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Preface
This book has been written using notes developed for the course Numerical Methods 
for Chemical Engineers at Tulane University. The author has written two previous 
textbooks: one on FORTRAN® programming and one using the language Pascal. 
On a personal note, when I completed the Pascal book, I asked my wife to break my 
fingers if I ever decided to write another book! Well, that was a long time ago, and 
having been granted a sabbatical leave to write this book, my wife decided that she 
would look the other way.

While there are many textbooks whose title would indicate that they are suitable 
for the course Numerical Methods for Chemical Engineers, every one that has been 
tried has been a failure in one way or another. Either they were too elementary and 
the applications and problems were not ideal or they did not offer instruction in 
Excel® and Visual Basic® for Applications (VBA). This led to the development, over 
a 6-year period, of detailed notes to be used in place of a textbook. These notes have 
been enhanced and put into textbook form to produce the present book.

The primary reason for using Excel is that it is generally available software, and 
it comes with every computer system (both PC and Mac) with Microsoft Office® 
installed. VBA is a programming environment that comes with Excel and greatly 
enhances the capabilities of basic Excel spreadsheets. It is available on systems run-
ning Microsoft operating systems and Mac OS. Beware, however, that VBA is avail-
able only on the latest (2011) version of Microsoft Office for the Mac.

Other programming software systems that are often used in chemical and biomo-
lecular engineering numerical methods courses are the following:

•	 MATLAB®

•	 Mathematica®

•	 MathCad®

•	 C/C++
•	 FORTRAN
•	 PolyMath

C/C++ and FORTRAN are compiler-based programming languages. Courses 
that deal with them must devote large amounts of time to learning the language itself 
rather than emphasizing problem solving.

The first three examples are programming environments with relatively easy-
to-use interfaces. Mathematica and MathCad offer powerful built-in methods for 
solving many common problem types, and both are particularly suited to symbolic 
problem solving (such as performing analytical differentiation or integration and 
solving differential equations). MATLAB is by far the most popular of the “propri-
etary” packages, and at least two textbooks have been written that combine chemi-
cal engineering problem solving with the MATLAB system. A significant difficulty 
with using MATLAB is that it requires rather expensive licenses. In all likelihood, 
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MATLAB will not be available to practicing engineers in industry. This adds to the 
attractiveness of using Excel with VBA.

PolyMath is a specialized software package and has its roots in academia. It is 
especially suitable for a number of chemical engineering applications, and at least 
one textbook has been written using PolyMath as the base programming tool.

Obviously, there is no panacea when choosing which programming system to use, 
and any choice will have both backers and detractors. As a compromise, MATLAB 
is introduced in the last chapter of this text. This introduction is sufficient for stu-
dents to grasp the basics of MATLAB and how it differs from using Excel and VBA. 
Also, MATLAB programming is easily mastered by those who know VBA.

The vast majority of problems presented in this text, including in-class examples, 
homework problems, and exam problems, are related to chemical and biomolecular 
engineering. Application areas include (but are not limited to)

•	 Material and energy balances
•	 Thermodynamics
•	 Fluid flow
•	 Heat transfer
•	 Mass transfer
•	 Reaction kinetics (including biokinetics)
•	 Reactor design and reaction engineering
•	 Process design
•	 Process control

In the course taught by the author, exams (including most of the final exam) are 
of the “take-home” variety. It is not practical to give a timed, in-class exam when 
numerical methods and using a computer are involved. In order to encourage indi-
vidual work, each student is given a unique set of input data so that no two students 
are expected to get the same “answers.”

In the text, when mentioning a topic for which there is neither time nor space 
to elaborate, the statement “Google it” appears. This is not a plug for any specific 
search engine but an easy way for the author to suggest getting more information if 
the reader’s interest is sparked. Another feature is the use of “Did You Know” boxes. 
These are used to remind about features of Excel that are assumed known.

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Notes to the Instructor

History of and the Reason for Excel®/VBA

The material in this book has been developed over a 6-year period while teaching 
a class entitled Numerical Methods for Chemical Engineers. The author has taught 
this class (not continually) for the past 15 years. Early on, the computing platform 
was FORTRAN® running on a mainframe. At that time, students (as freshmen) took 
a required course in FORTRAN programming. By the time they took this class (as 
juniors), they needed considerable refreshing in FORTRAN. The course concen-
trated on linear algebra and the solution of ordinary differential equations. Many of 
the problems were generic rather than chemical engineering oriented.

When PCs became prevalent, a switch was made to the MATLAB® platform. 
Considerable time was spent getting students familiar with MATLAB, but the range 
of problems was greater because of MATLAB’s function availability. However, stu-
dents returning from summer internships complained that MATLAB was not avail-
able at their employer’s sites. They wanted a tool that they could use in any setting. 
The result was to settle on Excel and VBA. There is no panacea; other students who 
went to graduate school came back for reunions and complained that MATLAB, 
MathCad, and Mathematica were the popular computing tools at the institutions 
they attended. It was then decided to add some MATLAB training to the Numerical 
Methods for Chemical Engineers class. In recent years, almost all example and 
homework problems have been related to chemical and biomolecular engineering.

Mac Users Beware: The most recent version (2011) of MS Office for the Mac 
does include VBA. Students have reported that the Mac version presents no signifi-
cant differences from the PC version. In Chapter 3, a free software package called 
Matrix.xla is introduced. It offers a host of matrix-based functions not available 
directly in Excel. While this package can be downloaded to a Mac, the Matrix.xla 
functions are not available at the Excel level. They can, however, be utilized in VBA 
mode. If nothing else, these functions allow students to view very well written code 
in VBA. At some point, it is hoped that the publishers of Matrix.xla will support its 
features on the Mac.

Material Available for Instructors

Files with Excel/VBA or MATLAB programs for all of the examples in the book, 
any concluding comments for those programs, and solutions to all of the end-of-
chapter exercises are available on a DVD from the publisher with a qualifying course 
adoption. Additionally, solutions to all of the end-of-chapter exercises are provided. 
When possible, concluding comments are included along with the programs.
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How the Author Teaches the Class

All classes are held in a departmental computer lab. Usual class size is about 20, and 
each student has his or her own computer. At the beginning of coverage of a new 
chapter, a short lecture (at the chalk board—no PowerPoint) presents the highlights 
of the material. Chapter examples are then shown on a projector connected to a PC. 
Sometimes the lecture/example sequence is repeated when appropriate. Finally, stu-
dents are given an in-class exercise to perform—usually one of the end-of-chapter 
exercises. They are given time to attempt the solution on their own; after a while, 
they are given “helpful hints” as to how to proceed. If they do not complete the 
exercise within the allotted class time, they are encouraged to finish on their own. 
A homework assignment is given that is again one of the end-of-chapter exercises. 
Students are usually given about 1 week to complete a homework assignment. They 
are expected to turn in Excel/VBA or MATLAB files along with a Word file if 
needed. The homework assignments are sent via email to a teaching assistant (TA), 
who grades the work. The instructor usually spends some time with the TA regard-
ing the assignment and how to grade it.

Exams are all of the “take-home” variety. It is not reasonable to give a program-
ming assignment within the time limits of a typical class. In order to discourage col-
laboration, each student is given his or her own set of data for the exam. In addition, 
an honor code statement is made at the beginning of the exam document. Students 
are warned that plagiarism on programs is usually very easy to detect and that the 
spirit of the honor code will be upheld. The instructor grades all exams. Typically, 
two exams are given during the semester and often consist of about six problems.

The final exam is usually handed out during the second to last week of the class. 
The due date of the exam is the day that an in-class final exam would have taken 
place (this is pre-scheduled by the university). So, students usually have about 10–14 
days to work on the final exam. Enterprising students can complete the exam well 
before other final exams begin (students are encouraged to do this). The final exam 
usually consists of about 10–12 problems. Again, each student is given his or her 
own set of data required for the exam problems. Since MATLAB is the last subject 
covered, there are several MATLAB problems on the final exam.
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1 Roots of a Single 
Nonlinear Equation

1.1 � Introduction

Many engineering problems require the solution of a single nonlinear equation. Such 
an equation can always be cast into the form

	 f(x) = 0	 (1.1)

The objective of this chapter is to study methods and learn of Excel® tools for 
finding the root(s) of a nonlinear equation, that is, for finding x such that f(x) = 0.

Simple algebra provides the root for a linear equation. However, for more com-
plex (nonlinear or transcendental) equations, it is often the case that no analytical 
solution is available, or is difficult to obtain, so that numerical methods must be 
used.

An example of a nonlinear equation is the van der Waals equation of state, which 
is given by

	
P

a

V
V b RT+





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− =
2

( ) 	 (1.2)
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c
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27
64
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2 2

with subscript c referring to the “critical” values of temperature and pressure for 
the gas. Note that, if a and b are zero, this reduces to the ideal gas equation of state.

A typical problem is to find the molar volume, V, given the temperature and 
pressure (and the type of gas). While it is possible to find analytic solutions to the 
van der Waals equation of state for V (this is simply a cubic equation), a numerical 
solution is often preferred. The equation of state in the form f(x) = 0 is obtained by 
simple rearrangement:
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f V P

a

V
V b RT( ) ( )= +





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− − =
2

0 	 (1.3)

Note that this particular form f(x) = 0 is not unique, and other algebraic rearrange-
ments are possible.

1.2 � Algorithms for Solving f(x) = 0

Clearly there is a need to find good methods for determining roots. Four such meth-
ods are now presented (though many more have been developed): fixed-point itera-
tion (direct substitution), bisection, Newton’s method, and the secant method. These 
methods are iterative. That is, given a guess of a root, or the interval in which a root 
lies, the algorithm refines that guess repeatedly, obtaining (hopefully) better and bet-
ter guesses, until a value “close enough” to the true root is found. Also, graphing the 
equation can add insight into the roots of interest and can provide good initial esti-
mates of the roots for the iterative algorithms. It is recommended to always prepare 
a graph of the function to give insight into possible solutions.

1.2.1 � Plotting the Equation

Excel has very good plotting capabilities. Unfortunately, it is not possible in Excel to 
simply give a command such as plot( f(x)). It is necessary to produce a list or table of x 
and f(x) values and to graph the resulting data. This is best illustrated by an example.

Example 1.1: Plotting the Equation

A table of data and an Excel graph of the van der Waals equation for ammonia at 
250°C and 10 atm are shown in Figure 1.1.

From the graph, it is easy to see that there is one real root between 0 and 5 (the 
other roots are complex conjugates). Remember that the van der Walls equation of 
state is an attempt to model the nonideality of the gas. Since the given temperature 
and pressure are not severe, it is expected that the calculated molar volume from 
the equation of state should not be greatly different from that predicted by the 
ideal gas law. From the ideal gas law, the molar volume is 4.29 L/gmol, which is 
very close to the root shown in the graph.

1.2.2 � Fixed-Point Iteration (Direct Substitution)

To apply this method, the equation must be cast into the form

	 x = g(x)

or, more generally,
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	 xk+1 = g(xk)	 (1.4)

where k is an iteration counter.

Example 1.2: Direct Substitution

Note that this can always be accomplished by adding x to each side of f(x) = 0, if 
necessary. The van der Walls equation can be cast into the following form:

	

V b
RT

P
a

V

= +
+





2

	 (1.5)

The pertinent data for ammonia are shown in Figure 1.1. If a value for V = 4 
is guessed (based on the graph of Figure 1.1) and is used on the right-hand side, 
a new (and hopefully better) value is calculated from Equation 1.5. The iterations 
produce the following sequence:

4.00000 4.21854 4.22946 4.22996 4.22998.

The solution is 4.22998 L/gmol. If more significant digits are required, then more 
iterations can be carried out.

10

–10

–20

–30

–40

0
0

f(v
)

f(V)

Molar volume

1 2 3 4 5 6

FIGURE 1.1  Roots of the van der Walls equation for ammonia at 250°C and 10 atm.
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It should be noted that direct substitution can be a divergent process. That is, the 
successively calculated values actually get worse rather than closer to the correct 
value. Without proof, the following statements apply:

Let gʹ be the first derivative of the function g in Equation 1.4. Then,

•	 If |gʹ| < 1, the error will decrease with each iteration.
•	 If |gʹ| > 1, the error grows at each iteration.
•	 If gʹ > 0, the error will have the same sign at each iteration.
•	 If gʹ < 0, the error will alternate signs at each iteration.

Clearly, the equation should be arranged so that the magnitude of gʹ is less than 1. 
This might take some experimentation. Often, a form of g is tried, and if the process 
does not converge, then other forms are attempted.

1.2.3 �B isection

If it is (somehow) known that a root lies in the interval [a, b], then by simply halving 
the interval in which the root lies, the interval can be reduced to an acceptable level. 
This idea is at the heart of the bisection method as shown in Figure 1.2.

The restriction is that f(a) and f(b) must have opposite signs—one of them must be 
positive, the other negative (it does not matter which). Then, because f is assumed to 
be continuous, it must be a zero somewhere in [a, b]. Let c be the midpoint of [a, b]. 
Either c is the root, or the root lies in [a, c] or in [a, b]. If f(c) is close enough to zero 
(see below regarding tolerance), then the root has been found. Otherwise, one pair of 
[ f(a),f(c)]or [ f(c),f(b)] has opposite signs. Keep the half-interval with opposite signs 
and discard the other. Repeat the process until either (1) f, evaluated at the midpoint 
of the interval, is sufficiently small or (2) the interval has been shrunk to a suitably 
small value.

f(x)

a

c b
x

FIGURE 1.2  Bisection: c = (a + b)/2.
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The term “sufficiently small” is usually tested using a “tolerance,” which repre-
sents a number small enough to be considered zero based on the application. This 
can be stated more formally as follows:

If |f(x)|<tolerance then (x) is sufficiently small.

Example 1.3: Bisection Applied to the van der Waals EOS

Recall the van der Waals EOS in the form

	
f V P

a
V

V b RT( ) ( )= +






− − =2 0 	 (1.6)

The table below shows the progression of applying the bisection method. It 
uses the Excel IF function to choose whether f(a) or f(b) is replaced by f(c) 
(and correspondingly whether a or b is to be replaced by c). The syntax for the IF 
function is as follows (see the explanation of the Excel spreadsheet below for a full 
explanation of how the IF function is used):

IF(test, True Value, False Value)

In this example (again for ammonia at 10 atm and 250°C), the function in the 
cell below the label V1 (corresponding to the point a in the nomenclature of the 
figure) is = IF(F2<0, E2, A2), where cell F3 holds f(Vnew) [corresponding to 
f(c)], E2 contains Vnew (corresponding to c), and A2 holds V1. So, if f(Vnew) 
is negative (test is TRUE), V1 (corresponding to a) gets the Vnew value; otherwise, 
it retains the old V1. Likewise, the formula in the cell below the V2 label is = 
IF(F2<0,B2,E2), which replaces V2 (corresponding to b) with the value Vnew 
if the test (F2 < 0) is FALSE. After the first row of formulas has been entered, 
these cells are copied down to repeat the iterations. Iterations should be repeated 
until f(Vnew) is sufficiently small (in absolute value). The initial guesses for V are 
3 and 5, respectively, which give opposite signs for the function.
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1.2.4 �N ewton’s Method

The next algorithm to be considered is the Newton’s method for finding roots. 
Newton’s method does not always converge. But, when it does converge, it usually 
does so very rapidly (at least once it is “close enough” to the root). Newton’s method 
also has the advantage of not requiring a bracketing interval with positive and nega-
tive values. So Newton’s method allows the solution of equations such as

	 x2 – 2x + 1 = 0	 (1.7)

whereas bisection does not. This parabola just touches the zero axis and has no nega-
tive values.

The basic idea of the Newton algorithm is this: given an initial guess, call it x1 
to a root of f(x) = 0, a refined guess, x2, is computed based on the x-intercept of the 
line tangent to f(x) at x1. That is, consider the equation of the line tangent to f(x) at x1 
(this is just the Taylor series expansion of the function ignoring all but linear terms):

	 f(x) = f(x1) + fʹ(x1)(x − x1)	 (1.8)

This is the point-slope equation of a line, where x1 is the base point and fʹ(x1) is the 
slope [derivative of f(x) evaluated at x1]. Solving Equation 1.8 for x at which f(x) = 0 gives

	

0 1 1 2 1

2 1
1

1

= + ′ −

= −
′

f x f x x x

x x
f x

f x

( ) ( )( )

( )

( )

	or more generally,

	
x x

f x

f x
k k

k

k
+ = −

′
1 ( )

( )
	 (1.9)

The value of xk+1 is the new guess at the root. The process is repeated, computing 
successively x2, x3, x4,… until an xK is found at which

	 |f(xK )| < tol	 (1.10)

where tol is a prescribed tolerance.

Did You Know?: That there are two ways to copy cell contents down. One way is 
to select the cells to be copied and then grab the small box in the lower right corner 
of the selection. Pulling down will copy the cells. The second method is to select 
the cells to be copied and while holding down the mouse button pull down as far 
as desired and finally hitting CTRL/d (hold down the CTRL key and hit the d key).
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Example 1.4: Newton’s Method Applied to the van der Waals Equation

Newton’s method is now applied for ammonia at 10 atm and 250°C with an 
initial guess for V = 1 L/gmol. To begin using Newton’s method, the derivative of 
Equation 1.2 is required and is as follows:

	
′ = +







+ − −





f V P
a

V
V b

a
V

( ) ( )2 3
	 (1.11)

Here is an Excel spreadsheet that solves this problem:

V f(V) f´(V)
1

3.87559
4.22090
4.22977
4.22998 −0.00005

−0.08875
−0.00209

−29.21366
−3.45397

10.15918
10.00273
10.00212
10.00210
10.00210

The root is found in about 3 iterations. Note the rapid rate of convergence.

An examination of Equation 1.9 for the new iterate xk reveals a potential for fail-
ure of Newton’s method, namely,

	 fʹ(xk) ≈ 0	 (1.12)

This may lead to a wildly divergent iterative process. There are other possible 
reasons why this method might not converge. In general, Newton’s method is prone 
to failure, but when it does work, it converges rapidly. Good initial guesses are the 
key to success.

1.2.5 � Secant Method

In Chapter 4, methods for approximating the derivative of a function using finite 
differences are presented. The secant method uses the idea of finite differences to 
approximate the derivative in the Newton method formula. Starting with two initial 
guesses x0 and x1, which need not bracket the root of interest, the approximation to 
fʹ(x) can be written as follows:

	
′ ≅ −

−
f x

f x f x

x x
( )

( ) ( )1
1 0

1 0
	 (1.13)

Or, in general, after k steps or iterations,

	
′ ≅ −

−

−

−f x
f x f x

x x
k

k k

k k
( )

( ) ( )1

1
	 (1.14)
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Substituting this approximation into the Newton formula (Equation 1.9), the fol-
lowing iteration formula results for the secant method:

	
x x

f x

f x f x
x xk k

k

k k
k k+

−
−= −

−
−1

1
1( )

( ) ( )
( ) 	 (1.15)

Example 1.5: The Secant Method for van der Waals Equation

The following shows the van der Waals example solved using the secant method. 
The two initial guesses for V are 1.50 and 1.51—the second was chosen arbitrarily 
close to the first one. Note that the rate of convergence is about the same as that of 
Newton’s method. Beware that the secant method is subject to the same potential 
shortcomings of Newton’s method.

