [11].

In this paper a rational interpolating scheme is developed which not only provides smoothness in the shape preserving
curves but also control the shape of data everywhere. The problem of constructing a monotonicity-shape preserving curve
through monotone data using C2 rational cubic spline with three shape parameters is discussed. One of the substantial
features of this spline which distinguish it from the ordinary splines is shape parameters. These shape parameters provide the
opportunity to the designer to refine the shape of curves without changing the data. Simple data dependent sufficient
constraints are derived for these shape parameters which guarantee to preserve the shape of data. This paper is a
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Fig. 1. Cubic Hermite curve.
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contribution towards the advancement of such results that have been carried out by many authors. The technique used in
this paper has many outstanding features.

� In [1,2], the smoothness of interpolant is C1 while in this work the degree of smoothness is C2.
� Experimental and interpolation error analysis suggest that the scheme is not only computationally economical but also

produce a visually pleasant curve as compared to existing schemes [1,8,9,11].
� In [2], the author developed the schemes to achieve the desired shape of data by inserting extra knots between any two

knots in the interval while we preserve the monotonicity by only imposing constraints on free parameters without any
extra knots.
� In [4], the authors developed the scheme that works for equally spaced data only while the scheme developed in this

paper is applicable both for equally and unequally spaced data.
� The authors [5] achieved the values of derivative parameters by solving the three systems of linear equations, which is

computationally expensive as compared to methods developed in this paper where there exists only one tri-diagonal sys-
tem of linear equations for finding the values of derivative parameters.
� In [9], the scheme does not allow the designer to refine the shape of curves as desired. Whereas, in this paper this job is

done by introducing free parameters used in the description of C2 rational cubic function.
� The scheme gives a noteworthy error bound Oðh3Þ and optimal error ci ¼ 0:0640 when compared with the existing

scheme.
� The proposed curve scheme is unique in its representation and it is equally applicable for the data with derivative or with-

out derivatives.
� The rational quartic function is used by Wang and Tan [11] and improved sufficient conditions for the derivative param-

eters by Piah and Unsworth [8] to preserve the shape of monotone data while in this paper we have used rational cubic
function (cubic/quadratic) to maintain the monotone curve through given monotone data.

This paper is organized as follows: In Section 2, a C2 piecewise rational cubic function with three shape parameters is
developed. Monotonicity-preserving C2 interpolating rational cubic scheme is discussed in Section 3. Sufficient numerical
examples are given in Section 4 and error estimation of interpolation is calculated in Section 5 to prove the worth of the
scheme. The concluding remarks are presented to end the paper.

2. Rational cubic spline function

Let ðxi; fiÞ : i ¼ 0;1;2; . . . ;nf g be the given set of data points such that x0 < x1 < x2 < . . . < xn. A piecewise rational cubic
function with three shape parameters, in each subinterval Ii ¼ xi; xiþ1½ �; i ¼ 0;1;2; . . . ;n� 1 is defined as:

SðxÞ ¼ SiðxÞ ¼
P3

i¼0ð1� hÞ3�ihigi

qiðhÞ
ð1Þ

Let S0ðxÞ and S00ðxÞ denote the first and second ordered derivatives with respect to x. The following interpolatory conditions
are imposed for the C2 continuity of the piecewise rational cubic function (1),

SðxiÞ ¼ fi; Sðxiþ1Þ ¼ fiþ1

S0ðxiÞ ¼ di; S0ðxiþ1Þ ¼ diþ1

S00ðxiþÞ ¼ S00ðxi�Þ; i ¼ 1;2; . . . ;n� 1

8><
>: ð2Þ

From Eq. (2), the interpolating conditions produce the following system of linear equations and unknown coefficients ðgiÞ of
equation (1).

lidi�1 þ midi þxidiþ1 ¼ ki ð3Þ

with,

li ¼ aiai�1hi;

mi ¼ hiaiðai�1 þ bi�1 þ ci�1Þ þ hi�1bi�1ðai þ bi þ ciÞ;
xi ¼ bibi�1hi�1;

ki ¼ bi�1hi�1ðai þ 2bi þ ciÞDi þ aihið2ai�1 þ bi�1 þ ci�1ÞDi�1

8>>><
>>>:

and

g0 ¼ aifi;

g1 ¼ fið2ai þ bi þ ciÞ þ aihidi;

g2 ¼ fiþ1ðai þ 2bi þ ciÞ � bihidiþ1;

g3 ¼ bifiþ1;

ð4Þ
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where hi ¼ xiþ1 � xi; h ¼ x�xi
hi

, Di ¼ ðfiþ1 � fiÞ=hi; h� ½0;1� and ai; bi > 0; ci � 0 are shape parameters that are used to control
the shape of interpolating curve and provide the designer liberty to refine the curve as desired. Let di denotes the derivative
value at knots xi that is used for the smoothness of curve.