Secant method
V0 V1 f(V0) f(V1) V2

1.50000
1.51000
4.60602
4.21498
4.22995
4.22998 4.22998

4.22998
4.22995
4.21498
4.60602
1.51000 −25.53805

−25.45583
−25.45583 4.60602

4.21498
4.22995
4.22998
4.22998
4.229980.00000

0.00000
0.00000

−0.00028
−0.00028−0.14652
−0.146523.67996

3.67996

1.3 �U sing Excel® to Solve Nonlinear 
Equations (Goal Seek)

Any of the methods discussed previously can be implemented quite easily using Excel. 
However, Excel has built into it two tools for solving nonlinear equations, Goal Seek 
and Solver. Solver is discussed at length in Chapter 9. The Goal Seeking feature can 
solve many single nonlinear equations (good initial guesses are important). Goal Seek 
uses whatever value is placed in the “By Changing Cell” location as an initial guess.

According to Microsoft® documentation on Goal Seek,

The Goal Seek command uses a simple linear search beginning with guesses on the 
positive or negative side of the value in the source cell (By Changing Cell). Excel uses 
the initial guesses and recalculates the formula. Whichever guess brings the formula 
result closer to the targeted result (To Value) is the direction (positive or negative) in 
which Goal Seek heads. If neither direction appears to approach the target value, Goal 
Seek makes additional guesses that are further away from the source cell. After the 
direction is determined, Goal Seek uses an iterative process in which the source cell is 
incremented or decremented at varying rates until the target value is reached. (http://
esupport.lenovo.com/mss/mss.pl?doctype=kb&docid=MTAwNzgy)

Therefore, the algorithm used by Goal Seek is somewhat similar to the secant 
method with some enhancements. If Goal Seek fails, it is usually due to a poor initial 
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guess, so changing the guess might lead to success. To see how Goal Seek works, 
consider the following simple example:

	 x – x1/3 – 2 = 0	

In the following spreadsheet, cell B1 contains the initial guess for the indepen-
dent variable, x. When a correct value is found for x, then the function f(x) = 0 [the 
formula for f(x) is in cell B2 and is = B1-B1̂ (1/3) - 2].

Initial spreadsheet:

The following is the “Goal Seek” window obtained from the Data/What If 
Analysis/Goal Seek Menu.

After hitting the OK button on the Goal Seek window, the spreadsheet changes 
to the following:

The function f(x) is “close” to zero and the solution is shown for x.

Example 1.6: Automating Goal Seek

This example gives a very first look at Visual Basic® for Applications (VBA), which 
is the programming language associated with Excel (as well as all other Microsoft 
Office applications). The example also introduces the use of Keystroke Macros, 

Did You Know?: That the F4 key can be used to toggle between the four cell 
referencing methods. When a $ sign appears before a row or column indicator, 
the reference is absolute (if the cell contents are copied, the reference with the 
$ sign is unchanged). If there is no $ sign and a cell’s contents are copied to 
another cell, the reference is relative and changes accordingly. The four cell 
references are (for cell B3, for example) B3, $B3, B$3, and $B$3.
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which allow the recording of a sequence of keystroke and mouse commands that 
are recorded for repeated use.

The following spreadsheet applies to the same problem as in previous examples 
of this chapter. It is desired to compute the molar volume of ammonia at 250°C, but 
now for a range of pressure from 10 to 20 atm (in increments of 1 atm). To do this, 
Goal Seek can be manually applied for each pressure, but a much more efficient 
way is shown that involves first recording a Keystroke Macro and then Editing the 
resulting VBA program that was automatically produced by the Macro recorder. 
When invoking the edited VBA program, the molar volume is found at each pressure 
automatically. In the spreadsheet, the molar volume from the ideal gas law appears 
in the second column and is copied to the third column to give a good initial guess 
of the nonideal volume.

The first step is to record a Keystroke Macro to find the molar volume (V) at 
5 atm. Begin by going to the Developer tab and choosing (in the upper left set 
of menus) Use Relative Reference. This is necessary so that the recorded 
Macro works from any proper initial cell. Place the cursor on the f(V)value when 
P = 10 (the current value is 0.6034). Next choose Record Macro and the fol-
lowing window appears. The name of the Macro (FindVolume) and the Shortcut 
Key (v) were chosen to be appropriate for the problem.
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After clicking the OK button, invoke the Data/What-If-Analysis/Goal 
Seek menu and select the appropriate cells so that the volume for the first pressure 
is calculated. Go back to the Developer menu and select Stop Recording. 
The recorded Macro could now be used manually at each pressure by placing the 
cursor over the next f(V) and hitting Ctrl/v (hold down Ctrl and hit v). However, 
the Macro can be Edited to make it work repeatedly until the data are exhausted.

By choosing Developer/Macros/FindVolume/Edit, the following VBA code 
appears:

Note that this code was generated automatically during the recording of the 
Keystroke Macro. The code has been edited somewhat to fit properly on the 
printed page without altering its accuracy. The lines beginning with apostro-
phe (') are comments and can be ignored. The first executable line begins with 
ActiveCell.GoalSeek, which invokes the Goal Seek algorithm. The remainder 
of the line specifies a goal value of 0 and that the “changing cell” is on the same 
row, one column to the left (0,-1). The underscore at the very end of the first line 
is a “continuation” marker, which states that information on the next line is part of 
the current line (but there was no room for it). The second line that involves the 
word Offset is a command to move the cursor down one row but in the same 
column (1,0).
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This code can be altered so that, when invoked, it repeats over and over until 
the next item in the f(x) column is blank (which also represents a value of 0). The 
edited code appears below, where the additional code is shaded for emphasis:

Details concerning the VBA language are covered in Chapter 2. The statement 
While ActiveCell.Value <> 0 is a looping command that says, in effect, per-
form all statements below this until the Wend is encountered as long as the value 
in the ActiveCell (the one where the cursor is) is not zero (or not blank). When 
this revised Macro is invoked by typing Ctrl/v, the spreadsheet changes to that 
shown below. As expected, the difference between ideal and non-ideal volume 
becomes larger as pressure increases.

The graph shown in Figure 1.3 illustrates the difference between the molar 
volumes for ammonia at 250°C computed by the ideal gas law and by the van der 
Waals equation of state.

Example 1.7: Fraction Vaporized of a Hydrocarbon Mixture

Figure 1.4 gives data for a mixture of four hydrocarbons. Included in the data are 
constants (A, B, and C) for the Antoine equation, a correlation that allows the cal-
culation of the vapor pressure of pure components as follows:
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log *

10 P A
B

C Ti i
i

i

= −
+

	 (1.16)

where
Pi

*	=	 vapor pressure of component i (atm)
T	 =	 temperature (K)
Ai, Bi, Ci = Antoine coefficients

It is desired to find the fraction of the mixture in the vapor phase when the 
mixture is flashed at 60°C over a pressure range of 18, 19, . . . , 40 atm. A plot of 
the fraction vaporized versus pressure is also desired.

Consider the schematic of a flash tank as shown in Figure 1.5.
F is the molar feed rate, and z is the mole fraction of each component in the 

feed; V is the molar vapor rate, and y is the mole fraction of each component in 
the vapor; L is the molar liquid rate, and x is the mole fraction of each component 
in the liquid.
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FIGURE 1.3  Comparison of ideal gas and van der Waals molar volume.

Ethylene Ethane Propane n-Butane
A
B
C
z 0.10 0.30 0.40 0.20

−36.146
909.65

3.844313.97721
819.296
−24.417−16.719

659.739
3.932643.86690

584.146
−18.307

FIGURE 1.4  Feed mole fraction and antoine coefficients. z is the mole fraction of each com-
ponent in the feed. Antoine constants are from the NIST Chemistry Database.
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Assuming an ideal mixture (where Raoult’s law applies), the following equilib-
rium expression applies:

	
k

y
x

P
P

i ni
i

i

i
c= = =

*

; , , ,1 2 	 (1.17)

where ki is called the equilibrium constant for component i, P is the total pressure, 
and nc is the number of components.

The material balance equations for the flash tank can then be written as follows:

	

z F x L y V i n

F L V

x y

i i i c

i

i

n

i

i

nc c

= + =

= +

= =
= =

∑ ∑

; , , ,1 2

1
1 1



	 (1.18)

Let α = V/F, the fraction of the feed flashed to the vapor phase. These equa-
tions can be manipulated (see Henley and Rosen, p. 341) into the following single 
nonlinear equation in α:

	
f x y

z k
ki i

i

n

i i

ii

nc c

( ) ( )
( )
( )

α
α

= − = −
+ −

= =
∑ ∑

1 1

1
1 1

	 (1.19)

Once α has been determined, the liquid and vapor mole fractions can be found 
from

	

x
z
k

y k x

i
i

i

i i i

=
+ −

=

1 1α( ) 	 (1.20)

F, z

V, y

L, x

FIGURE 1.5  Schematic diagram of a flash tank.
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The following Excel spreadsheet shows the setup for T = 60°C and P = 18, 19, …, 
22 atm. Initial guesses for Alpha are entered as 0.5, which is a reasonable first 
estimate since the result must be between 0 and 1. The first of Equation 1.19 is 
used for f(Alpha).

A B C D E F G H I J K L M N O
1
2
3
4
5
6
7
8
9

10
11
12
13 22

21
20
19
18

A
B
C
z

P (atm) k1 k2 k3 k4 x1 x2 x3 x4 y1 y2 y3 y4 Alphaf(Alpha)

Temp (C)=
Ethylene Ethane

60
Propane n-Butane

3.84431
909.65

−36.146
0.200.40

−24.417
819.296
3.977213.93264

659.739
−16.719

0.300.10
−18.307
584.146
3.86690

5.694
5.394
5.124
4.880
4.658 3.194

3.346
3.513
3.698
3.903 1.167

1.105
1.050
1.000
0.954 0.274 0.035

0.287
0.301
0.317
0.335 0.030

0.031
0.033
0.034

0.143
0.138
0.133
0.128
0.122 0.369

0.380
0.390
0.400
0.409 0.314

0.311
0.307
0.304
0.300 0.170

0.169
0.167
0.166
0.165

0.478
0.472
0.467
0.462
0.457 0.391

0.400
0.410
0.420
0.431 0.100

0.096
0.093
0.089
0.086

−3.577E-01
−3.146E-01
−2.735E-01
−2.342E-01
−1.965E-01

0.5000
0.5000
0.5000
0.5000
0.5000

Goal Seek can be used to find α at all of the pressures individually, or a 
Keystroke Macro can be recorded and edited as in Example 1.6. The result of hav-
ing done this is shown in the next spreadsheet, again for pressures of 18, 19, . . . , 
22 atm. The graph in Figure 1.6 summarizes the final result for all pressures in the 
range 18–40 atm.

1.0000

0.9000

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000
10 15 20 25 30

Pressure (atm)

A
lp

ha

35 40 45

FIGURE 1.6  Results for Example 1.7. Fraction vaporized for a hydrocarbon mixture.
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A B C D E F G H I J K L M N O
1
2
3
4
5
6
7
8
9

10
11
12
13

A
B
C
z

P (atm) k1 k2 k3 k4 x1 x2 x3 x4 y1 y2 y3 y4 Alphaf(Alpha)

Temp (C)=
Ethylene Ethane Propane n-Butane

60

18
19
20
21
22

5.694

0.10 0.30 0.40 0.20

5.394
5.124
4.880
4.658

3.903
3.698
3.513
3.346
3.194

1.167
1.105
1.050
1.000
0.954

0.335
0.317
0.301
0.287
0.274

0.018
0.020
0.022
0.024
0.026

0.079
0.087
0.095
0.104
0.112

0.345
0.365
0.384
0.400
0.414

0.558
0.528
0.500
0.472
0.447

0.103
0.108
0.113
0.118
0.123

0.308
0.321
0.334
0.347
0.359

0.402
0.403
0.403
0.400
0.395

0.187
0.167
0.151
0.135
0.122

–4.136E-05
–4.149E-04
–3.460E-04
–7.712E-04
–3.020E-04

0.9647
0.9094
0.8584
0.8075
0.7604

3.86690
584.146
−18.307 −19.719 −24.417 −36.146

659.739 909.65
3.844313.97721

819.296
3.93264

1.4 � A Note on In-Cell Iteration

Suppose that in a spreadsheet the following formula is entered into cell B1:

= B1^(1/3)+2

Since cell reference B1 is in the formula of the same cell, this is called a “cir-
cular reference.” Normally, Excel will complain about this. However, if the Enable 
Iterative Calculations (see File/Options/Formulas) box is checked, Excel will 
immediately do the following:

	 1.	 It will automatically use an initial guess of zero (there is no control over 
this).

	 2.	 It will iterate up to 100 times or until successive values are within 0.001 
(these values can be changed).

	 3.	The final result will be the answer (hopefully).

In-cell iteration is not to be encouraged when robustness is a goal. It often fails 
to find a solution.

Exercises

Exercise 1.1: For the following functions, graph the function and then use 
Goal Seek to find the root(s).

	 a.	 f(x) = x − x1/3 − 2
	 b.	 f(x) = x tan x − 1
	 c.	 f(x) = x4 − ex + 1
	 d.	 f(x) = x2ex − 1

Exercise 1.2: Find the roots of the functions given in Exercise 1.1 using the 
bisection method. Use the graph of each function to choose points that 
bracket the root of interest.

Exercise 1.3: Set up a spreadsheet that implements the secant method and 
then solve each of the problems from Exercise 1.1. Use the graph of each 
function to select an initial guess. Recall the iteration formula for the secant 
method:
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x x

f x

f x f x
x xk k

k

k k
k k+
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−= −

−
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1
1( )

( ) ( )
( )

		  Hint: Set up the first row of the spreadsheet for your problem with head-
ings such as the following:

xk−1 xk f (xk−1) f (xk) xk+1

		  Put the formula for the function under the headings f(xk-1) and f(xk). 
In the cell under xk+1, put the secant method iteration formula. In the sec-
ond row, replace the previous xk-1 with xk and then xk with xk+1. Now 
copy the two formulas down one row. At this point, one iteration of the 
secant method is displayed. To see more iterations, just copy the second 
row down for as many iterations as desired. If too many iterations are cop-
ied and the function difference (the denominator of the iteration formula) 
becomes exactly zero, a “divide by zero” error will appear.

Exercise 1.4: Use Goal Seek to find root(s) of the following functions. Plot the 
functions first to obtain an approximation of a desired root.

	 a.	 f(x) = x3 – 17x + 12 = 0
	 b.	 J1(x) = 0  J1 is the Bessel function of the first kind of order 1. It can be 

computed in Excel using the BESSELJ()function. This function has an 
infinite number of roots; find the root between 2 and 5.

	 c.	 Solve for the molar volume of a gas at 400 K and 1200 kPa using the 
van der Waals equation of state. The critical temperature and pressure 
are 500 K and 80 atm, respectively. Use the ideal gas solution for your 
initial guess.

	 d.	 Solve the Colebrook equation for the Darcy friction factor, f, for a 
Reynolds number (NRe) of 105 and a roughness factor, ε/D, of 10−4 (this 
equation holds for Reynolds numbers > 4000):

	

1
0 86

3 7
2 51

0
f

D

N f
+ +









 =. ln

.
.

Re

ε /

	 e.	 Repeat part d using the same roughness factor, but for a range of 
Reynolds numbers from 5000 to 30,000 (pick a reasonable increment). 
Plot the results (friction factor versus Reynolds number). Automate 
Goal Seek for this.

Exercise 1.5: Use the secant method as described in Exercise 1.3 to find the 
root(s) of the functions given in Exercise 1.4. Carefully choose the two ini-
tial guesses so that the function values have opposite signs. The roots found 
may or may not correspond to those found using Goal Seek in Exercise 
1.3—it depends on the initial guesses.
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Exercise 1.6: Solve the problems of Exercise 1.1 using the Newton method.

Exercise 1.7: Repeat Exercise 1.4 parts a and b using the Newton method. The 
derivative of J1(x) is given by

	
′ = −J x J x

x
J x1 0 1

1
( ) ( ) ( )

Exercise 1.8: Repeat Exercise 1.4 using the bisection method.

Exercise 1.9: An additional method for solving single nonlinear equation is the 
“Regula–Falsi” or method of “false position.” Like the bisection method, 
the false position method starts with two points a0 and b0 such that f(a0) 
and f(b0) are of opposite signs, which implies that the function f has a root 
in the interval [a0, b0]. The Regula–Falsi method proceeds by producing a 
sequence of shrinking intervals [ak, bk] that always contain a root of f.

		  At iteration number k, the value

	
c

f b a f a b
f b f ak

k k k k

k k

= −
−

( ) ( )
( ) ( )

	 is computed. As explained below, ck is the root of the secant line through 
(ak, f(ak)) and (bk, f(bk)). If f(ak) and f(ck) have the same sign, then set ak+1 = ck 
and bk+1 = bk; otherwise set ak+1 = ak and bk+1 = ck. This process is repeated 
until the root is approximated sufficiently well.

		  The above formula is also used in the secant method, but the secant 
method always retains the last two computed points, while the false position 
method retains two points that bracket a root. On the other hand, the only 
difference between the false position method and the bisection method is 
that the latter uses ck = (ak + bk)/2.

y

x
a

b – a

f (b)(b–a)
f (b)–f (a)

x*

f (b)

y = f (x)

f (x)

f (a)

–

x– b

FIGURE 1.7  Regula–Falsi method.
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		  A schematic description of the Regula–Falsi method is shown in Figure 1.7.
		  Repeat either Exercise 1.1 or 1.4 using the method of false position.

Exercise 1.10: Refer to the diagram and data of Example 1.7. The dew point 
of a vapor is the temperature at a given pressure at which the first drop of 
liquid is formed. Thus, at the dew point, the ratio of vapor to feed (V/F) is 
essentially one. Conversely, the bubble point of a liquid is the temperature 
at a given pressure at which the first bubble of vapor is formed and at this 
condition V/F = 0.

		  Assume, as in Example 1.7, an ideal mixture (where Raoult’s law applies). 
Also, assume the same mixture and data as shown in Figure 1.4.

	 a.	 At the dew point, V/F = 1 [there is an infinitesimal amount of liquid, 
but it does exist and has a mole fraction for each component (xi ); how-
ever, since there is only an infinitesimal amount of liquid, V = F and 
yi = zi]. Applying the fact that the sum of xi = 1, the following equation 
results:

	

1 0
1

−






=

=
∑ z
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j

jj

nc

		  Since kj are functions of temperature, this nonlinear equation can be 
solved for the temperature (dew point).

	 b.	 At the bubble point, V/F = 0 (L/F = 1) and xi = zi, and if that fact that the 
sum of yi = 1 is applied, the following equation results:
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1

− =
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∑ z kj j

j

nc

		  This nonlinear equation can be solved for the temperature (bubble 
point).

	 The specific assignment is as follows.
	 1.	 Prepare an Excel spreadsheet that calculates for a mixture the bub-

ble point at pressures of 15, 16, …, 25 atm and produces a plot of the 
bubble point versus pressure with suitable annotations and title. Use 
Goal Seek to solve the single nonlinear equation at each pressure. 
Data for the system are given in Figure 1.4.

		  Prepare a Keystroke Macro to find the bubble point at each pres-
sure. That is, record the macro and edit it using a While statement 
so that one keystroke finds all bubble points.

	 2.	 Prepare an Excel spreadsheet that is similar to the one for the bubble 
point, but is used to compute the dew point of the same mixture at 
the same pressures. Put these calculations on the same Worksheet 
as those for the bubble point.
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	 3.	 Transfer the pressure, bubble point, and dew point data to a separate 
portion of the Worksheet and graph both the bubble and dew points 
versus pressure. This produces a phase diagram for the hydrocar-
bon mixture. It should look similar to the following:

Phase diagram
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Ethane     25%
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n-Butane 15%

		  Note that all of the text to fully describe the graph (as in the 
example plot) must be added manually.
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2 Visual Basic® for 
Applications 
Programming

2.1 � Introduction

Visual Basic® for Applications (VBA) is a computer programming language. This 
short introduction is not intended as a complete course on computer programming. 
However, programming involves things that engineers are good at: calculating the 
results of formulas and equations, making logical decisions, and designing algorithms 
(steps to be used to solve a particular problem). VBA is only one of a host of program-
ming languages, some of which are FORTRAN, C, or C++. The reason for using 
VBA instead of any other language is that it allows the use of Excel® worksheets for 
both input and output of data. Excel also makes it easy to put the output data into 
graphical form. Therefore, VBA provides the Excel system with highly flexible pro-
gramming capabilities. Furthermore, VBA is part of Excel—no licensing is required.

A computer program consists of code in the syntax of a specific programming 
language that implements an algorithm. An algorithm can be thought of as a recipe, 
much like the instruction one sees in a cookbook. If the algorithm can be expressed 
(e.g., through words or graphically or by any other means), then the algorithm can be 
translated into any programming language with relative ease. For simple algorithms, 
one can simply begin by writing code in the target language such as VBA; but for 
complex algorithms, it can be foolhardy and frustrating to try to jump directly to 
code writing without some means that encourages algorithm design. The earliest 
method for algorithm design was a graphical tool known as a flowchart. The method 
shown here is related to a flowchart but is known as a structure chart (Bowles 1979; 
Law 1983, 1985) since it enforces a high level of structure to the algorithm.

2.2 � Algorithm Design

Consider, for example, the task of changing a flat tire. The steps involved can be 
expressed in English as follows (these steps are not unique):

	 1.	Remove the spare and be sure it is not itself flat.
	 2.	 If the spare is not flat then proceed; otherwise call AAA!
	 3.	Set the emergency brake and chock the wheels.
	 4.	Remove the jack and set it up in the appropriate place.
	 5.	Loosen the lugs slightly.
	 6.	Jack up the vehicle until the spare no longer touches the ground.
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	 7.	Remove the lugs.
	 8.	Remove the flat tire and put on the spare.
	 9.	Put the lugs back on and tighten slightly.
	 10.	Lower the jack all the way.
	 11.	Tighten the lugs snugly.
	 12.	Done!

Another good idea when several sequential steps are involved is to split them into 
categories (as when preparing an outline for a paper or report). Here is a typical way 
in which this might be done for the flat tire problem:

	 1.	Get ready.
	 a.	 Remove the spare and be sure it is not flat.
	 b.	 Set the brake and chock the wheels.
	 c.	 Remove the jack and set it up.
	 2.	Remove the flat tire.
	 a.	 Loosen the lugs.
	 b.	 Jack up the car.
	 c.	 Remove the lugs.
	 d.	 Remove the tire.
	 3.	Put on the spare.
	 a.	 Place spare on wheel.
	 b.	 Slightly tighten the lugs.
	 c.	 Lower the jack.
	 d.	 Tighten the lugs.
	 4.	Finish up.
	 a.	 Place the flat tire in the trunk.
	 b.	 Take the spare to be repaired.

Writing out instructions in this manner is fine as long as the steps are consecutive 
(sequential), do not require a decision (although step 2 involves a simple go/no-go 
decision), and do not require repetition (doing something over again several times).

Shown in Figure 2.1 is the algorithm expressed as a structure chart.
Comparing the outline form of the algorithm and the structure chart indicates 

that the sequence of operations is “left to right, depth first.” That is, the top (or root) 
node simply gives a title for the algorithm. Control passes down to “Get ready” 
then “Remove and check spare,”…, “Set up the jack,” then “Remove flat,” and so 
forth. Studies have shown that most algorithm designers work better using a two-
dimensional tree rather than a linear outline (or using code directly).

Most algorithms can be expressed using the following logical structures:

•	 Sequence (as in the change flat example of Figure 2.1)
•	 Decision making (ask a question and take different actions depending on 

the answer)
•	 Repetition (performing similar or identical tasks over and over again)

Shown in Figure 2.2 is a structure chart for the tire problem that includes all three 
of these types of operations.
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FIGURE 2.1  Structure chart algorithm design for changing a flat tire.
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FIGURE 2.2  Enhanced structure chart algorithm design for changing a flat tire.
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A “diamond” shape indicates a decision and the lines emanating from it are 
labeled Yes/No or True/False. The “oval” shape indicates repetition. A similar rep-
etition operation could be added each time the lugs are manipulated, but only one 
repetition is shown in order to conserve space.

2.3 � VBA Coding

Now that the basic idea about designing an algorithm has been introduced, it is 
appropriate to look at how to translate the structure chart into VBA code that can 
be executed from within Excel. VBA is a programming language similar to (but in 
some instances different from) Visual Basic. The differences in the two languages 
can be subtle (and frustrating). A simple way to learn VBA is to construct example 
programs and study them. The process of creating a simple example will be “walked 
through,” and it will be seen how that, at any time, help can be obtained from within 
the VBA Editor. The biggest problem when getting help is to “weed out” the myriad 
of topics that are likely to come up. That is, there is no lack of help, but it takes a bit 
of practice to know where to look for what.

Here is a list of VBA topics that are covered (at least partially) in this first example:

•	 Data types (especially Integer, Double)
•	 Declarations (especially Dim, ReDim)
•	 Variables and their declaration
•	 Strings
•	 Constants
•	 Operators
•	 Expressions
•	 Statements
•	 Procedures
•	 Control flow

•	 Conditional
•	 Repetition

2.4 �E xample VBA Project

By “project” is meant a VBA program interacting with an Excel spreadsheet. This 
first example is not one that would actually require a VBA program since it is too 
simple. However, it shows the basics of

•	 Retrieving data from an Excel spreadsheet
•	 Performing operations on the input data
•	 Outputting data to the Excel spreadsheet

To get started, open a blank Excel spreadsheet. The first thing a programmer 
should do is give the “specifications” for the program. The specifications take the 
form of a User’s Manual. It is good programming practice to write the specifications 
first (before even thinking about the algorithm or the code).
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Example Program 2.1: Averaging Numbers

Specification

This program takes numeric data from an Excel spreadsheet and calculates the 
average of the numbers. The input data look similar to the following:

The user must supply a list of numbers to be averaged in a vertical column end-
ing with a “blank” cell. It calculates the average of the numbers and outputs the 
average on the spreadsheet row after the blank cell. For the sample data shown, 
the final appearance of the spreadsheet is as follows:

Note: Before the program is executed, the cursor (selected cell) must be the 
one with the text “Numbers to be Averaged” before running the program.

Algorithm Design

The next step is to “design” the program logic (algorithm) and then (finally) to actu-
ally write the code. A structure chart for the program logic is given in Figure 2.3. 
There are many ways in which the desired operations can be carried out; the steps 
shown are merely one way in which to accomplish the desired steps.

While designing the algorithm, several variable names have been chosen 
(invented). These names are chosen by the programmer and should, in some way, 
be descriptive of the data that they represent. A description of the chosen variable 
names is as follows:

ActRow	 An integer to keep tract of the row number
	 where data are stored in the flowsheet
Sum	 A floating point (double precision) variable
	 to hold the sum of the input numbers
NumNumbers	� An integer variable representing how many 

numbers
	 there are
InputNumber	� A floating point number holding one input data 

value
Average	� A floating point value representing the average 

of the input data values
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Coding in VBA

Now that the algorithm has been sketched out in some detail, it is time to imple-
ment it in VBA code. Note that the “oval” shape indicates repetition: continue to 
get input numbers from the spreadsheet until a 0 or blank is encountered (note that 
a blank is interpreted as zero). The backward arrow (<— —) indicates assignment: 
the entity on the right is computed and placed in the entity on the left. Again, a 
diamond shape represents a decision block.

To create a VBA program from within the Excel environment, go to Developer/
Macros. A screen like the following appears.

Type a descriptive name, such as CalcAverage into the Macro name field. The 
Create indicator will activate; hit Create. This opens the VBA Editor and that screen 
will look similar to the following. Note that the program or macro is automatically 
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FIGURE 2.3  Algorithm for averaging numbers.
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called a Sub (for Subroutine) (similar to a procedure or function in C). For now, all 
of the information to the left of the VBA Editor can be ignored.

The programmer is presented with a “template” for writing the code. The fol-
lowing is a listing of the code written for this problem. It follows carefully the 
algorithm design. Any text after an apostrophe (') is a comment.



28 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

Here are some things to notice about this program:

•	 The first two items are compiler options. The Option Explicit makes it 
imperative that the data type of all variables be declared (using a Dim state-
ment). The Option Base 1 makes any arrays (there are none in this first 
program) start with a subscript of 1.

•	 All variables must be declared in a Dim statement.
•	 Variable names can be any length with a mix of upper and lower case; all names 

are case sensitive. The first character of a variable name must be alphabetic.
•	 Any text beginning with an apostrophe is a comment.
•	 The built-in function Cells(i, j) refers to the i,jth cell in the spread-

sheet, where i is the row number and j is the column number. That is, the 
spreadsheet is treated as a matrix.

•	 Assignment statements use an equal sign (=).
•	 The While loop continues as long as the logical (Boolean) statement is 

True; the last statement in the loop range is the Wend.
•	 The If-Then-Else-End If allows one kind of action if the logical state-

ment is True and another if the logical statement is False.
•	 Character strings are delimited by quote marks as in “No input numbers 

to average.” Remember, anything after an apostrophe is a comment and 
is not part of the code.

To execute the program, go to File/Close and Return to Microsoft Excel®. Enter 
the data to be averaged (the numbers must be in the first column) and then go 
to Developer/Macros/CalcAverage/Run. The program executes and displays the 
average of any numbers entered. If no numbers were entered, the message “No 
input numbers to average” is displayed. While at the Developer/Macros/
CalcAverage/Run menu, Options can be chosen, which gives an opportunity to 
assign a Ctrl key (also called a “hot key”) to the Macro (VBA Program). After this, 
Ctrl+(selected key) can be used to run the program. Note that the selected key is 
case sensitive. The lowercase letter a was used here.

Another way to run the program is to create a button on the spreadsheet to 
do so. Select Developer/Controls/Insert and a pop-up box appears. Select the 
“button-button” (first row, first column) and the cursor turns into a cross-hair. Use 
this cursor to draw a button on the spreadsheet (be sure to drag the cross-hairs cur-
sor across an area—do not just click on a cell). A window appears and the button 
macro can be named (Here, RUN was used). Then hit Record (no name need be 
given here). Hit OK at the next window. Simply type Ctrl+a (or execute the pro-
gram the “long way” via the Developer/Macros/CalcAverage/Run). When the pro-
gram executes, hit the Stop Recording button. If the name on the button does not 
change, right click on it and select Change Text and put RUN in manually. Here is 
what the new spreadsheet looks like (note that different data have been entered):
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When testing a program, data should be entered that exercises all logic of the 
program. In this instance, data should be entered that produces the error message 
as in the following:

Since no numbers were entered, the error message was output. Note that with-
out this safeguard, a divide by zero would be attempted, which causes a system 
error.

2.5 �G etting Help and Documentation on VBA

While in the VBA Editor, much can be learned about the language by clicking the 
question mark (?). Follow the choices until getting the VBA Language Reference, 
and there will be a number of choices, some of which will not mean much until later. 
Another way to learn about VBA is by recording a Keystroke Macro and then look-
ing at the code (recall the exercise when a While Loop was inserted into a recorded 
Macro involving Goal Seek).

Click on any of the items listed to get detailed information. Ones of probable 
particular interest are the following:

•	 Constants
•	 Data types
•	 Groups
•	 Operators
•	 Statements

It might be helpful to peruse the available Functions as well as other Help topics. 
A word of warning: there is much more information available than many people will 
want to investigate.

2.6 � VBA Statements and Features

In Example 2.1 that calculates the average of a list of numbers, many statements and 
features of VBA have been introduced informally. The following VBA components 
are now discussed in some detail:

•	 Assignment statement
•	 Expressions
•	 Object-oriented programming (OOP) and the properties of objects
•	 Built-in functions (Abs, Exp, etc.)
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•	 Program control
•	 Branching (If-Then-Else)
•	 Looping (For...Next, While-Wend)

•	 Data types (Integer, Long, etc.)
•	 Subroutines and functions
•	 Objects and methods
•	 Getting data from a worksheet
•	 Putting data onto a worksheet
•	 Alternative I/O methods
•	 Arrays in VBA (static and dynamic arrays)

2.6.1 � Assignment Statement

The general form of the assignment statement is

Variable = Expression

Variable names must begin with an alphabetic character and can contain digits 
(0…9) and the underscore character ( _ ). Variable names can be of any length, 
and good practice is to mix uppercase and lowercase letters to make the names self-
documenting. For example, SumOfNumbers takes on obvious significance, whereas 
sumofnumbers is not so obvious. Variable names cannot be the same as a VBA “key-
word.” There are hundreds of these keywords, and this can be problematic.

2.6.2 �E xpressions

There are many different types of expressions in VBA. Among these are numerical, 
logical (Boolean), and character string expressions.

2.6.2.1 �N umerical Expressions
The most common type is a numerical expression involving the algebraic operators 
as follows:

^ Exponentiation

* Multiplication

/ Division

+ Addition

− Subtraction

Parentheses can be used (and should be used liberally) to reflect the exact hier-
archy of operations. The operational hierarchy is the same as for standard algebraic 
expressions as follows:

	 1.	Parentheses
	 2.	Exponentiation
	 3.	Multiplication/division
	 4.	Addition/subtraction
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When operations are at the same hierarchical level, they are performed from left 
to right.

2.6.2.2 �L ogical (Boolean) Expressions
The result of a logical expression is either True or False (these are two VBA “key-
words”). Boolean expressions are composed of comparative sub-expressions and/
or logical operators. Comparative operators are <, < =, >, > =, =, < > and the 
logical operators are And, Or, and Not (these are VBA keywords). Here are a few 
examples:

a < b And c = a	� In the operator hierarchy, comparative operators come before 
logical operators, so this is the same as the next one. Putting 
parentheses around the comparatives makes the meaning clear 
and this practice is encouraged.

(a < b) And (c = a)	�The expression is True only if both comparisons are True.
(a < b) Or (c = a)	 �The expression is True if either or both comparisons are 

True.
Not (a = b)	 Same as a <> b.

2.7 �Ob jects and OOP

OOP may be seen as a collection of cooperating objects, as opposed to a traditional 
view in which a program may be seen as a list of instructions to the computer. In OOP, 
each object is capable of receiving messages, processing data, and sending messages 
to other objects. Each object can be viewed as an independent little machine with a 
distinct role or responsibility.

A thorough treatment of OOP is far beyond what can or need be covered in this 
text. It is only important to grasp the basic ideas and know where to get help when 
it is needed.

Some examples of VBA objects are the Workbook object, the Worksheet object, 
the Chart object, and the Range object. To get an alphabetic list of objects, when 
in the VBA editor, click the question mark and then select Microsoft Visual Basic 
Reference/Objects.

Objects have methods, which are invoked in the traditional syntax of OOP using a 
period separator. To get an alphabetic list of methods, when in the VBA editor, click 
the question mark and then select Microsoft Visual Basic Reference/Methods.

As an example, the following is a commonly used invocation of an object.
method command:

Worksheets(ActiveSheet.Name).Activate

The object Worksheets (ActiveSheet.Name) takes on the identity of the 
active worksheet (the one that is currently showing when the Excel window is active). 
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The Activate method tells the current VBA program that any further references to 
an object (Range, for example) refer to cells of the active worksheet. Effectively, this 
statement makes the current worksheet the “active” one. For Excel files with multiple 
worksheets, this can be an important distinction. A VBA program with this state-
ment in it can then be invoked from any of the worksheets, and all references to, for 
example, Cells(I, J) refer to objects within the worksheet from which the VBA 
program is executed. In other words, if the VBA program was created while Sheet 
1 was active and later it is used when Sheet 2 is active, then Cells(I, J) refers 
to cells on Sheet 2. Without the Activate command, the cells in Sheet 1 would 
be referred to by default.

Here is another example:

Range(“A1:E150”).Sort “Last Name”, xlAscending

This says sort the data contained in the range A1:E150 in ascending order using 
as the sort key the values in the column headed by the label Last Name. The label 
xlAscending is one of the many VBA built-in constants.

A list of all of the VBA objects and associated “members” can be viewed by 
clicking on View/Object Browser when in the VBA Editor. The Object Browser 
looks like this:

Notice that the Worksheet object is selected, so its members appear in the right-
hand column (and among these members is Activate). There are two Activate 
entries: one is a “subroutine” and one is an “event.” Right clicking on the one with the 
“lightning bolt” and selecting “Help” gives the following:
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By selecting “Activate method as it applies to the Worksheet object,” the follow-
ing window appears:

Thus, Worksheet.Activate does the same as clicking on the sheet’s tab, but 
it is done under program control instead of with the mouse pointer.

2.8 � Built-In Functions of VBA

There are many built-in functions in VBA, but only a small number of them apply 
to scientific and engineering applications. Table 2.1 shows a list of just a few of 
them.
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To see the entire list, click the question mark for help. Then choose Microsoft 
Visual Basic Documentation/Visual Basic Language Reference/Functions. The 
functions are grouped alphabetically.