The C2 piecewise rational cubic function (1) is reformulated after using equation (4) as:

SiðxÞ ¼
piðhÞ
qiðhÞ

ð5Þ

with,

piðhÞ ¼
aifið1� hÞ3 þ fið2ai þ bi þ ciÞ þ aihidið Þhð1� hÞ2;
þ fiþ1ðai þ 2bi þ ciÞ � bihidiþ1ð Þh2ð1� hÞ þ bifiþ1h

3;

(

qiðhÞ ¼ ð1� hÞ2ai þ hð1� hÞðci þ ai þ biÞ þ h2bi:

Remark 1. The system of linear equations defined in Eq. (3) is a strictly tri-diagonal and has a unique solution for the
derivatives parameters di; i ¼ 1;2; . . . ;n� 1 for all ai; bi > 0 and ci P 0. Moreover, it is efficient to apply LU decomposition
method to solve the system for the values of derivatives parameters d0is.

Remark 2. To make the rational cubic function smoother, C2 continuity is applied at each knot. The system (3) involves n� 1
linear equations while unknown derivative values are nþ 1. So, two more equations are required for unique solution. For
this, we impose end conditions at end knots as:

S0ðx0Þ ¼ d0; S0ðxnÞ ¼ dn: ð6Þ

Remark 3. For the values of shape parameters ai ¼ 1; bi ¼ 1 and ci ¼ 0 in each subinterval Ii ¼ xi; xiþ1½ �; i ¼ 0;1;2; . . . ;n� 1,
the rational cubic function reduces to standard cubic Hermite spline.

3. Monotonicity-preserving C2 rational cubic spline interpolation

This section deals with the problem of shape preserving C2 rational cubic function for monotone data. For this purpose we
use rational cubic function (5) and impose conditions on shape parameters which assure to preserve the shape of data. This
requires some further mathematical treatment so that the desired shape feature of the curve is attained.

Let ðxi; fiÞ : i ¼ 0;1;2; . . . ;nf g be the given monotonically increasing data set i.e.

fi 6 fiþ1; i ¼ 0;1;2; . . . ;n� 1

or equivalently

Di P 0; i ¼ 0;1;2; . . . ;n� 1:

For monotonicity, the necessary conditions are imposed on the derivative parameters as:
Di P 0; i ¼ 0;1;2; . . . ;n� 1;
di P 0; i ¼ 0;1;2; . . . ; n:

�
ð7Þ

There arise two cases for monotonically increasing data.

Case 1. Di ¼ 0:
In this case, di ¼ diþ1 ¼ 0, the interpolant SðxÞ reduces to:

SiðxÞ ¼ fi; 8x 2 ½xi; xiþ1�; i ¼ 0;1;2; . . . ;n� 1;

which shows that the interpolant is monotone.

Case 2. Di > 0.
The C2 rational cubic function (5) is monotonically increasing if,

S0iðxÞ > 0; 8x 2 ½xi; xiþ1�:

The S0iðxÞ can be presented in the simpler form as:

S0iðxÞ ¼
P4

k¼0ð1� hÞ4�khkMk;i

qiðhÞð Þ2
ð8Þ
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with,

M0;i ¼ a2
i di;

M1;i ¼ 2ai ðai þ 2bi þ ciÞDi � bidiþ1f g;
M2;i ¼ M1;i þM3;i � ðM0;i þM4;iÞ þ ciðai þ bi þ ciÞDi � 2aibiðdi þ diþ1Þ;
M3;i ¼ 2bi ð2ai þ bi þ ciÞDi � aidif g;
M4;i ¼ b2

i diþ1:

Necessary conditions for monotonicity of rational cubic function are given as:

di P 0;
diþ1 P 0;
Mk;i P 0; k ¼ 0;1;2;3;4:

8><
>: ð9Þ

From Eq. (9) it is obvious that both M0;i > 0 and M4;i > 0.
M1;i > 0 if

ci >
diþ1bi � Diðai þ 2biÞ

Di
; ð10Þ

M3;i > 0 if

ci >
diai � Dið2ai þ biÞ

Di
: ð11Þ

These choices in Eqs. (10) and (11) satisfy M2;i > 0.
To control the shape of the curve and preserve the shape feature of data according to the demand the constraints for

shape parameters in Eqs. (10) and (11) can be rewritten as:

ai > 0; bi > 0;

ci > max 0; diþ1bi�Diðaiþ2biÞ
Di

; diai�Dið2aiþbiÞ
Di

n o
:

(
ð12Þ

The above result can be rewritten as:

ai > 0; bi > 0;

ci ¼ mi þmax 0; diþ1bi�Diðaiþ2biÞ
Di

; diai�Dið2aiþbiÞ
Di

n o
; mi > 0:

(
ð13Þ

The above discussion can be summarized as:

Theorem 1. The rational cubic function(5)preserves theC2monotone curve of monotone data in each subinterval xi; xiþ1½ �if and
only if the shape parametersai; biandcisatisfy the Eq.(13).

4. Numerical examples

Example 1. The world population is computed by the summing up all the living human on Earth. The data set taken in
Table 1 represents the world population (in billions) as estimated by United States Census Bureau (USCB) from the year 1000
to the year 2011. The x-values represent the years and f-values indicate the population in that particular year. One can
observe that the data set is monotone. The world population inherently monotone and we require the resulted rational cubic
spline to preserve this property. Fig. 1, drawn with cubic Hermite interpolant [6], does not preserve the monotonicity of
monotone data taken in Table 1. On the other hand, Fig. 2 when drawn by monotonicity preserving C2 rational cubic
interpolation developed in Section 3 preserves the shape of monotone data everywhere. The effect of shape parameters can
be seen by noting the difference in smoothness of the monotone curves in Fig. 2 and Fig. 3. Table 2 demonstrates the
numerical values which computed from the developed scheme of Fig. 3.

Example 2. A data set in Table 3 shows the observation of an experiment of watering the Great Northern beans. A solution
with a combination of chemical flake (Potassium Hydroxide) and distilled water with a pH of 8.5 was used to water the
beans. The beans were placed in vat, with a unique water and chemical solution. After 40 days, The beans plants were
removed and weighted to see the effects of the solution, where the x-values are the days and f-values are the height of
the beans. One can observed that the resulted data is monotone. Fig. 4, generated by cubic Hermite interpolant [6], does
not preserve the monotonicity of monotone data sets taken in Table 3. On the other hand, Fig. 5, drawn with monotonicity
preserving C2 rational cubic interpolation developed in Section 3 preserves the shape of monotone data everywhere. A prom-
inent difference in the smoothness with a visually pleasant view can be seen in these figures (Fig. 5 and Fig. 6) due to the
liberty bestowed to the designer on the values of shape parameters. Table 4 demonstrates the numerical results which com-
puted from the developed scheme of Fig. 6.

M. Abbas et al. / Applied Mathematics and Computation 219 (2012) 2885–2895 2889
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5. Interpolation error estimation

In this section, the error of interpolation is estimated when the function being interpolated is f ðxÞ 2 C3½x0; xn�, using
rational cubic function (5). It is to mention that the rational cubic function constructed in Section 2 is local, which allows
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Fig. 2. Monotonicity-preserving rational cubic function with ai ¼ 0:25; bi ¼ 0:25.

Table 1
A monotone data set.

i xi fi

1 1000 0.31
2 1250 0.40
3 1500 0.50
4 1920 1.86
5 1960 3.02
6 1980 4.44
7 1990 5.27
8 2000 6.06
9 2005 6.45

10 2011 7.02
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Fig. 3. Monotonicity-preserving rational cubic function with ai ¼ 2:5; bi ¼ 2:5.
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investigating the error in an arbitrary subinterval Ii ¼ xi; xiþ1½ � without loss of generality. Using Peano Kernel Theorem [10]
the error of interpolation in each subinterval Ii ¼ xi; xiþ1½ � is defined as:

R½f � ¼ f ðxÞ � SiðxÞ ¼
1
2

Z xiþ1

xi

f ð3ÞðsÞRx½ðx� sÞ2þ�ds: ð14Þ

It is assumed that the function being interpolated is f ðxÞ 2 C3½x0; xn�. The absolute error in each subinterval Ii ¼ xi; xiþ1½ � is:

f ðxÞ � SiðxÞjj 6
1
2

f ð3ÞðsÞ
�� �� Z xiþ1

xi

Rx½ðx� sÞ2þ�
������ ds; ð15Þ

where,

Rx½ðx� sÞ2þ� ¼
rðs; xÞ; xi < s < x;

sðs; xÞ; x < s < xiþ1

�
ð16Þ

with,

rðs; xÞ ¼ ðx� sÞ2 �
ðai þ 2bi þ ciÞðxiþ1 � sÞ2 � 2hibiðxiþ1 � sÞ
n o

h2ð1� hÞ þ biðxiþ1 � sÞ2h3
h i

qiðhÞ
;
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Fig. 4. Cubic Hermite curve.

Table 3
Height (in centimeters) of great northern beans.

i 1 2 3 4 5 6 7 8

xi 1 2 12 18 24 30 36 40
fi 0 0 0.42 2.08 3.43 3.78 4.12 4.37

Table 2
Numerical results of Fig. 3.

i di Di ai bi ci

1 0.0003 0.0003 2.5 2.5 0.2667
2 0.0004 0.0004 2.5 2.5 6.2041
3 0.0014 0.0032 2.5 2.5 23.7940
4 0.0362 0.0290 2.5 2.5 4.3990
5 0.0752 0.0710 2.5 2.5 1.0290
6 0.1017 0.0830 2.5 2.5 0.6661
7 0.0931 0.0790 2.5 2.5 0.8364
8 0.0977 0.0780 2.5 2.5 1.1025
9 0.0990 0.0950 2.5 2.5 0.1468

10 0.1042 . . . . . . . . . . . .

M. Abbas et al. / Applied Mathematics and Computation 219 (2012) 2885–2895 2891
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sðs; xÞ ¼ �
ðai þ 2bi þ ciÞðxiþ1 � sÞ2 � 2hibiðxiþ1 � sÞ
n o

h2ð1� hÞ þ biðxiþ1 � sÞ2h3
h i

qiðhÞ
;

where Rx½ðx� sÞ2þ� is called the Peano Kernel of integral. To derive the error analysis, first of all we need to examine the prop-
erties of the kernel functions rðs; xÞ and sðs; xÞ, and then to find the values of following integrals
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Fig. 5. Monotone C2 rational cubic curve with ai ¼ 0:5; bi ¼ 0:5.
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Fig. 6. Monotone C2 rational cubic curve with ai ¼ 2:5; bi ¼ 2:5.

Table 4
Numerical results of Fig. 6.

i 1 2 3 4 5 6 7 8

di 0 0 0.2686 0.3030 0.1357 0.0507 0.0773 0.0648
Di 0 0.0420 0.2766 0.2250 0.0583 0.0566 0.0625 . . .

ai 2.5 2.5 2.5 2.5 2.5 2.5 2.5 . . .

bi 2.5 2.5 2.5 2.5 2.5 2.5 2.5 . . .

ci 0.05 16.99 0.7497 0.3138 4.9878 1.4720 1.5283 . . .

2892 M. Abbas et al. / Applied Mathematics and Computation 219 (2012) 2885–2895
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Z xiþ1

xi

Rx½ðx� sÞ2þ�
������ ds ¼

Z x

xi

rðs; xÞjj dsþ
Z xiþ1

x
sðs; xÞjj ds; ð17Þ

By simple computation, the roots of rðx; xÞ in 0;1½ � are: h ¼ 0; h ¼ 1 and h� ¼ 1� bi=qi; qi ¼ ai þ bi þ ci. The roots of
rðs; xÞ ¼ 0 are: sk ¼ x� hhiðhqiþð�1Þ1þkHÞ

aiþhqi
; k ¼ 1;2

where,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ ciðai þ qihÞ
q

:

The roots of sðs; xÞ ¼ 0 are: s3 ¼ xiþ1; s4 ¼ xiþ1 � 2ð1�hÞbihi
biþð1�hÞqi

.
Following three cases arise:

Case 3. For 0 6 bi
qi
6 1; 0 < h < h�, the Eq. (15) takes the form

f ðxÞ � SiðxÞjj 6
1
2

f ð3ÞðsÞ
�� �� Z xiþ1

xi

Rx½ðx� sÞ2þ�
������ ds ¼ 1

2
f ð3ÞðsÞ
�� �� Z x

xi

ð�rðs; xÞÞdsþ
Z s4

x
ð�sðs; xÞÞdsþ

Z xiþ1

s4

sðs; xÞds
( )