Also shown in Table 2.1 are the corresponding Excel functions (ones that can be 
accessed directly from a Worksheet). Note that the VBA functions are capitalized. 
Perhaps the most confusing one is Sqr for taking the square root. The corresponding 
Excel function is the more usual SQRT.

Excel functions that have no VBA counterpart can be called from VBA. For 
example, if it is desired to use the Pi() function within a VBA program, the 
Application method can be used as in the following Function:

This code produces the value of π when the Function PiCalc is called.

Table 2.1
Short List of VBA Functions and Their Excel® 
Counterparts

Purpose VBA Function Excel Function

Absolute value Abs(x) ABS(x)

Truncate to integer Int(x) INT(x)

Round x to n digits after decimal Round(x, n) ROUND(x, n)

Square root Sqr(x) SQRT(x)

Exponential Exp(x) EXP(x)

Natural log Log(x) LN(x)

Base 10 log - LOG10(x)

Base b log - LOG(x, b)

Value of π - PI()

Sine Sin(x) SIN(x)

Cosine Cos(x) COS(x)

Tangent Tan(x) TAN(x)

ArcSine - ASIN(x)

ArcCosine - ACOS(x)

ArcTangent Atn(x) ATAN(x)

ArcTangent (4 quadrant) - ATAN2(x, y)

Degrees to radians - RADIANS(x)

Radians to degrees - DEGREES(x)

Remainder (x modulo y) x Mod y MOD(x, y)

Random number Rnd() RAND()



35Visual Basic® for Applications Programming

2.9 �P rogram Control

Program control statements include those for decision making (branching) and for 
looping. Many such statements available in VBA are discussed below. Ones less 
frequently used (or ones that are repetitious) are not covered.

2.9.1 � Branching

Two popular branching or decision making statements in VBA are the If-Then-Else and 
the Select Case statements. Since anything that can be done with the Select Case statement 
can be implemented just as well using If-Then-Else, Select Case is not presented here.

2.9.1.1  If-Then-Else
The syntax of the If-Then-Else statement is

If Logical Expression Then
statements 1	 ‘this can be any number of statements on separate lines

Else
statements 2	 ‘this can be any number of statements on separate lines

End If

Simpler forms of this statement are possible, but it is easier to always use this 
form, which is more formally called the Block If statement. The Else clause can be 
omitted if there is no else “branch” in the program logic. It is good programming 
practice to indent the statements in each branch. Here is a simple example:

IF a < b Then
	 c = a + b
Else
	 c = a – b
End If

The amount of indentation to use is up to the programmer. The simplest thing 
is to use the Tab key to provide indentation, but at least two space indentation is 
recommended.

2.9.2 � Looping

There are four looping statements in VBA (For...Next, Do While...Loop, Do...Loop 
While, For Each...Next). Only the first two of these are presented since the other two 
are repetitious (or can be confusing).

2.9.2.1  For…Next
This is a simple “counting” loop and it has the following syntax:

For Counter = Start To End [Step Increment]
	 Statements
Next [Counter]
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Counter is a variable name (usually of an integer type). On entering the loop 
(executing Statements the first time), Counter is initialized to the variable (or 
expression) Start. After the Statements are executed the first time, Counter 
is incremented by 1 unless the optional Step Increment is used. For exam-
ple, using Step 2 means that Counter is incremented by 2 instead of 1. The 
Increment can be negative so that counting is backward. Looping continues until 
Statements are executed with Counter having the value of End. Note that if 
Counter is not an integer type, there can be some questions about its value the last 
time through the loop. Here is a very typical example:

For i = 1 To n
x(i) = i

Next i

In the example, the Counter is the variable i, Start is 1, and End is the value 
of the variable n. So, i takes on the values 1, 2, …, n, after which control passes 
to the statement after the loop.

2.9.2.2  While...Wend Statement
This looping statement executes a series of statements as long as a given condition is 
True. The syntax of this statement is

While condition
statements

Wend

If condition (a logical expression) is True, all statements are executed 
until the Wend statement is encountered. Control then returns to the While state-
ment and condition is again checked. If condition is still True, the process is 
repeated. If it is not True, execution resumes with the statement following the Wend 
statement. While...Wend loops can be nested to any level. Each Wend matches the 
most recent While.

2.10 � VBA Data Types

All of the VBA data types are shown in Table 2.2. For floating point numbers, it is 
best to always use Double, which provides about 15 significant digits. Most mod-
ern computers are equipped with floating point processors, so using Double (as 
opposed to Single) costs essentially nothing. For integers, it is best to use Long 
(instead of Integer) since integers outside the range +/– 32,767 occur sometimes. 
Boolean data types can be useful in some applications.

The keyword DIM is used to specify the data type of a variable. When Option 
Explicit is used (as is always recommended), the type of every variable in the pro-
gram must be specified explicitly. Later it will be seen that DIM is also used to 
specify an Array data structure. Table 2.2 summarizes some of the VBA built-in data 
types. Only the types most often used are included. A full list of data types can be 
viewed via the Help system.
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2.11 �S ubs and Functions

A VBA program is automatically a “Sub” or Subroutine. The introductory VBA 
example program for getting the average of a list of numbers began with

Sub CalcAverage()

In addition to Subs, VBA also has Function subprograms. Here are the differ-
ences between the two:

	 1.	A Sub can receive information (properties) and it can change or set 
properties.

	 2.	A Function can only receive properties.
	 3.	A Sub is invoked by a “Call” statement.
	 4.	A Function is invoked simply by using its name.

A Sub has the following syntax:

Sub name ([arglist])
Statements

End Sub

Things within square brackets are optional. The definition of arglist is as 
follows:

arglist:	 �A list of variables representing arguments that are passed to the Sub 
procedure when it is called. Multiple arguments are separated by commas.

Table 2.2
VBA Built-In Data Types

Data Type
Storage 

Required Range of Values

Boolean (logical) 2 bytes True or False
Integer 2 bytes –32,767 to 32,768
Long 4 bytes –2,147,283,648 to 2,147,283,647

Real (single 
precision)

4 bytes –3.402823E+38 to –1.401298E-45 for negatives
1.401298E-45 to 3.402823E+38 for positives

Double (double 
precision)

8 bytes –1.79769313486232E+308 to –4.94065645841247E-324 for 
negatives

4.94065645841247E-324 to 1.79769313486232E+308 for 
positives

String 1 byte/char. Delimited by quote marks (“).
Variant 16 bytes +

1/char.
Any numeric value up to the range Double or any text.
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In its simplest form, arglist consists of variable names separated by commas. 
Consider for example

Call Alpha(Beta, Gamma)

The name of the subroutine is Alpha. Beta and Gamma are the arguments or 
parameters (often called the actual arguments) of the subroutine in the calling pro-
gram. When the subroutine is coded, it might appear as follows:

Sub Alpha (Delta, Epsilon)

Here, Delta and Epsilon are what we call dummy parameters since they take 
on information provided by the actual arguments when Alpha is called.

The actual parameters can be “sent” to the subroutine in one of two modes:

•	 By reference: What is sent to the subroutine is the memory location of the 
parameter. Therefore, if the parameter is altered by the subroutine, such 
changes will be known to the caller when control is passed back at the end 
of the subroutine (often called “returning” from the subroutine). This is the 
default mode for parameter passing.

•	 By value: If an actual argument is a constant, then it is automatically 
passed by value (it would be chaotic if the constant 2 suddenly represented 
the number 3, for example). It is rare that a variable name used as an argu-
ment is to be passed by value, but if so, simply enclose it in parentheses 
as in

Call Alpha((Beta), Gamma)

Here, only the current value of Beta is sent to the subroutine. Using the same 
dummy variables as previously (Delta, Epsilon), any changes made to Delta 
by the subroutine are not transmitted back to the calling program.

2.12 � Input and Output

2.12.1 �G etting Data from the Worksheet

In traditional programming (such as with C++), the source of input data is usually 
either the keyboard or (usually when there are lots of data) a file. When using VBA, 
which is an integral part of Excel, the natural source of input is from the Worksheet 
itself.

In Example Program 2.1, the following statement appeared:

InputNumber = ActiveSheet.Cells(ActRow, 1)

The Cells method treats the spreadsheet as a two-dimensional array represent-
ing the rows and columns. If the variable ActRow is 3, for example, then the variable 
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InputNumber is assigned whatever value is contained in the cell in the third row 
and first column. It is possible using the Range object to write a statement that 
inputs values from a collection of cells (but this tends to make things more complex 
than they need be).

2.12.2 �P utting Data onto the Worksheet

The procedure for “writing” output data to the active worksheet simply reverses the 
assignment used for input. Another example taken from the sample program is as 
follows:

ActiveSheet.Cells(ActRow + 1, 2) = Average

The value currently stored in the variable Average is written into the cell refer-
enced on the left of the assignment.

2.13 � Array Data Structures

An Array is the equivalent of a subscripted variable. There are one-, two-, or even 
higher-dimensional arrays. As with scalar variables, arrays are declared in a Dim 
statement as in

Dim x(4) as Double

In this example, the array x consists of 5 elements: x(0), x(1), x(2), x(3), and 
x(4). By default, the first subscript is 0. However, starting at zero can lead to confu-
sion, and it is recommended to always include

Option Base 1

Then subscripts begin with 1, which many find more natural. For those comfort-
able with subscripts starting at zero, this option need not be used. For all programs 
in this book use, Option Base 1 is used.

For a two-dimensional array (matrix), an example declaration is as follows:

Dim y (3, 4)

The matrix y has 3 rows and 4 columns (assuming subscripts start at 1).

Example Program 2.2: Using an Array

The following is a modified version of the program of Example Program 2.1. Here 
an Array is used to store the numbers to the averaged. A “For” loop is then used 
to compute the Sum of the numbers. An additional “check” is included to be sure 
that the number of data items does not exceed 20, which is an arbitrary hard-
coded dimension for the array InputNumbers.
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2.13.1 � Array Arguments

Each of the next two versions of the example program uses a subroutine to do some 
of the work. The subroutine is named Summer and is declared as follows:

Sub Summer(N, Nums, Avg)

The “dummy” parameters N, Nums, and Avg do not appear in a Dim statement. 
They “inherit” the data type and structure of the actual argument when the subrou-
tine is called. The calling statement in the next two examples is

Call Summer(NumNumbers, InputNumbers(), Average)

The empty parentheses after InputNumbers identify it as an array argu-
ment, and the dummy Nums becomes an array structure of whatever length 
InputNumbers happens to be. These parentheses are not essential but they help to 
document the array argument.
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Example Program 2.3: Using a Subroutine

The same program is changed again, this time using a Sub with arguments to per-
form the summing and averaging operations:
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2.13.2 � Dynamic Arrays in VBA

It is often the case that it is not known ahead of time how large an array’s dimensions 
need to be. It is wasteful of memory (and poor programming practice) to simply make the 
dimensions arbitrarily large. To circumvent this problem, VBA provides the ReDim state-
ment so that the dimensions of an array do not have to be “hard coded” in the program.

Example Program 2.4: Use of ReDim

To illustrate the use of ReDim, one more version of the example program is shown. 
The input data format is changed so that the very first number in the list is not 
one of the numbers to be averaged, but it indicates how many numbers there are 
(and thus the required size of the array that holds the numbers). In this version, the 
dimension of InputNumbers is left blank (note the empty parentheses), and then 
the following statement makes the dimension what it needs to be:

ReDim InputNumbers(NumNumbers)

Another approach that does not require the number of data items known in 
advance is to again use a While loop to detect a zero or sentinel value and put a 
ReDim statement within the While loop. When designing a program, it is wise to 
think of different ways in which to accomplish the same task.
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2.14 � Alternative I/O Methods

Using the Cells method is straightforward and the one that is most often used for 
input and output. There are other methods worthy of mention, however.

2.14.1 U sing Range.Select

The Range.Select combined with the ActiveCell object can accomplish 
essentially the same thing that Cells does. Here is an example:

Range(“b10”).Select
v = ActiveCell.Value

This inputs into the variable v whatever value is in cell B10. The .Value method 
is actually the default for ActiveCell and can be omitted. This technique of input 
is more unwieldy than the Cells method.

2.14.2 �U sing Message Box

The built-in function MsgBox can be used to send a message to the user without it 
appearing in a worksheet cell. Here is an example:

MsgBox “This program finds the average of a list of numbers”

This pops up a box containing the quoted message overlaid onto the active 
worksheet.

2.14.3 �U sing Input Box

The built-in function InputBox can be used to both send a message to the user and 
to obtain data from the user without it appearing in a worksheet cell. Consider the 
example:

a = InputBox(“Please enter the first value to be added”)

A box pops up on the worksheet with the quoted prompt and a place for the user 
to type in the value requested (in this case, for the variable a).

Example Program 2.5: Using MsgBox and InputBox for Input/Output

Another version of the example program for finding the average of a list of num-
bers is shown below. In this case, MsgBox and InputBox are used for input and 
output. Note that three consecutive quote marks are required for one quote mark 
to appear.
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The & symbol is the “concatenation” operator. It appends the value of the variable 
Average to the preceeding text.

2.15 �U sing Debugger

The Debugger allows many operations that assist in finding errors in programs or in 
the input data. When opening an Excel spreadsheet file that contains a VBA macro 
then going to Tools/Macros and Edit, the Debug menu is among those that appear. 
By selecting from the Debug menu Step Into, the Sub statement is highlighted 
(in yellow). The program is now running but under your control. To view the Debug 
Toolbar, go to View/Toolbars and select Debug. The following is what the screen 
looks like for the CalcAverage4 VBA example:
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To single step through the program, use F8 or the Step tool button, which is the 
one just to the right of the “Hand” icon in the Debug Toolbar. Here is what the screen 
looks like after stepping down to the ReDim statement. Here the Debug/Add Watch 
menu was used to display at the bottom the values of the variables ActRow and 
NumNumbers.

From the Debug menu, several useful operations can be invoked to aid in tracking 
down a programming error. For example, a “breakpoint” can be placed on any state-
ment so that when Run (instead of single stepping) is chosen, execution halts when 
that statement with a breakpoint is reached. At that time, the value of any variable 
can be viewed. Note that in addition to using the Set Watch feature, values of a scalar 
variable can be observed simply by placing the cursor over the variable’s name.

Using the Debugger can provide a powerful tool in tracking down programming 
errors and errors in input data. This discussion has only touched on a few features 
of the Debugger.

Example Program 2.6: Modified False Position

The method of false position is a “hybrid” of the bisection and secant methods. 
This method assumes two starting points having opposite function signs. A new 
point is found by drawing a straight line between the bracketing points. One of 
the old points is discarded depending on the sign of the function at the new point. 
This is depicted in Figure 2.4.
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The formula for finding improved values for x using the notation of Figure 2.4 
is as follows:

	
x x

x x f x
f x f xm L

R L L

R L

= − −
−

( ) ( )
( ) ( )

.	 (2.1)

An inefficiency of the method of false position is that one of the end points 
tends to become stagnant. That is, the end point remains unchanged for several 
iterations. A modification to overcome stagnation is to detect when it occurs and 
to take action to avoid it. An effective modification is to simply halve the stagnated 
f(x) value in the update formula. While the modified false position method can be 
implemented directly in Excel, the logic required is sufficiently complex to make 
using VBA a better choice. Program specification, algorithm design, coding, and 
testing are now given where the problem is to find the root between 0.4 and 1.2 
of the function

	 f(x) = tan x − x − 0.5	 (2.2)

Specification

It is necessary to place on the spreadsheet user interface the two initial values of 
x that bracket the root. If the initial values do not bracket the root, the program 
should terminate with an error message. It is desired that at each iteration the val-
ues of xL, xR, f(xL), f(xR), xm, and f(xm) be displayed along with an iteration counter. 
Shown below is one way the spreadsheet might appear before program execution:

f(x)

f(xR)

f(xL)

xL

xM xR
x0

FIGURE 2.4  Modified false position method.
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The program then computes and displays the remaining values for Iteration 
1. The update formula, Equation 2.1, is used to compute xm. Next, either xL or xR 
is replaced by xm (based on the sign of f(xm)), and a new iteration is performed. 
When the absolute value of the difference between xL and xR is less than a toler-
ance (1.E-8), the following message is shown:

Solution is within tolerance

To prevent continued iterations when convergence is very slow, a maximum 
number of iterations (100) is invoked, and the following error message is displayed:

Maximum iteration reached; Solution might not be valid

If the initial values of xL and xR do not bracket a root, the following error mes-
sage is displayed:

Root is not bracketed, please try again

Algorithm Design

An “outline” summary of the logic for this program is as follows:

	 1.	Get input data and fill out the first line of the output.
	 2.	Compute xm and f(xm).
	 3.	 If f(xm) has the same sign as f(xR), then replace xR with xm and set a repetition 

counter for xR to zero while incrementing a repetition counter for xL.
	 4.	Otherwise, f(xm) has the same sign as f(xL) so replace xL with xm and set a 

repetition counter for xL to zero while incrementing a repetition counter for 
xR.

	 5.	Output a line on the spreadsheet.

This process is repeated until the absolute value of the difference between 
xL and xR is less than the tolerance or the maximum number of iterations has 
occurred (Figure 2.5).

Coding could be attempted using the brief outline summary of the algorithm, 
but by using a structure chart, even more detail can be displayed and envisioned 
unambiguously prior to coding. Such a structure chart appears below, accompa-
nied by a list of variable names used within the chart.

Dictionary of Variables

Name	 Definition
Tol	� Tolerance to detect small differences between x 

values
iMax	� Maximum iteration before terminating with error 

message
xL	 One of the x values
xR	 The other of the x values
fxL	 f(xL)
fxR	 f(xR)
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Dictionary of Variables (cont.)

i	 Iteration counter and row counter for output
fCalc	� Function subprogram that computes the function to 

zero
xM	 Updated x value from Equation 2.1
fxM	 f(xM)
RepeatR	 Repetition indicator for xR
RepeatL	 Repetition indicator for xL

VBA Code

Shown below is the VBA code that matches the logic of the structure chart. At the 
end of the code is the Function subprogram fCalc that provides the value of the 
function whose root is desired.

Modified
false

position

Tol <-- E-8
iMax <-- 100

Get xL and
xR from

Excel

Compute
fxLand fxR

fxL*fxR
< 0

Yes No

Root not
bracketed, give
error message

fxR <--
fCalc(xR)

fxL <--
fCalc(xL)

Set iteration
counter i to 1

Output fxL
and fxR

Root is
bracketed

i > =
iMax

Yes No

i < iMax and
|fxL| > Tol and

|fxR| > Tol

Give error
message

Output the
solution

Increment i
<-- i + 1

Calculate xM
from Equation

2.1

fxM <--
fCalc(xM)

Output xM
and fxM on

line i

Replace xL or
xR with xM

On line i + 1,
output i, xL,
xR, fxL, fxR

Yes No

fxR*fxM
>0

Replace xR
with xM

Replace xL
with xM

NoYes

Repeat
L > 1

xR <-- xM
fxR <-- xfM

RepeatR <-- 0
RepeatL <--
RepeatL + 1

fxL <--
fxL/ 2

fxR <--
fxR/ 2

xRL <-- xM
fxL <-- xfM

Yes No

Repeat
R > 1

Repeat <-- 0
RepeatR <--
RepeatR + 1

R

FIGURE 2.5  Algorithm for modified false position.
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Testing

The spreadsheet after executing the VBA program appears as follows:

It can be detected from the output that xR tends to be stagnant. Each time 
RepeatR is greater than 1, the fxR value is halved in Equation 2.1. This has a 
marked effect on the rate of convergence. Exercise 2.1 at the end of this chapter 
involves programming the unmodified false position method. Upon executing that 
program for the same test problem as shown in this example, the stagnation of xR 
will be observed.

Exercises

Exercise 2.1: Further test the VBA program of Example 2.6 as follows:
	 a.	 Put in two initial points that do not bracket the roots. This should pro-

duce the appropriate error message.
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	 b.	 Test the program using different initial points. Some suggested ones are 
(0.1, 1.5) and (0.01, 1.55).

	 c.	 Test the program for the van der Waals problem as given in Example 
1.1 of Chapter 1. Choose two initial points from the graph of the func-
tion shown in Figure 1.1. Shown below is one way to alter the Function 
Subprogram Fcalc for this problem:

Function Fcalc (V)
Dim R, T, P,  Tc, PC ,a, b As Double

R = 0.08206
T = 250
P = 10
Tc = 407.5
Pc = 111.3
a = 4.238448175
b = 0.037555537

End Function

Fcalc = (P + a / V   2) * (V - b) - R * T>

Exercise 2.2: In order to appreciate the increased efficiency of the modified 
false position method, redesign and reprogram Example 2.6 so that the 
original false position method is implemented.

	 a.	 Compare the output of the program for the same test function as 
Example 2.6 and using the same initial points with that of Example 2.6.

	 b.	 Repeat part a using (0.01, 1.55) as the initial point. Does the algorithm 
converge?

	 c.	 Repeat this exercise using the van der Waals function as described in 
Exercise 2.1c.

Exercise 2.3: Write a VBA program (Macro) to automate the process of find-
ing xL and xR that give function values with opposite signs. Use the function 
of Example 2.6 for testing the program. This can be done in a wide variety 
of ways, but here is a suggested method:

	 a.	 Prepare a spreadsheet that looks like the following:

xL xR fxL fxR
0.001 0.005

		  The program “reads” the values of xL and xR and computes the 
associated function (that should be zero at a solution). The program 
displays these two function values. If the functions have opposite signs, 
the program terminates; otherwise

	 b.	 Use the InputBox feature to prompt for a new xR value. This new 
value replaces the original one in the spreadsheet and again displays 
the two function values. This is all displayed on the next line in the 
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spreadsheet. The process continues until the program terminates with 
function values having opposite signs. Note that xR values less than xL 
values are possible.

Exercise 2.4: Design and Code a VBA program to perform the following 
tasks:

	 a.	 Generate a list of 20 numbers between 1 and 100 using the Excel func-
tion RANDBETWEEN. Select these numbers and copy them (by value) 
to another column (the reason for this is that RANDBETWEEN updates 
the list each time an operation is performed in the spreadsheet).

	 b.	 Input the list of numbers generated in part a. Any method can be used to 
indicate the “end of data,” such as a blank cell as used in Example 1.1.

	 c.	 Compute the following “statistics” for the input numbers:
	 1.	 Average
	 2.	 Standard deviation
	 3.	 Largest in absolute value
	 4.	 Smallest in absolute value

	 Necessary formulas are as follows:
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		  Check your results by using the Excel functions AVERAGE, STDEV, 
MAX, and MIN.

Exercise 2.5: A very inefficient way to compute the value of π is as follows:
		  Consider a circle of radius ½ circumscribed by a unit square (each side 

is 1 unit). Recall that the equation of a circle is

	 x2 + y2 = r2

		  If N random values are generated for x and y between 0 and ½, the num-
ber of times the random coordinates are within the circle (x2 + y2 ≤ r2) can 
be “tallied.” Call this Nin. Then the area of the circle can be estimated as

	 A = Nin/N

		  It is also known that

	 A = πr2
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		  So, π can be estimated as

	 π = (Nin/N)/r2 = (Nin/N)/0.25 = 4(Nin/N)

		  Write a VBA Macro to “read” N from the spreadsheet and output the 
estimated value of π. Each time the Macro is run, a different estimate of 
π appears since each time, different random numbers are generated. To 
“smooth” out the randomness of the estimate, for each N, repeat the execu-
tion of the Macro 10 times (the program should be altered to do this auto-
matically) and then output only the average of the 10 estimates.

		  Repeat this exercise for N = 10, 100, 1000, and 10,000. Make a table of 
N versus the absolute value of the error in the π estimates and show these 
on a graph using a logarithmic scale for N.

		  Even though this is a very inefficient way to compute π, it makes a good 
problem for doing VBA programming.

		  By the way, the VBA function to generate a random number between 0 
and 1 is RND.

Exercise 2.6: Sorting is a frequently used operation in many data processing 
applications. Excel has a powerful sorting tool, available from the Data/
Sort menu. If it is desired to sort data under control of a VBA program, 
such code might need to be written. The so-called bubble sort algorithm 
is not a very efficient one, but it is easy to program and it easily will suf-
fice for small data sets. The essence of the bubble sort method is as fol-
lows: Repeatedly step through the list to be sorted, comparing two items 
at a time and swapping them if they are in the wrong order. The process is 
repeated until no swaps are needed, which indicates that the list is sorted. 
The algorithm gets its name from the way smaller elements (when sorting 
in a descending order) “bubble” to the top of the list. The following is a 
pseudo-code description of the process. Pseudo-code looks similar to VBA 
code, but no particular attention is paid to strict coding rules. The pseudo-
code assumes that the array name is A and its length is N.

swapped = true
while swapped

swapped = true

swapped = false

end if
end for

end while

‘a swap indicates an unsorted list
swap A(i) and A(i+1)

if A(i) > A(i+1) then
for i =1 to N - 1

‘temporarily assume the list is sorted

‘swapped is a logical (boolean) variable

		  This logic could just as easily have been illustrated with a structure 
chart.
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		  Generate a list of 20 numbers between 1 and 100 using the Excel func-
tion RANDBETWEEN. Select these numbers and copy them (by value) to 
another column (the reason for this is that RANDBETWEEN updates the 
list each time an operation is performed in the spreadsheet). Write a VBA 
program to input the copied numbers and sort them into descending order 
using bubble sort. Output the sorted numbers to the spreadsheet. Be sure to 
give an error message if no numbers are entered.
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3 Linear Algebra and 
Systems of Linear 
Equations

3.1 � Introduction

Linear algebra is a topic that many students of numerical methods will have been 
exposed to in mathematics classes. In this chapter, a brief review of linear algebra is 
given along with numerical methods for solving problems that are common in engi-
neering and scientific applications. Linear algebra involves the manipulation of linear 
relationships and usually involves the use of vectors and matrices. The most common 
problem class of linear algebra is the solution of a set of linear algebraic equations.

3.2 �N otation

•	 Scalars are indicated by a lowercase letter.
•	 Vectors are also identified by a lowercase letter. The context distinguishes 

between a scalar and a vector.
•	 Matrices are designated by a capital letter.
•	 By default, vectors are column vectors. To show a row vector, the transpose 

operator (a superscript T) is used (as in xT ).
•	 When necessary, the dimensions of matrices and vectors are shown by sca-

lar subscripts. For example, Am×n indicates a matrix with m rows and n col-
umns. Further, yn×1 designates a column vector of n elements.

Definition: The equation

	 ax + by + cz + dw = h	 (3.1)

where a, b, c, d, and h are known numbers, while x, y, z, and w are unknown num-
bers (variables), is called a linear equation. If h = 0, the linear equation is said to be 
homogenous. A linear system is a set of linear equations, and a homogenous linear 
system is a set of homogenous linear equations.

For example,

	

2 3 1

3 2
1 2

1 2

x x

x x

− =
+ = −

	 (3.2)
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is a linear system. But

	

2 3 1

1
1 2

2

1 2

x x

x x

− = −
+ = 	 (3.3)

is a nonlinear system (because of x2
2).

The system

	

2 3 3 0

3 0

0

1 2 3

1 2

1 2 3

x x x

x x

x x x

− − =
+ =

− + =
	 (3.4)

is a homogenous linear system.
Vectors and matrices offer a convenient, compact way of representing, manipulat-

ing, and solving linear systems. These are introduced in the next few sections.

3.3 � Vectors

A vector is an ordered set of numbers arranged as a column (the default). An 
m-element vector takes the form

	

x

x

x

xm

=





















1

2



	 (3.5)

The use of square brackets to enclose the elements is common notation.
Note that lowercase letters (without subscripts) are used to represent the entire 

vector. Individual elements of a vector are subscripted according to their place-
ment within the vector. For example, x3 indicates the third element in the column 
vector x.

Note on vectors of physics and mechanics: Engineers are familiar with vectors 
as they appear in problems of physics and mechanics. For example, Newton’s law of 
motion takes the form

	




F ma= 	 (3.6)

where 


F  is the applied force vector, m is the mass of the object, and 


a is the accel-
eration vector. The overbar arrow notation is commonly used to distinguish vectors 
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from scalars. The physical vectors are one-, two-, or three-dimensional since they 
represent quantities in physical space. There is no difference between these physical 
vectors and those of linear algebra, but the notation is slightly different and linear 
algebra vectors can be of any size. The vector 



F  can be written in component form as

	



F

F

F

F

x

y

z

=



















	 (3.7)

where each component represents the magnitude of the force in each of the three 
Cartesian coordinates. In summary, physical vectors are a special case (three-
dimensional) of the more general mathematical vector concept.

3.4 � Vector Operations

3.4.1 � Vector Addition and Subtraction

Only vectors of the same size (same number of elements) and shape (column or row) 
can be added or subtracted. The shorthand notation

	 c = a + b

is equivalent to element by element addition:

	 ci = ai + bi; i = 1, n	 (3.8)

3.4.1.1 � Multiplication by a Scalar
If a is a vector of length n and σ is a scalar, then

	 b = σa

is equivalent to the following where each element of a is multiplied by σ:

	 bi = σai; i = 1, n	 (3.9)

3.4.2 � Vector Transpose

The transpose operator indicates an interchange of rows with columns and vice 
versa. If u is a (column) vector, then a row vector is indicated by uT.
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3.4.3 � Linear Combinations of Vectors

A linear combination of two vectors involves the multiplication of each vector by a 
scalar and then adding the results. The shorthand notation

	 αu + βv = w	 (3.10)

can be summarized as follows:

	

α β

αu

u

u

v

v

vm m

1

2

1

2

 





















+





















=

uu v

u v

u v

w

w

wm m m

1 1

2 2

1

2

+
+

+





















=






β

α β

α β
 
















	 (3.11)

This concept can be extended to any number of scalars and vectors as long as all 
of the vectors have the same “shape” (row or column vector) and size.

3.4.4 � Vector Inner Product

The vector inner product is the same as the familiar “dot” product of physical vec-
tors. The following are equivalent notations, where x is an n-element vector and y is 
an n-element vector:

	

σ = ⋅ = = =
=

∑x y x y y x x yT T
i i

i

n

1

	 (3.12)

The inner product is always the result of multiplying a row vector by a column 
vector (the reverse is called the “outer” product and is discussed later). The result of 
the inner product is a scalar (a single number).

Example: Let x =
















1
2
3

 and y =
















2
1
3

. Then

	 x · y = xTy = yTx = 1 · 2 + 2 · 1 + 3 · 3 = 13	 (3.13)

3.4.5 � Vector Norm

The usual (L2) norm of a vector is the square root of the sum of squares of elements. 
For a vector, v, of n elements,
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v v v vi

i

n

T= =
=

∑ 2

1

	 (3.14)

A less useful norm, called the L1 norm, is the sum of absolute values of the vector 
elements.

3.4.6 �O rthogonal Vectors

The vector inner product has an interesting and useful geometric interpretation. The 
angle θ between two nonzero vectors u and v is given by the following (which is eas-
ily derived from the law of cosines for the two-dimensional case):

	

cos θ = u v

u v

T

	 (3.15)

If the angle is 90° (π/2 radians), then the inner product is zero, which in two or 
three dimensions means that the vectors are perpendicular to each other (also called 
orthogonal to each other). The concept of orthogonality can be extended to any num-
ber of dimensions. That is, two vectors u and v are orthogonal if

	 uTv = 0	 (3.16)

3.4.7 �O rthonormal Vectors

Orthonormal vectors are unit vectors (having a magnitude of 1) that are orthogonal 
to each other. Any vector can be converted to a unit vector by dividing by its L2 
norm:

	

û
u

u
= 	 (3.17)

which is a unit vector in the direction of u. Note that since

	
u u uT= 	 (3.18)

it follows that uTu = 1 if u is a unit vector.



60 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

3.5 � Matrices

A matrix is a two-dimensional array of numbers. It can also be viewed as a vector of 
vectors. Typically, matrix A with m rows and n columns is written as follows:

	

A

a a a

a a a

a a a

n

n

m m mn

=


















11 12 1

21 22 2

1 2

�
�

� � � �
�





	 (3.19)

An uppercase letter represents an entire matrix. Among the matrix elements, the 
first subscript is the row number and the second subscript is the column number.

If u, v, and w are n-element vectors, then a matrix B with three rows and n col-
umns can be constructed from them as follows:

	

B

u

v

w

T

T

T

=

















	 (3.20)

Likewise, if d, e, and f are m-dimensional vectors, a matrix C with m rows and 
three columns can be formed from them as follows:

	 C = [d e f]	 (3.21)

3.6 � Matrix Operations

3.6.1 �M atrix Addition and Subtraction

This is defined only for matrices of exactly the same shape (same number of rows 
and columns). For addition of two m × n matrices A and B, the sum C is given by

	

C A B
c a b i m j nij ij ij

= +
= + = =; , , ; , ,1 1 

	 (3.22)

3.6.2 �M ultiplication by a Scalar

If σ is a scalar, then the operation σA involves multiplying every element of A by σ.
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3.6.3 �T ransposition of Matrices

When applied to a matrix, the transposition operator converts each row to a column 
(and conversely, each column into a row). That is, each row becomes a column in the 
resulting transposed matrix. This can be represented as follows, where A is an n × 
m matrix:

	

B A
b a i m j n

T

ij ji

=
= = =; , , ; , ,1 1 

	 (3.23)

Note that if A is n × m, then B is m × n.

3.6.4 � Special Matrices

Square:	 m = n, same number of rows and columns
Diagonal:	 Square, only elements on the diagonal are nonzero
Identity:	 Diagonal, diagonal elements are all 1 (rest are 0)
Upper triangular:	 Usually square, all elements below the diagonal = 0
Lower triangular:	 Usually square, all elements above the diagonal = 0

3.6.5 �M atrix Multiplication

Any two conformable matrices A and B can be multiplied in the order AB. A and B 
are conformable if the number of columns of A is the same as the number of rows of 
B. This is summarized as follows, where A is n × p and B is p × m:

	

C AB

c a b i n j mij ik kj

k

p

=

= = =
=

∑ ; , , ; , ,
1

1 1 

	 (3.24)

Another view is that the i, j-th element of C is the inner product of the ith row of 
A with the jth column of B.

Example 3.1: Matrix Multiplication

Given the following matrices and vectors:

	

A B= − −
−

−



















=
−

−












4 3 2
4 2 2

0 1 0
1 2 2

1 3
2 2

3 4





=
−















= − x y
3
2
4

1 2 3
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the following are the results of various valid matrix multiplications:

	

AB Ax= −
−



















=
−


















4 2
14 8
2 2
1 15

2
8
2

15 

= −


















=   =  

Ay

yB x B

T

T

4
14
2
1

14 5 5 29

3.6.6 �M atrix Determinant

The determinant of a matrix is a scalar that provides significant information about 
the matrix. Determinants can be computed only for square matrices. The determi-
nant of a 2 × 2 matrix is easy to compute and is defined as follows:

	

det( )A
a a

a a
a a a a= = −11 12

21 22
11 22 12 21 	 (3.25)

Note that this is the product of the diagonal elements minus the product of the 
off-diagonal elements.

For a 3 × 3 matrix, there is a trick or shortcut for calculating the determinate. 
This involves duplicating the first two columns and then adding the products “to the 
right” and subtracting the products “to the left.” The trick does not work for higher 
dimensional matrices. It is much easier to compute the determinant of a matrix by 
transforming it to an upper or lower triangular matrix (see below).

An important property of determinates is

	 det(AB) = det(A) det(B)	 (3.26)

That is, the determinate of a product is the product of determinates. This property 
is useful when finding the determinate of a matrix by numerical manipulations.

3.6.7 �M atrix Inverse

The inverse is defined only for square matrices (same number of rows and columns). 
For an n × n matrix A, the inverse of A is designated A–1 and has the following 
properties:

	 A–1A = AA–1 = I  (the identity matrix)	 (3.27)
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3.6.8 �M ore Special Matrices

Symmetric matrices are square and have the property A = AT. Another way of saying 
this is that for all i and j, aij = aji.

Tridiagonal matrices are square and have nonzero entries on the diagonal (ele-
ments with indices i = j), just above the diagonal (elements with indices j = i + 1), 
and just below the diagonal (elements with indices j = i – 1). Here is an example of 
a tridiagonal matrix:

	

2 2 0 0
1 2 1 0

0 3 2 1
0 0 1 2

−
− −

− −
−



















Orthogonal matrices have the powerful property that the transpose is the inverse. 
That is, for an orthogonal matrix Q, QTQ = I.

3.7 �S olving Systems of Linear Algebraic Equations

In matrix‑vector form, a system of linear algebraic equations takes the form

	 Ax = b	 (3.28)

where A is an m × n matrix, x is an n-vector, and b is an m-vector.
When m = n, the number of equations is the same as the number of unknowns and 

this is the usual case. If the inverse of A exists, then the solution can be written as

	 x = A–1b	 (3.29)

If A–1 does not exist, then, clearly, an associated linear system cannot be solved using 
the inverse. Another good reason to not use the inverse is that it is inefficient to com-
pute the inverse and then multiply by the right-hand side vector, b. Later, a very general 
method is covered using the so-called singular value decomposition (SVD) that always 
produces a useful solution. A method, called Gaussian elimination, leads to a solution 
if one exists and also gives insight to those cases where a unique solution does not exist.