¼ f ð3ÞðsÞ
�� ��n1ðai;bi; ci; hÞ;

where,

n1ðai;bi; ci; hÞ ¼

h3
i ð1�hÞ3h2

6qiðhÞ
qið1� hÞ � 2bif g þ h3

i ð1�hÞh2

6qiðhÞ
qi � 2bið Þ

þ 4b3
i h3

i h2ð1�hÞ3

3qiðhÞ biþð1�hÞqið Þ2
þ h3

i ð1�hÞ3h2

6qiðhÞ
2bi � qið1� hÞf g

þ bih
3
i h3

6qiðhÞ
� h3h3

i
6

8>>>><
>>>>:

: ð18Þ

Case 4. For 0 6 bi
qi
6 1; h� < h < 1, the Eq. (15) takes the form

f ðxÞ � SiðxÞj j 6 1
2

f ð3ÞðsÞ
�� �� Z xiþ1

xi

Rx½ðx� sÞ2þ�
��� ���ds ¼ 1

2
f ð3ÞðsÞ
�� �� Z s1

xi

ð�rðs; xÞÞdsþ
Z x

s1

rðs; xÞdsþ
Z xiþ1

x
sðs; xÞds

( )

¼ f ð3ÞðsÞ
�� ��n2ðai;bi; ci; hÞ;

where,

n2ðai;bi; ci; hÞ ¼

ðqih�HÞ3h3h3
i

3ðaiþhqiÞ
3 �

h3
i h2

3qiðhÞ
ð1� hÞ þ hðqih�HÞ

aiþhqi

h i3
ð1� hÞqi þ bið Þ

þ h3
i bih

2ð1�hÞ
qiðhÞ

ð1� hÞ þ hðqih�HÞ
aiþhqi

h i2
þ h3

i h2ð1�hÞ
6qiðhÞ

qi � 2bið Þ

� h3h3
i

6 þ
h3

i h2ð1�hÞ3

6qiðhÞ
qið1� hÞ � 2bið Þ þ h3

i bih
3

6qiðhÞ

þ h3
i h2ð1�hÞ3

6qiðhÞ
2bi � qið1� hÞð Þ

8>>>>>>>>><
>>>>>>>>>:

: ð19Þ

Case 5. For bi
qi
> 1; 0 < h < 1, the Eq. (15) takes the form

f ðxÞ � SiðxÞj j 6 1
2

f ð3ÞðsÞ
�� �� Z xiþ1

xi

Rx½ðx� sÞ2þ�
��� ���ds ¼ 1

2
f ð3ÞðsÞ
�� �� Z x

xi

ðrðs; xÞÞdsþ
Z xiþ1

x
sðs; xÞds

( )
¼ f ð3ÞðsÞ
�� ��n3ðai; bi; ci; hÞ;

where,

n3ðai;bi; ci; hÞ ¼
h2h3

i
6qi

qið1� hÞ � bið2� 3hÞf g � h3h3
i

6

þ h3
i h2ð1�hÞ3

6qiðhÞ
qið1� hÞ � 2bið Þ þ h3

i h2ð1�hÞ3

6qiðhÞ
2bi � qið1� hÞð Þ

8<
: : ð20Þ

Theorem 2. The error of interpolating rational cubic function (5), forf ðxÞ 2 C3½x0; xn�, in each subintervalIi ¼ xi; xiþ1½ �is

f ðxÞ � SiðxÞj j 6 1
2

f ð3ÞðsÞ
�� �� Z xiþ1

xi

Rx½ðx� sÞ2þ�
��� ���ds ¼ f ð3ÞðsÞ

�� ��ci;

ci ¼ max
06h61

nðai; bi; ci; hÞ;

M. Abbas et al. / Applied Mathematics and Computation 219 (2012) 2885–2895 2893



Author's personal copy

where

nðai;bi; ci; hÞ ¼
max n1ðai; bi; ci; hÞ 0 6 h 6 h�;

max n2ðai; bi; ci; hÞ h� 6 h 6 1;
max n3ðai; bi; ci; hÞ 0 6 h 6 1;

8><
>:

where,n1ðai; bi; ciÞ; n2ðai; bi; ciÞandn3ðai; bi; ciÞare defined in Section5by Eqs. (18)–(20)respectively.