3.7.1 �G aussian Elimination

Gaussian elimination is most easily described using a specific example. Consider the 
linear system

	

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

0

2 2 4

2 2

+ + =
− + =

+ − =
	 (3.30)
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The idea behind Gaussian elimination is to kill (eliminate) one of the unknowns 
in the second and third equations (using the first) and then to eliminate another 
unknown from the third equation (using the second). This leaves the third equation 
with only one unknown. For the example, if the first equation is subtracted from the 
second and third equations, the result is

	

x x x

x x

x x

1 2 3

2 3

2 3

0

3 4

2 2

+ + =
− + =

− =
	 (3.31)

Now, if the second equation is multiplied by 1/3 and the result added to the third, 
there results

	

x x x

x x

x

1 2 3

2 3

3

0

3 4

5
3

10
3

+ + =
− + =

− =
	 (3.32)

The last equation now contains only x3; solving gives x3 = –2. Knowing x3, from 
the second equation, x2 = –2, and finally from the first equation, knowing x3 and x2 
leads to x1 = 4. Therefore, the linear system has one solution

	 x1 = 4, x2 = –2, x3 = –2	

Going from the last equation to the first while solving for the unknowns is called 
backsolving or backsubstitution. It is important to see that when multiplying one 
equation by a scalar and adding the result to another one, equality is maintained.

Another way to represent the steps of Gaussian elimination is to use an aug-
mented matrix, which is designated as [A|b], where only the coefficients of the equa-
tions are written (the right-most column contains values for the vector b). For the 
previous example, the augmented matrix is

	

1 1 1 0
1 2 2 4
1 2 1 2

−
−

















The same elementary row operations can be performed on this matrix as with 
the original equations. Keeping the first row and subtracting it from the second and 
third ones gives

	

1 1 1 0
0 3 1 4
0 1 2 2

−
−
















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Then, keep the first and second equations, multiply the second by 1/3, and add the 
result to the third to get

	

1 1 1 0
0 3 1 4

0 0
5
3

10
3

−

−



















If the variables were inserted to convert the transformed augmented matrix back 
into equation form, the last equation would involve only x3 and can be solved for it. 
Then, proceed to backsubstitute for x2 and x1. Here is a summary of the Gaussian 
elimination procedure.

Gaussian elimination summary: Consider an n × n linear system.

	 1.	Construct the augmented matrix for the system.
	 2.	Use elementary row operations to transform the augmented matrix into an 

upper-triangular one.
	 3.	Solve the last equation for the single variable xn.
	 4.	Complete the backsubstitution for all other variables.

Did You Know?

Carl Friedrich Gauss, the great German mathematician, did not discover what 
is called Gaussian elimination.

The method of Gaussian elimination appears in Chapter 8, Rectangular 
Arrays, of the important Chinese mathematical text Jiuzhang suanshu or The 
Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen prob-
lems, with two to five equations. The first reference to the book by this title 
is dated to 179 CE, but parts of it were written as early as approximately 150 
BCE. It was commented on by Liu Hui in the 3rd century.

The method in Europe stems from the notes of Isaac Newton. In 1670, he 
wrote that all the algebra books known to him lacked a lesson for solving 
simultaneous equations, which Newton then supplied. Cambridge University 
eventually published the notes as Arithmetica Universalis in 1707 long after 
Newton left academic life. The notes were widely imitated, which made (what 
is now called) Gaussian elimination a standard lesson in algebra textbooks by 
the end of the 18th century. Carl Friedrich Gauss in 1810 devised a notation for 
symmetric elimination that was adopted in the 19th century by professional 
hand computers to solve the normal equations of least-squares problems. The 
algorithm that is taught in high school was named for Gauss only in the 1950s 
as a result of confusion over the history of the subject.

Source: http://meyer.math.ncsu.edu/Meyer/PS_Files/GaussianEliminationHistory.pdf.
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3.7.2 �D eterminant Revisited

Previously, the determinant for a 2 × 2 matrix was defined, and it was stated that it is 
easy to calculate the determinant for a 3 × 3 matrix. Existence, uniqueness, families 
of solutions, rank, and even the determinant are all determined via the Gaussian 
elimination process.

Note that each step in the Gaussian elimination process can be expressed as

	 MiA → Bi	 (3.33)

where Mi is an identity matrix altered only with additional elements either below or 
above the diagonal (but not both). Recall Example 3.1. The steps of zeroing all ele-
ments below the first diagonal can be summarized as follows:

	

M A1

1 0 0
1 1 0
1 0 1

1 1 1
1 2 2
1 2 1

= −
−

















−
−

















=
11 1 1
0 3 1
0 1 2

1−
−

















= B 	 (3.34)

The matrix, M1, on the left is a lower triangular transformation matrix and its 
determinant is 1 (this is easy to verify). One algebraic rule for determinants is that 
the determinant of a product is the product of determinants; therefore, the determi-
nant of the transformed matrix (B1) is the same as that of A, since det(M1) = 1.

The next step is to eliminate the remaining nonzero element below the diagonal 
as follows:

	

M M A M B2 1 2 1

1 0 0
0 1 0
0 1 3 1

1 1 1
0 3 1
0 1 2

=
















−
−







/









= −
−

















=

=

1 1 1
0 3 1
0 0 5 3

2

2

/

B

A Bdet( ) det( ) == − − =( )( )( )1 3 5 3 5/
		

		  (3.35)

Therefore, when, via Gaussian elimination, matrix A has been transformed into 
an upper (or lower) triangular matrix, the value of the determinant has not changed. 
The determinant of a triangular matrix is simply the product of the diagonal ele-
ments (also easy to prove). So, det(A) can be computed simply by multiplying the 
diagonal elements of the final triangular matrix:

	

det( ) det( ) det( )A M M M A B bn n ii

i

n

= = =− −
=

∏1 2 1

1

 	 (3.36)

where n is the number of rows and columns of A.
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3.7.3 �G auss–Jordan Elimination

A method closely related to Gauss elimination is called the Gauss–Jordan algorithm. 
As a “bonus” (but it involves more work), the inverse of the matrix is also calculated. 
The basic idea behind the Gauss–Jordan method is to first form an augmented matrix 
consisting of the original system matrix and the identity matrix as follows:

	 [A | I]

Next, A is transformed into an identity matrix using elementary row operations 
(indicated by the matrix T) resulting in

	 T [A|I] = [I|T]	 (3.37)

This implies that

	 TA = I	 (3.38)

or, in other words,

	 T = A–1	 (3.39)

Example 3.2: Gauss–Jordan Elimination

If the original square matrix, A, is given by the following expression:

	

A =
−

− −
−

















2 1 0
1 2 1

0 1 2
	 (3.40)

then, after augmentation by the identity matrix, the following is obtained:

	

[ ]AI =
−

− −
−

















2 1 0 1 0 0
1 2 1 0 1 0

0 1 2 0 0 1
	 (3.41)

By performing elementary row operations on the [A|I] matrix until it is trans-
formed into the identity matrix, the following form results:

	

[ ]IA− =



















1

1 0 0
3
4

1
2

1
4

0 1 0
1
2

1
1
2

0 0 1
1
4

1
2

3
4






	 (3.42)
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The matrix augmentation can now be undone, which gives the following:

	

I =
















1 0 0
0 1 0
0 0 1

	

A− =

























1

3
4

1
2

1
4

1
2

1 1
2

1
4

1
2

3
4

	 (3.43)

To solve the system of equations Ax = b, use the same set of operations, indi-
cated as the transformation matrix T, as follows:

	

Ax b
Tax Tb

Ix Tb

=
=
=

	 (3.44)

This is identically the same as

	 x = A–1b

Gauss–Jordan is not the most efficient method for solving systems of linear equa-
tions, but it is nevertheless popular.

3.7.4 �R ank of Matrix

Definition: The rank of a matrix is the number of independent rows or columns in 
the matrix.

When performing Gaussian elimination, the rank becomes evident as rows are 
eliminated. The rank can be deduced from the triangular matrix by observing the 
number of nonzero rows and columns.

Having defined rank and knowing at least one way to compute it, the following 
statements can be made about the n × n linear system Ax = b:

Consistency: A linear system is consistent if rank(A) = rank([A | b]). That is, both 
A and the augmented matrix [A | b] have the same rank.
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3.7.5 E xistence and Uniqueness of Solutions for Ax = b

Assume that A is an n × n square matrix. Then the following statements can be made:

For Ax = b, there is
	 1.	 No solution if and only if rank(A) ≠ rank([A| b]) (i.e., inconsistent)
	 2.	 A unique solution if and only if rank(A) = rank([A| b]) = n
	 3.	 An (n – r)-parameter family of solutions if and only if rank(A) = 

rank([A | b]) = r < n
For the homogeneous case, Ax = 0

	 1.	 Is consistent
	 2.	 Admits the trivial solution x = 0
	 3.	 Admits the unique trivial solution x = 0 if and only if rank(A) = n
	 4.	 Admits an (n – r)-parameter family of nontrivial solutions, in addition 

to the trivial solution, if and only if rank(A) = r < n

Stated more succinctly, if A is of full rank and b is independent of any columns 
of A, then a unique solution exists; otherwise, either no solution exists or an infinite 
number of solutions exist.

3.8 �Li near Equations and Vector/
Matrix Operations in Excel®

Table 3.1 shows some of the more widely used vector/matrix operations that are 
native to Excel®.

MMULT is the only function that operates on both matrices and vectors. This func-
tion requires the two arrays to be conformable.

While the MINVERSE and MMULT functions are sufficient to solve well-posed 
linear systems, there are many more functions that can lead to more robust computa-
tions. A completely free Excel Add-On called Matrix.xla can be downloaded from 
the website http://digilander.libero.it/foxes/SoftwareDownload.htm. In addition to 
the software, there is a comprehensive manual (in two volumes). Readers are encour-
aged to install this software on their own computer. Once Matrix.xla is installed, all 
Excel applications have an enhanced set of functions available for matrix operations 

Table 3.1
Excel® Matrix Functions

Function Name Operation

MDETERM Returns the determinant of a matrix
MINVERSE Returns the inverse of a matrix
MMULT Returns the product of two arrays
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and linear algebra. Only a few of these are discussed here; refer to the Matrix.xla 
manual for many more details.

Within Matrix.xla, there are several functions that can lead to solutions of linear 
systems of the form Ax = b. The simplest of these is called SysLin, which uses 
the Gauss–Jordan algorithm. The major advantage of using SysLin as opposed to 
MINVERSE and MMULT is that it is a one-step operation. Also, if the matrix is 
singular (has no inverse), SysLin provides a suitable error message.

Example 3.3: Use of SysLin for Linear Systems

The following window shows an Excel spreadsheet with the matrix A and the vec-
tor b defined for a linear equation set. Space is available for the solution vector x.

If the three cells allocated for the vector x are selected and Formulas/
InsertFunction/SysLin is invoked, a window for SysLin appears. In the area for 
Mat, simply drag the cursor across the cells containing the matrix A. Then in the 
area for v, drag across the cells containing b. At this point, everything appears as 
follows:

Now (very important), hold down both Ctrl and Shift and hit Enter. The selected 
area reserved for x is filled in as follows:
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This example also gives a “feel” for how most of the matrix-related functions 
work.

3.9 � More about Matrix.xla

Instead of having to go through all of the steps shown in the previous example, 
in Excel, go to AddIns/ToolBar Commands. A small blue icon with the letter M 
appears. A click on the M produces a menu that looks like the following:

The number of tools available via Matrix.xla is far beyond what can be covered 
here. Only the most pertinent options are considered.

By clicking the Generator option and then selecting Random gives a convenient 
way to generate a matrix of random numbers. The following window appears:
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The Rows × Columns selections allow any (reasonable) size matrix of uniformly 
distributed random numbers to be generated (the matrix does not have to be square). 
The Starting From space indicates where the first matrix element is to be placed (cell 
E13 in the example). The user can then choose the maximum and minimum values 
for the random numbers as well as how many significant digits to include (Decimals). 
A variety of Formats are available, but usually, the solid icon is chosen indicating a 
full matrix. Other Formats include lower triangular, upper triangular, diagonal, etc. 
Pressing the Generate button produces the desired random matrix. This is illustrated 
in the next example.

Perhaps the most useful among the Matrix.xla choices is Matrix Operations under 
the Macro ribbon. This produces a window like the following:

Among the many choices are Transpose, Inverse, Determinant, System AX = B, 
Multiplication, and Pseudoinverse. The Inverse and Multiplication choices can be 
used to solve Ax = b instead of using the built-in Excel functions. The System AX = B 
selection solves a linear system directly and even allows for the right-hand side to be 
a matrix and, thus, a matrix of solutions.

Example 3.4: Using System AX = B from Matrix.xla

The Excel screen shot shown below indicates how to solve the same problem of 
the previous example. The button for AX = B is selected. The cell range for the 
matrix appears in the Matrix/vector A selection while the cell range for the right-
hand side vector appears in the Matrix/vector B selection. The address of the first 
element of the solution vector is entered into the Output starting from cell: selec-
tion. When the Run button was clicked, the solution was computed and output to 
the appropriate cells.
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3.10 �S VD and Pseudo-Inverse of a Matrix

The most general way for solving any linear system (consistent, overdetermined, or 
underdetermined) is to use the pseudo-inverse of the matrix. A consistent system 
has a unique solution, an overdetermined system is one with more equations than 
unknowns, and an underdetermined system has an infinite number of solutions. If 
the pseudo-inverse is denoted by A+, then the solution of Ax = b can be written as

	 x = A+ b	 (3.45)

For a square, nonsingular matrix, A+ coincides with the inverse, A–1. The pseudo-
inverse always exists, whether or not the matrix is square or has full rank.

For an n × m matrix, A, A+ must satisfy the following four conditions:
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AA AA

A A A A

T

T

+

+ + +

+ +

+ +

=
=
=
=

 

 

( ) ( )
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	 (3.46)

Note that A+ is an m × n matrix.
The conditions that the pseudo-inverse must satisfy are not very helpful for com-

puting A+. Computation is most easily accomplished by using the singular value 
decomposition (SVD) of A. The SVD can be visualized as a factoring of A into three 
separate matrices as follows:



74 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

	 A = UDVT	 (3.47)

or, for a linear system, Ax = b and

	 UDVTx = b	 (3.48)

where, setting p = min(n, m), U is an (n × p) orthogonal matrix (UTU = I), V is an (m × p) 
orthogonal matrix, and D is a (p × p) diagonal matrix (the diagonal elements are called 
the singular values of A). For simplicity, assume n > m, in which case D and V are both 
square with dimension (m × m). This assumption does not invalidate the final result.

Multiplying both sides of Equation 3.48 by UT and remembering that UT U = I, 
there results

	 UTUDVTx = UTb ⇒ DVT x = UTb	 (3.49)

The matrix DVT is square so taking its inverse gives [recall that for any two matri-
ces X and Y, (XY)–1 = Y–1X–1]

	 DVT x = UT b ⇒ x = (DV T )–1 U Tb ⇒ x = (VT )–1D–1 UTb	 (3.50)

Because VT = V–1, the final result is

	 x = (VT )–1D–1 UTb = A+b	 (3.51)

Therefore, the pseudo-inverse can be computed by the following formula:

	 A+ = V D–1UT	 (3.52)

When using the pseudo-inverse, there are three possible situations:

	 1.	m = n: The matrix A is square and A+ = A–1.
	 2.	m > n: There are more equations than unknowns and the system is overde-

termined. In this case, x represents the “least squares” solution. That is, x 
minimizes ∥Ax – b∥, which is the sum of squares of “residuals” (the differ-
ence between each element of Ax and the corresponding element of b).

	 3.	m < n: There are fewer equations than unknowns and the system is under
determined. Therefore, there is no unique solution; in fact, there are an 
infinite number of solutions. The most convenient way to express these 
solutions using the pseudo-inverse is

	 x = A+b + (I – A+A)z	 (3.53)

	 where z is an arbitrary vector. Any z can be specified and the corresponding 
x will satisfy the m equations. The proof of this equation is lengthy and is 
offered here without proof. Note that A+A ≠ I.

The actual algorithm for computing A+ is complex and is not covered here. 
Fortunately, in Matrix.xla, this computation is made available by the function 
MPseudoinv. Recall that the pseudo-inverse of an m × n matrix is an n × m matrix.
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Example 3.5: Solution of Linear Systems Using the Pseudo-Inverse

The Excel spreadsheet shown below illustrates solving

•	 A consistent system
•	 An overdetermined system (least-squares solution)
•	 An underdetermined system (infinite number of solutions)

In each case, the matrix and the right-hand side vector are generated using the 
random matrix feature of Matrix.xla. For the underdetermined system, an arbitrary 
z vector [0 1 1 1]T is chosen to show how to produce another of the infinite num-
ber of other solutions (see Equation 3.53).

Note the following about the results shown in the spreadsheet:

•	 For the consistent system, the vector Ax is identically equal to the vector b. 
This is a unique solution.

•	 For the overdetermined system, Ax does not equal b. This is because the 
solution minimizes the sum of squares of differences between Ax and b. The 
least squares solution is useful in several applications, such as regression, 
which is covered in Chapter 7.

•	 For the underdetermined system, the initial (or base) x is the product A+b 
and is only one of an infinite number of solutions possible. A second solu-
tion is generated using Equation 3.53 with the arbitrary vector z = [0 1 1 1]T. 
In both cases, Ax is equal to b indicating that indeed the associated x is a 
solution.

Consistent System

A b x Ax

0.832855 7.902832 –2.18289 –7.67573 –2.73575 –7.67573

3.889161 9.665859 3.044689 3.055222 0.298083 3.055222

–5.28107 8.451514 –5.57466 –2.8325 3.551683 –2.8325

A+

0.387957 –0.12478 –0.22006

–0.0273 0.078798 0.053725

–0.40891 0.23767 0.110541

Overdetermined System

A b x Ax

6.190156 –0.42224 –5.69814 –9.26793 0.045362 –3.49158

10.65635 –4.55003 1.185262 4.296808 0.484615 –0.97949

2.568451 –6.16077 6.203344 –3.82716 0.626126 1.014982

9.26915 9.534804 10.53612 10.77149 ↖ 11.63811

Least-squares solution

A+

0.04579 0.04914 –0.00505 0.022212

0.013649 –0.03479 –0.06283 0.048287

–0.0582 –0.00667 0.056641 0.030838



76 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

Underdetermined System

A b Base x Ax

–4.90858 –5.57692 0.430979 –4.66382 –6.93659 –0.17947 –6.93659

2.021388 1.200819 7.644887 1.3031 –5.13765 1.595509 –5.13765

–9.45529 0.608641 –6.26193 –9.6764 10.79749 –0.82275 10.79749

–0.3077

A+ Base x = A+b

–0.02176 –0.02893 –0.04437

–0.15092 0.081009 0.089359

0.030857 0.134928 0.007826

–0.00819 –0.05395 –0.05943

I A+A

1 0 0 0 0.467865 0.059627 0.04728 0.493129

0 1 0 0 0.059627 0.993319 –0.0053 –0.05526

0 0 1 0 0.04728 –0.0053 0.995799 –0.04381

0 0 0 1 0.493129 –0.05526 –0.04381 0.543017

I – (A+A) z
Arbitrary 

Part Base x
New 

Solution New Ax

0.532135 –0.05963 –0.04728 –0.49313 0 –0.60004 –0.17947 –0.77951 –6.93659

–0.05963 0.006681 0.005298 0.055257 1 0.067236 1.595509 1.662745 –5.13765

–0.04728 0.005298 0.004201 0.043815 1 0.053313 –0.82275 –0.76943 10.79749

–0.49313 0.055257 0.043815 0.456983 1 0.556054 –0.3077 0.248349

New Solution is x = A+ b + (I – A+A)

Exercises

Exercise 3.1: Mass balance on a gas absorber
		  A gas absorber is fed, via stream F1, 100 mol/min of monoethanolamine 

(MEA) and CO2. Stream F1 is composed of 98% (mol%) MEA and 2% 
CO2. Stream F2 contains CO2, SO2, and N2 (Figure 3.1). Experimental data 
available for the unit are shown in Table 3.2.

		  Derive the linear system for the absorber using the supplied information. 
The three unknowns are the flow rates of P1, F2, and P2. Note that since data 
are available on only two components, it is necessary to include the overall 
material balance as one of the equations.

	 a. 	 Using SYSLIN (or the linear system option from Matrix.xla)
	 b. 	 By calculating A–1 followed by multiplication (A–1b)
	 c. 	 By calculating the pseudo-inverse, A+, followed by matrix multiplica-

tion A+b

Exercise 3.2: Coffee leaching
		  A “Mr. Coffee” apparatus for brewing a good “cuppa joe” is a chemical 

extraction unit. Ingredients include water (W), solubles (S), and grounds 
(G). A schematic diagram of the “system” is shown in Figure 3.2.
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F1 P2

P1 F2

Figure 3.1  Gas absorber schematic.

Table 3.2
Data for Gas Absorber (Mole Fractions)

P1 F2 P2

SO2 0.0170 0.0200 0.0022

N2 0.0000 0.9000 0.9890

Water (S1)

Dregs (S4)

Coffee (S3)

CS, W

CG, CS, W

Grounds (S2)

CS, CG

W

Mr. Coffee

Figure 3.2  Automatic coffee maker schematic.
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		  The Grounds input contains components CG and CS. Water input con-
tains only component W. The Coffee stream contains both water (W) and 
solubles (CS), while the Dregs output has all three components. Other per-
tinent data are as follows (all percentages are by volume):
•	 Stream S1 consists of 1.1 L of pure water.
•	 Stream S2 contains 98% solid (CG) and 2% solubles (CS).
•	 Stream S3 contains 0.8% CS and 99.2% W.
•	 Stream S4 contains 81% CG, 0.5% CS, and 18.5% W.

		  Write three component balances (these are “volume” balances since 
percentages are volume based) to give three linear equations in the three 
unknown flowrates (S2, S3, and S4).

		  Solve the linear system for the following problem:

	 a. 	 Using SYSLIN (or the linear system option from Matrix.xla)
	 b. 	 By calculating A–1 followed by multiplication (A–1b)
	 c. 	 By calculating the pseudo-inverse, A+, followed by matrix multiplica-

tion A+b

Exercise 3.3: Flash tanks in series
		  Shown in Figure 3.3 is a schematic of a separation system consisting of 

two flash tanks in series. Experimental data are available on streams F, V1, 
V2, and L2 as shown in Table 3.3. The feed rate, F, is 1000 kg/min.

V1

F

V2

L1

L2

Fl
as

h 
1

Fl
as

h 
2

Figure 3.3  Two flash tanks in series.
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		  Write mass balances on each of the three components using the supplied 
data. The result is three linear algebraic equations in the three unknown 
flowrates, V1, V2, and L2. Use any method to find these three unknowns.

Exercise 3.4: For the following exercises, use the random matrix generator 
available in Matrix.xla as required.

	 a. 	 Generate a random matrix of size 3 × 3 and a column vector of length 3. 
Using these data to represent A and b in the linear system Ax = b, solve 
the system

	 1.	 By taking the matrix inverse followed by matrix‑vector multiplication
	 2. 	 Use the SYSLIN function
	 3.	 Use the function MPseudoinv and matrix multiplication
	 b.	 Repeat part a for a 10 × 10 matrix and associated vector.
	 c.	 Repeat step 3 of part a for a 4 × 3 matrix.
	 d. 	 Repeat step 3 of part a for a 3 × 4 matrix.
	 e.	 For the 3 × 4 matrix of part d, apply Equation 3.53 to generate a particu-

lar solution based on an arbitrary vector, z = [1 1 1 1]T.
		  Note that for a 3 × 4 matrix, A+A is not equal to the identity matrix. An 

infinite number of solutions exist since any z gives a proper solution.

Exercise 3.5: A chemical separation system
		  Benzene, styrene, toluene, and xylene are to be separated with the array 

of distillation columns shown in Figure 3.4. Experimental data show that 
the feed rate (stream A) is 100 mole/hr and that the composition of stream A 
is 10% benzene, 15% styrene, 35% toluene and 40% xylene (compositions 
are in mole %).

		  The following information is available for this system:
	 1.	 80% benzene, 60% styrene, 30% toluene and 10% xylene of the feed 

stream go overhead to stream B. The remainder goes out the bottom to 
stream C.

	 2.	 70% benzene, 65% styrene, 25% toluene and 5% xylene of stream B go 
overhead to stream D. The remainder goes out the bottom to stream E.

	 3.	 85% benzene, 65% styrene, 20% toluene and 10% xylene of stream 
C go overhead to stream F. The remainder goes out the bottom to 
stream G.

Table 3.3
Stream Mass Fractions

Component

Mass Fraction

F V1 V2 L

Methanol 0.3 0.71 0.44 0.08

Ethanol 0.4 0.27 0.55 0.39

Butanol 0.3 0.02 0.01 0.53
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		  Write four material balances where the unknowns are the flow rates of 
streams D, E, F, and G. Solve the resulting linear system by any method that 
has been discussed.

REFERENCE

Gaussian Elimination History; http://meyer.math.ncsu.edu/Meyer/PS_Files/Gaussian​Elimination​
History.pdf (Oct. 2012).
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Figure 3.4  Distillation column train.
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4 Numerical Differentiation 
and Integration

4.1 � Numerical Differentiation

4.1.1 � Approximation of a Derivative in One Variable

Recall the definition of the derivative from calculus:
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For a finite Δx, this is an approximation of the derivative:
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This is the simplest form of “finite difference derivative” and is called the “for-
ward” difference approximation to the derivative. E(x) represents the “error” in the 
approximation. In order to estimate the size of the error term, consider the Taylor 
expansion of f(x + Δx) in the neighborhood of x:
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Equation 4.1 results from truncating all but the first two terms in the Taylor expan-
sion of Equation 4.2. In order to determine how good the approximation is, consider 
temporarily retaining the term involving f .́ This gives
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The last term is an estimate of E(x), which is proportional to Δx. A terminology 
used to describe this is the Big O notation or the order of magnitude notation. The 
approximation of Equation 4.1 is, therefore, O( )∆x , or the error in the approximation 
is proportional to Δx.
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If negative Δx is applied in the Taylor expansion, there results
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Truncating all but the linear terms and solving for fʹ(x) gives
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This is called the “backward” difference approximation to the first derivative and 
is also O( )∆x .

Subtracting Equation 4.3 from Equation 4.2 gives

	
f x x f x x xf x

x
f x( ) ( ) ( )

!
( )+ − − = ′ + ′′′ +∆ ∆ ∆

∆
2 2

3

3

 	 (4.5)

Solving for fʹ yields
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Note that the error is proportional to Δx2, or it is O( )∆x2 . Equations 4.1 and 4.4 are 
“first-order correct,” and Equation 4.6 is “second-order correct.” Equation 4.6 (without 
the error term) is called the central difference approximation to the first derivative.

Adding Equations 4.2 and 4.3 gives the following result:
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Solving for fʺ(x) gives
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The error term for this approximation to the second derivative is O( )∆x2 .
Further manipulations can be performed with the Taylor expansions, such as 

involving more “points” (e.g., f(x + 2Δx), f(x – 2Δx), etc.). This leads to (1) bet-
ter approximations for the first and second derivatives and (2) approximations for 
higher-order derivatives. Table 4.1 shows the first-order correct formulas for the first 
and second derivatives, while Table 4.2 depicts the second-order correct counter-
parts. In the tables, Δx = xi+1 − xi = xi − xi−1.
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In order to see more clearly where all of these come from, the first one in Table 
4.2 is now derived:
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Multiplying Equation 4.8 by 4 and subtracting Equation 4.9 from the result gives
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Table 4.1
First-Order Correct Approximations for Derivatives
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Solving for fʹ(x) yields
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This is the same as the first formula in Table 4.2 and is a second-order correct 
formula since the error term is O( )∆x2 . This is called an end-point formula since it 
can be applied at a boundary where negative perturbations are not allowed.

4.1.2 � Approximation of Partial Derivatives

Consider a two-dimensional function f(x, y). The difference approximation for the 
partial derivative

	
f

x
f x y x x y yx = ∂

∂
= =( , ) at and0 0 	 (4.11)

can be derived by fixing y to y0 and considering f(x, y0) as a one-dimensional func-
tion. The forward, centered, and backward difference approximations for the above 
partial derivative may be written as follows:
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The centered difference approximations for the second partial derivatives are 
shown below:
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Example 4.1: Solids Volume Fraction in a Fluidized Bed

For a fluidized bed with a gas whose density, ρg, is 0.012 kg/m3 and a solid whose 
density, ρs, is 2650 kg/m3, calculate the percentage solids volume as a function of 
axial position given the following data:

Axial Position (m) Pressure (kPa) 

0 1.8

0.5 1.38

1 1.09

1.5 0.63

2 0.18

Writing a momentum balance for the two-phase flow leads to the following 
equation for the fraction solids volume, where z = axial position, P = pressure, and 
g = 9.81 (the gravitational constant):

	
ε

ρ
ρ ρs

g

s g

dP dz g

g
=

− −
−

( )

( )

/
	 (4.14)

This problem requires numerical differentiation. It is recommended to always 
apply the second-order correct finite difference formulas. The end-point formulas 
are applied at z = 0 and z = 2, while centered difference approximations are used 
at all other points. The results appear in the following spreadsheet, which includes 
a graph of percent solids volume versus axial position.
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The derivative at z = 0 is computed as follows:

dP
dz

= ⋅ − + − = ⋅ −
1000

31 80 4 1 38 1 09
2 0 5

1000
5 4( . ) ( . ) .

( . )
. ++ − = −5 52 1 09

1
970

. .
	 (4.15)

4.2 � Numerical Integration

4.2.1 �T rapezoidal Rule

The simplest method for numerical integration is the trapezoidal rule, which is based 
on joining interval end points with a chord to form a trapezoid, whose area is an 
approximation to the definite integral over the interval. This is depicted in Figure 4.1 
with five nonequally spaced subintervals.

The entire integral of f(x) from x0 to x5 can be expressed as

	

f x dx
f x f x

x x E
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x
i i

i i
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( )
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1

1

1
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2∫ ∑= + − +−
−

=

	 (4.16)

where the error term, E, can be derived using Taylor expansions for f(x) at the inter-
val end points, f(xi–1) and f(xi). This is a long process whose final result is

	
E f x f x h fi i≅ − − ′′−

1
12 1

2( ( ) ( )) 	 (4.17)

where ′′f  is the average second derivative of f over the interval. The bottom line 
is that the error is proportional to h2, or the method is O( )h2 , where h is a typical 
interval width.

f (x)

f1

f2
f3 f4

f5

f0
x0 x1 x2 x3 x4 x5

x

FIGURE 4.1  Schematic of trapezoidal rule.
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Unless otherwise stated, all numerical integrations for the remainder of the book 
will be computed by the trapezoidal rule. It is accurate enough for most engineer-
ing applications, does not require equally spaced data, and is easy to implement in 
Excel® and VBA. For information on more complex and accurate numerical integra-
tion methods, Google it!

4.2.2 �S impson’s Rule

The trapezoidal rule approximates the function over a subinterval with a straight 
line. Simpson’s rule uses a quadratic function over two successive intervals as shown 
in Figure 4.2.

By subdividing the interval from a to b into smaller ones, the following formulas 
apply for N an even number:
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	 (4.18)

The error term, E, can be shown to be proportional to h4. Major disadvantages are 
that N must be an even number and h must be constant. There exists another version 
of Simpson’s rule when N is odd, but h still must be constant.

There are many more sophisticated methods of quadrature (another name for 
numerical integration). For reasons already given, the trapezoidal rule is sufficient 
for most engineering applications. In some specialized cases, Gauss integration (see 
Section 4.2.3) is the most advantageous method.

Quadratic approximation
is the shaded area

f (x)y
y2

y1

y0

x0 x1 x2

x

FIGURE 4.2  Schematic of Simpson’s rule.
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Example 4.2: Using the Trapezoidal Rule

Consider evaluating the integral

	
I

x
dx= +















∫ π 1

2

2
2

0

2

The exact answer is 11.7286. The following Excel spreadsheet shows a solution 
to this using the trapezoidal rule with different values for h:

x f (x) I
0 3.141593 0

0.5 3.546564 1.672039
1 4.908739 3.785865

1.5 7.669904 6.930525
2 12.56637 11.98959

Trapezoidal Rule Using h = 0.5

 
x f (x) I

0 3.141593 0
0.2 3.204739 0.634633
0.4 3.397947 1.294902
0.6 3.732526 2.007949
0.8 4.227327 2.803934

1 4.908739 3.717541
1.2 5.81069 4.789484
1.4 6.97465 6.068018
1.6 8.449628 7.610445
1.8 10.29217 9.484625

2 12.56637 11.77048

Trapezoidal Rule Using h = 0.2

It can be seen that the answer using h = 0.5 is rather poor while that for h = 0.2 
is close to the correct answer. For most engineering applications, the trapezoidal 
rule is good enough if a small h is used. In real applications, it is often the case that 
a good value for h can be estimated. When presented with predetermined data, it 
is often the case that h is not controllable and might well be variable.

4.2.3 � Gauss Quadrature

The mathematician/scientist Gauss developed a particularly unique and interesting 
method of numerical integration by asking the question, “if I can choose the points 
on the interval, are there optimal ones to choose?” The answer is a resounding yes. 
The general form of Gauss integration is
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f x dx w f xi i
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1

	 (4.19)

where both wi and xi are chosen so that for a given n, the rule is exact for polynomi-
als up to and including degree 2n – 1. The wi are called the weights. Note the fixed 
range of integration from –1 to 1. Thus, if the range is a to b, a change of variables is 
required. That is, if the original variable is z and the range is [a, b], then set

	
x

z a b
b a

= − −
−

2
	 (4.20)

The Gauss formula for n = 2 from Equation 4.19 becomes
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−∫ 1 1 2 2
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1

Make this exact for polynomials of degree 0, 1, 2, and 3 (2n – 1) as follows:
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This gives four equations and four unknowns, which can be solved to give
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Error analysis is not so simple. The above formula is exact if f(x) is a cubic polyno-
mial (or a simpler one). A rule of thumb is that the order of accuracy of Gauss integra-
tion is twice that of equally spaced methods using the same number of data points.

Gauss quadrature formulas for higher n can be derived in a similar manner, but only 
the final results are shown here. Table 4.3 shows Gauss points for values of n up to 6.

Example 4.3: Using Gauss Integration

Consider the same problem as in Example 4.2 using four-point Gauss integration. 
First, perform a change of variables as indicated in Equation 4.20. Let

	
y

x
x x y= − = − = +2 2

2
1 1or

The restated problem is then
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y
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1

2

2
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1
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Note that x has been replaced with y + 1, dx with dy, and the limits of inte-
gration changed accordingly. The four-point Gauss calculations are shown in the 
following Excel spreadsheet:

Table 4.3
Gauss Points for n = 2, 3, …, 6

Gauss Points and Weights

n ±x wi

2 0.57735 1

3 0 0.88889

0.7746 0.55556

4 0.33998 0.65215

0.86114 0.34785

5 0 0.56889

0.53847 0.47863

0.90618 0.23693

6 0.23862 0.46791

0.66121 0.36076

0.93247 0.17132
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y f (y) Weight f (y)*wt

−0.86114 3.17196 0.34785 1.10338
−0.33998 3.86313 0.65215 2.51932
0.33998 6.59507 0.65215 4.30094
0.86114 10.93838 0.34785 3.80497

Integral = 11.72861

Four Point Gauss Quadrature

This example illustrates the power of Gauss integration. A four-point formula gives 
essentially the exact result. [This is due to the fact that f(x) is a quartic function, and 
the four-point formula is exact for polynomials up to degree 7.]

In summary, the trapezoidal rule is easy to implement and usually accurate 
enough. Furthermore, it can be used with nonequally spaced data (such as real exper-
imental data). When there is a limit to the number of “sample” points, but they can be 
placed at will, then Gauss integration is often the best choice. For example, suppose a 
restriction is that only four samples can be obtained on a process during a test whose 
duration is 1 h. When during the hour should the samples be collected? The answer 
to this is left as an exercise.

4.3 �C urve Fitting for Integration

Another approach to numerical integration is to “fit” the data to a particular func-
tion form and then do the integration analytically. Sophisticated curve fitting 
methods are covered in Chapter 7. For now, Excel’s graphing capability allows the 
fitting of simple functions to data. Once the fitting function has been determined, 
it can be integrated analytically. This is demonstrated in Example 4.4 (along with 
the trapezoidal rule).

Example 4.4: Integrating Fermentation Data

The data shown in the following spreadsheet represent the rate of evolution of CO2 
and the take-up rate of O2 during a fermentation reaction. It is important in the 
study of fermentation processes to obtain the net amount of these gases used and 
released. This is accomplished by integrating the rates over time. The fourth and 
fifth columns in the spreadsheet show the results of integrating the data using the 
trapezoidal rule, and the results are

Total CO2 evolution = 168.3450 g
Total O2 evolution = 145.5200 g
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In this case, h is fixed by the available experimental data.