Remark 4. The rational cubic interpolation (5) reduces to standard cubic Hermite interpolant for the values of shape param-
eters ai ¼ 1; bi ¼ 1 and ci ¼ 0. In this special case the functions n1ðai; bi; ci; hÞ; n2ðai; bi; ci; hÞ and n3ðai; bi; ci; hÞ become

Table 5
Values of ci for ai ¼ 0:5; bi ¼ 0:5 with some values of ci .

i ai bi ci ci

1 0.5 0.5 0.01 0.0105
2 0.5 0.5 0.1 0.0119
3 0.5 0.5 0.5 0.0180
4 0.5 0.5 1.0 0.0243
5 0.5 0.5 1.5 0.0292
6 0.5 0.5 5.0 0.0458
7 0.5 0.5 10.0 0.0533
8 0.5 0.5 100.0 0.0628
9 0.5 0.5 500.0 0.0638

10 0.5 0.5 700.0 0.0639
11 0.5 0.5 1000.0 0.0640
12 0.5 0.5 1500.0 0.0640
13 0.5 0.5 2000.0 0.0640

Table 6
Values of ci for ai ¼ 2:5; bi ¼ 2:5 with some values of ci .

i ai bi ci ci

1 2.5 2.5 0.01 0.0104
2 2.5 2.5 0.1 0.0107
3 2.5 2.5 0.5 0.0119
4 2.5 2.5 1.0 0.0151
5 2.5 2.5 1.5 0.0243
6 2.5 2.5 5.0 0.0331
7 2.5 2.5 10.0 0.0582
8 2.5 2.5 100.0 0.0628
9 2.5 2.5 500.0 0.0632

10 2.5 2.5 700.0 0.0634
11 2.5 2.5 1000.0 0.0637
12 2.5 2.5 1500.0 0.0638
13 2.5 2.5 2000.0 0.0638

Table 7
Values of ci for ai ¼ 100:0; bi ¼ 100:0 with some values of ci .

i ai bi ci ci

1 100.0 100.0 0.01 0.0104
2 100.0 100.0 0.1 0.0104
3 100.0 100.0 0.5 0.0104
4 100.0 100.0 1.0 0.0104
5 100.0 100.0 1.5 0.0105
6 100.0 100.0 5.0 0.0108
7 100.0 100.0 10.0 0.0112
8 100.0 100.0 100.0 0.0180
9 100.0 100.0 500.0 0.0363

10 100.0 100.0 700.0 0.0410
11 100.0 100.0 1000.0 0.0458
12 100.0 100.0 1500.0 0.0505
13 100.0 100.0 2000.0 0.0533
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n1ðai;bi; ci; hÞ ¼ 4h2ð1� hÞ3=3ð3� 2hÞ2; 0 6 h 6 1=2

n2ðai;bi; ci; hÞ ¼ 4h3ð1� hÞ2=3ð1þ 2hÞ2; 1=2 6 h 6 0
n3ðai;bi; ci; hÞ ¼ 0 0 6 h 6 1

It follows that the error coefficient ci ¼ 1=96 which is standard value for cubic Hermite spline interpolation.

Theorem 3. For any given values of shape parametersai; bi>0 and ci�0, the optimal errorci in Theorem 2 satisfies 0 < ci 6 0:0640:

6. Concluding remarks

In this paper, a C2 rational cubic function has been developed for the smooth and pleasing visualization of shaped data.
Three families of shape parameters are used in its representations to maintain the shapes of monotone data. Data dependent
sufficient conditions are imposed on single shape parameter to insure the monotonicity. Remaining two of these shape
parameters provide liberty to designer to easily control the shape of the curve by simply their values. The proposed inter-
polating method is appropriate to such shape preserving problems in which only data points are given. No additional knots
are inserted between any two knots in the interval where the interpolant loses the desired shape of the data. The values of
derivative parameters are calculated by solving the single system of linear equations, which is computationally economically
as compared to scheme developed by Fiorot and Tabka [5] in which three tri-diagonal systems of linear equations for finding
the values of derivative parameters.

The proposed scheme is C2, smoother, local in comparison with global scheme [7], computationally economical and visu-
ally pleasing as compared to schemes developed in [1,8,9,11]. It works for both equally and unequally spaced data. Exper-
imental and interpolation error analysis suggest that the proposed C2 rational cubic interpolation appear to produce
smoother graphical results. The optimal error is calculated with some fixed values of free parameters and different values
of constrained parameters which are shown in Table 5, Table 6 and Table 7. The comparison of error between the proposed
C2 scheme and the existing schemes is notable.
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