Trap CO2 Trap O2 CO2 Evol O2 Evol
Evolution Evolution Curve Fit Curve Fit

140 15.72 15.49 0.00 0.00 0.00 0.00
141 15.53 16.16 15.63 15.83 15.66 16.11
142 15.19 15.35 30.99 31.58 31.58 31.71
143 16.56 15.13 46.86 46.82 47.78 46.90
144 16.21 14.20 63.25 61.49 64.26 61.74
145 17.39 14.23 80.05 75.70 81.04 76.32
146 17.36 14.29 97.42 89.96 98.15 90.70
147 17.42 12.74 114.81 103.48 115.59 104.97
148 17.60 14.74 132.32 117.22 133.39 119.21
149 17.75 13.68 150.00 131.43 151.56 133.49
150 18.95 14.51 168.35 145.52 170.12 147.88

Time(h) CO2 Rate (g/h) O2 Rate (g/h)

A graph of the experimental data is shown in Figure 4.3 along with a curve fit 
quadratic polynomial equation. These equations were determined by right click-
ing on one of the experimental points and choosing Add Trendline, which then 
displays the window shown in Figure 4.4. The Polynomial button was selected 
along with the order 2. This produced the following curve fit equations:

	

CO

O2

2
2

2

0 0082 2 0567 142 76

0 0385 11 335

= − +

= − +

. . .

. .

t t

t t 8851 48.

Upon integrating these equations from t = 140 to t = 150, there results (see 
columns 6 and 7 of the spreadsheet)

Total CO2 evolution = 170.12 g
Total O2 evolution = 147.8 g

These results compare favorably with those obtained from the trapezoidal rule.

y = 0.0082x2 – 2.0567x + 142.76

y = 0.0385x2 – 11.355x + 851.48
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CO2 and O2 Evolution from fermentation

CO2 rate (g/h)

O2 rate (g/h)

Poly. (CO2 rate (g/h))

Poly. (O2 rate (g/h))

FIGURE 4.3  Graph with data points and trendline with equations displayed.
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Exercises

Exercise 4.1: The heat capacity at constant pressure is defined as

	
C

H
Tp

p

= ∂
∂







	 where Cp is the heat capacity at constant pressure, H is the molar enthalpy, 
and T is temperature. The following table shows heat capacity versus tem-
perature data for carbon dioxide (http://webbook.nist.gov/chemistry/fluid/).

Temperature (°C) Enthalpy (kJ/mol)

100 25.186

150 27.254

200 29.408

250 31.640

300 33.942

350 36.307

400 38.732

450 41.209

500 43.736

550 46.307

FIGURE 4.4  Trendline options window.
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600 48.919

650 51.568

700 54.252

750 58.966

800 59.710

	 a.	 Use finite differences to compute the heat capacity of carbon dioxide at 
each of the given temperatures. Be sure to use the “end-point” formulas 
for the first and last entries.

	 b.	 Graph the enthalpy data and curve-fit it with a suitable polynomial. 
Then, calculate the heat capacity at each temperature using analytical 
differentiation. Compare these results with those of part a.

	 c.	 Compare the results for Cp with those from the nist database (these val-
ues appear in the data table of Exercise 4.2). Be sure to use consistent 
units for comparison.

Exercise 4.2: The enthalpy required to heat n moles of a gas from T1 to T2 
can be found by integrating the heat capacity at constant pressure over the 
temperature range. The following table lists heat capacity data for CO2 (also 
from the nist database):

Temperature (°C) Cp (J/mol*K)

100 40.461

150 42.256

200 43.881

250 45.355

300 46.695

350 47.917

400 49.034

450 50.055

500 50.989

550 51.843

600 52.624

650 53.339

700 53.994

750 54.593

800 55.144

	 a.	 Calculate the enthalpy of one mole of CO2 over the temperature range 
given in the table using the trapezoidal rule with the following formula 
(n is the number of moles):
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∆H n C T dTp

T

T

= ∫ ( )
1

2

	 b.	 Curve fit the heat capacity data using an appropriate polynomial. Then 
find ΔH (800) (with a reference temperature of 100°C) by integrat-
ing the resulting function analytically. What is the percentage error 
between the two methods?

	 c.	 Compare your results for ΔH with those from the nist database (these 
values appear in the data table of Exercise 4.1). Be sure to use consistent 
units and reference temperature when making comparisons.

Exercise 4.3: Evaluate the following integral using three- and four-point 
Gauss integrations:

	
erf p e dxx

p

( ) = −∫2 2

0π

		  To get a value for p, generate a random integer between 0 and 300 using 
the RANDBETWEEN function. Then let p = the random integer divided by 
100 (this gives a floating point number between 0 and 3). Be sure to make 
a “copy” of p because the random number generator will keep changing it 
every time a mouse or keyboard command is given.

		  This is the familiar “error” function (Gaussian normal probability distri-
bution), and the exact value when p = 1 is 0.84270073517 (this can be veri-
fied by using the Excel function ERF(p)). Remember to change variables so 
that the interval of integration is from –1 to 1.

		  What is the percent error produced by the Gauss method for the value of 
p generated?

Exercise 4.4: Evaluate the following integral using
	 a.	 The trapezoidal rule. Experiment with the Δx increment to produce 

good results.
	 b.	 Gauss quadrature. Use 2-, 3-, and 4-point formulas and compare results.

	
I x dx= ∫0

1

Exercise 4.5: For the function x2cos x; 0 ≤ x ≤ 1,
	 a.	 Calculate the numerical derivative of this function at each point using 

Δx values of 0.1 and 0.01. Be sure to use end-point formulas at x = 0 and 
x = 1. Compare the numerical derivatives at each point with the exact 
values.
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	 b.	 Find the integral of this function using the trapezoidal rule over the 
same range. Calculate the % error of the integral at x = 1 for both Δx 
values.

Exercise 4.6: For the function f x x x( ) sin ( )= 2 , do the following operations:
	 1.	 Make a table of the function between a = 0.4 and b = 1.6 using a Δx 

of 0.1.
	 2.	 Generate a column of random numbers between 0 and 1 using the Excel 

function RAND(). Make a copy of the random numbers in another col-
umn (i.e., Paste by Value). This is so the random numbers do not keep 
changing.

	 3.	 In the next column, generate numbers according to the formula (Rand 
– 0.5)/10. In other words, subtract 0.5 from the column of random num-
bers and divide the result by 10. This constitutes a column of “noise” to 
be added to the original function values.

	 4.	 Generate a column of numbers by adding to f(x) from part 1 the noise 
values of part 3.

	 5.	 Compute the numerical first derivative, fʹ(x), from the original function 
values (no noise added).

	 6.	 Compute the numerical first derivative, fʹ(x), from the noisy function 
values (after noise has been added).

	 7.	 From a graph of noisy f(x) values versus x, add a trendline and have the 
equation displayed on the graph.

	 8.	 Differentiate the trendline equation analytically and evaluate it for each 
value of x.

	 9.	 Produce a graph of the three columns of derivative calculations (steps 
6, 7, and 8) versus x.

	 10.	 Comment on the agreement (or disagreement) between the three deriva-
tive estimates.

Exercise 4.7: Shown below are compressibility data for nitrogen:

Pressure (atm)

Compressibility Factor, z

0°C 25°C 50°C

0 1.000 1.000 1.000

10 0.996 0.998 1.000

50 0.985 0.996 1.004

100 0.984 1.004 1.018

200 1.036 1.057 1.072

300 1.134 1.146 1.154

400 1.256 1.254 1.253

600 1.524 1.495 1.471

800 1.798 1.723 1.697
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	 a.	 The pure component fugacity of a substance can be computed from

	
ln

f
P

z
P

dP
P



 = −∫ 1

0

	 where z is the compressibility factor PV RTˆ /( ), P is the pressure, R is 
the gas constant, T is the absolute temperature, and V̂  is the specific 
volume.

		  Using the data in the table, compute the pure component fugac-
ity of nitrogen at 0°C, 25°C, and 50°C. Since the data are not equally 
spaced, use of the trapezoidal rule is suggested to perform the numeri-
cal integration.

	 b.	 The pure component enthalpy relative to zero enthalpy at 0 atm and 
25°C is given by

	
h P C

RT
P

z
T

dP
P

P

( , )25
2

0
° = − ∂

∂




∫

		  The derivative of z with respect to T at constant P is required 
within the integrand. Since data are available at 0°C, 25°C, and 50°C, 
this derivative can be estimated using a centered difference approxi-
mation at each pressure. Compute h from this formula for nitrogen at 
all pressures given. Note that at zero pressure, the integrand is inde-
terminate (0/0). Using L’Hopital’s rule, the value of the integrand is 
given by

	
− ∂

∂ ∂




 =

RT
z

T P P

2
2

0

		  The derivative in this expression can be evaluated from the data by 

first evaluating 
∂
∂







z
T P

 at P = 0, 200, and 400 atm and then using the 

“left end-point” second-order correct finite difference formula for the 
first derivative (to get the derivative with respect to P). The resulting 
value of the integrand is –1.296 cal/gmol-atm (this should be verified).

Exercise 4.8: A process engineer is performing tests on a unit that has been 
giving problems. A crucial measurement is the average concentration of a 
particular component in the feed stream to the unit. The analytical method 
available for determining the concentration of this key component is very 
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expensive and time consuming, such that the budget allows only four sam-
ples to be drawn for the purpose of determining the average concentration. 
Further, the experiment will take place over a 2-h period. Suggest when the 
samples should be taken and how the best possible average concentration 
can be determined.

		  Hint: One way to compute an average of a function, f(t), is to inte-
grate over the time interval and divide by the interval width. That is, 

	 Average f t
t

f t dt
t

( ( )) ( )
max

max

= ∫1

0
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5 Ordinary Differential 
Equations (Initial 
Value Problems)

5.1 � Introduction

Many differential equations defy analytical solution. Still others are such that ana-
lytical solutions are onerous. In these cases, a numerical solution is usually the best 
(and sometimes the only) option. In this chapter, several methods are presented for 
solving single or multiple ordinary differential equation(s) numerically. Here, only 
initial value problems (IVPs) are considered, where all necessary information is 
given at the origin of the independent variable (usually time or distance). The cover-
age of methods is not complete. Only the more popular methods used in engineering 
problem solving are considered. These include the Euler, backward Euler, trapezoi-
dal, and Runge–Kutta (RK) methods.

5.1.1 � General Statement of the Problem

The IVP involving first-order ordinary differential equation(s) can be written as 
follows:

	

dy

dt
f y t y y= =( , ), ( )0 0 	 (5.1)

where f(y, t) is an n-vector function of the n-vector y. t is the independent variable, 
and y0 is an n-vector of the initial condition(s). When n = 1, there is a single ordinary 
differential equation (ODE).

5.2 � Euler-Type Methods

5.2.1 �E uler’s Method for Single ODE

The simplest numerical method for solving one ODE is called the Euler method and 
is based on approximating the derivative with a forward difference approximation to 
the derivative as follows:

	

y y

h
f y tn n

n n
+ − ≅1 ( , ) 	 (5.2)
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where

	

y y t h

y y t

h t

n n

n n

+ = +

=

=

1 ( )

( )

∆

	 (5.3)

The Euler approximation can be written in terms of a “recurrence” relation as 
follows:

	 yn+1 = yn + hf(yn, tn)	 (5.4)

Starting with the initial condition, this recurrence formula can be used to “step 
forward in time” as follows:

	

y y hf y

y y hf y h

y y hf y nn n n

1 0 0

2 1 1

1 1

0= +

= +

= +− −

( , )

( , )

( , (



−− 1) )h

	 (5.5)

This kind of sequential calculation is called an explicit method.

Example 5.1: Euler Method for an ODE-IVP

	

dy
dt

y t y= − + − =20 7 0 5 0 5exp( . ), ( ) 	 (5.6)

The analytical solution is obtained easily using an integrating factor to give

	 y = 5e−20t + (7/19.5)(e−0.5t − e−20t)	 (5.7)

Using the Euler method with h = 0.01, the first few steps of the calculations are 
as follows:

	

y

y

1

2

5 0 01 20 5 7 0 4 07000

4 07 0 01

= + − + =

= + −

. ( * * exp( )) .

. . ( 220 4 07 7 0 005 3 32565* . * exp( . )) .+ − =

Figure 5.1 summarizes the calculations for t up to 0.1 using h = 0.01. The values 
from the analytical solution are also shown for comparison.



101Ordinary Differential Equations (Initial Value Problems)

From the table, it can be seen that the disagreement between the numerical 
solution and analytical solution grows with t at a significant rate. This suggests that 
a smaller value for h is required. The percentage error for h = 0.01, 0.001, and 
0.0001, respectively, is shown in the graph in Figure 5.2.

It can be observed that the error decreases approximately one order of magni-
tude for every order of magnitude decrease in h. This demonstrates “empirically” 
that this method is of O(h). One example is not the proof of this error behavior 
for Euler’s method, but it is persuasive, and in practice, this is borne out to be the 
case.

0.01

0.10

1.00

10.00

100.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Er
ro

r (
%

)

t

Error 0.01
Error 0.001
Error 0.0001

FIGURE 5.2  Error using the Euler method when changing h.

t y y exact

0.00 5.00000 5.00000

0.01 4.07000 4.15693

0.02 3.32565 3.46638

0.03 2.72982 2.90068

0.04 2.25282 2.43721

0.05 1.87087 2.05745

0.06 1.56497 1.74622

0.07 1.31990 1.49109

0.08 1.12352 1.28191

0.09 0.96607 1.11033

0.10 0.83977 0.96956

FIGURE 5.1  Euler method results for h = 0.01.
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5.2.2 � Stability of Numerical Solutions of ODEs

It can be instructive to study the simple ODE-IVP

	

dy

dt
ay y a= − = >; ( )0 1 0 	 (5.8)

whose exact solution is y(t) = exp(–at). 1/a is called the system time constant. 
Applying the Euler method, there results

	 yn+1 = (1 − ah)yn	 (5.9)

Since the exact solution decreases exponentially with t, it is clear that the approxi-
mate solution should also decrease continuously. Therefore, it is necessary that

	 (1 − ah) < 1 or 0 < ah < 1    (note: ah cannot be negative)

Further, if 1 < ah < 2, then the solution alternates sign at each step. And, if ah > 2, 
the magnitude of the solution increases at each step and it oscillates—this is called 
instability.

This is a new kind of error. Truncation error exists when h is too large, round-
off error occurs when h is too small, and the numerical solution exhibits instability 
depending on the product of the system time constant and h.

Although this analysis has been performed only for the simplest of ODEs, in 
practice, this same behavior is often observed. Obviously, some care must be given 
to the selection of h to avoid unacceptable errors of any kind.

5.2.3 �E uler Backward Method

Consider a backward finite difference approximation for the derivative

	

y y

h
f y tn n

n n
+

+ +
− ≅1

1 1( , ) 	 (5.10)

This equation is “implicit” in yn+1 since it appears on both sides of the equation. It 
can be shown that this method is also O(h).

Applying this approximation to the exponential test problem given by Equation 
5.8, the following recurrence results:

	
y

ah
yn n+ =

+1

1
1( )

	 (5.11)

This solution decreases monotonically with t for any positive value of h. While it 
is said to be unconditionally stable, it still suffers significant truncation error. Also, 
if f(y, t) is not linear, then a nonlinear equation must be solved at each time step.
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Example 5.2: Backward Euler Method

The following steps show the application of the backward Euler method to the 
ODE-IVP of Equation 5.6:

	

y y
h

y t

h y y

n n
n n

n n

+
+ +

+

−
= − + −

+ = +

1
1 1

1

20 7 0 5

1 20 7

exp( . )

( ) hh t

y
y h t

h

n

n
n n

exp( . )

exp( . )
( )

−

=
+ −

+

+

+
+

0 5

7 0 5
1 20

1

1
1

	 (5.12)

Shown in Figure 5.3 is a comparison of the Euler and backward Euler methods 
for this problem. Only results for h = 0.01 are shown. For this example (and it often 
happens that) one of these methods errs on one side of the solution and the other 
on the other side.

Here, the Euler method “undershoots” the exact solution, while the backward 
Euler method “overshoots” it. This suggests that an average of the two methods 
might give better results, and this is indeed that case (see Section 5.2.4).

5.2.4 �T rapezoidal Method (Modified Euler)

This method applies a centered difference approximation for the derivative and 
an average value for f on the right-hand side. The finite difference analog is “cen-
tered about the ½ point.” That is, the differential equation is discretized at tn+1/2, and 
f(yn+1/2, tn+1/2) is approximated by the average of the end-point values. Therefore, this 
method is an average of the forward and backward Euler methods, and the discrete 
approximation appears in the following equation:

	

y y

h
f y t f y tn n

n n n n
+

+ +
− = +1

1 1

1
2

[ ( , ) ( , )] 	 (5.13)

0.0

1.0

2.0

3.0

4.0

5.0

0.00 0.02 0.04 0.06 0.08 0.10

y

t

y backward
y exact
y forward

FIGURE 5.3  Comparison of Euler with backward Euler method.
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This equation is implicit in yn+1. If f is nonlinear, then a nonlinear equation must 
be solved at each time step. It can be shown that this method is O(h2).

Looking again at the exponential test problem given by Equation 5.8 and applying 
the trapezoidal method, the following recurrence results:

	
y

ah

ah
yn n+ = −

+1

1 2
1 2

( )
( )

/
/

	 (5.14)

This equation is stable for 0 < ah/2 < 1 or 0 < ah < 2.

Example 5.3: Trapezoidal Method

Applying the trapezoidal method to the ODE-IVP of Equation 5.6 leads to the 
following:

	

y y
h

y t yn n
n n n

+
+ +

− = − + − − + −1
1 1

1
2

20 7 0 5 20 7 0[ exp( . ) exp( .. )]

( ) [ exp( . ) exp(

5

1 10
2

7 0 5 7 01 1

t

h y y
h

t

n

n n n+ = + − + −+ + .. ) ]

[ exp( . ) exp( .

5 20

2
7 0 5 7 0 5

1

1

t y

y
y

h
t

n n

n

n n

−

=
+ − + −

+

+ tt y

h

n n) ]

( )

−

+

20

1 10

	 (5.15)

Figure 5.4 shows results for h = 0.01 and h = 0.001. It can be observed that 
the error is reduced by two orders of magnitude when h is decreased by only 

y(0) = 5

t y(h = 0.01) y(h = 0.001) y exact error(0.01) error(0.001)

0 5 5 5 0 0

0.01 4.15439 4.15691 4.15693 0.061286 0.000609

0.02 3.46220 3.46633 3.46638 0.120305 0.001197

0.03 2.89556 2.90063 2.90068 0.176501 0.001756

0.04 2.43163 2.43716 2.43721 0.229239 0.002282

0.05 2.05173 2.05739 2.05745 0.277817 0.002766

0.06 1.74060 1.74616 1.74622 0.321490 0.003202

0.07 1.48573 1.49104 1.49109 0.359504 0.003582

0.08 1.27689 1.28186 1.28191 0.391146 0.003899

0.09 1.10572 1.11029 1.11033 0.415804 0.004146

0.1 0.96536 0.96952 0.96956 0.433033 0.004319

Percent

FIGURE 5.4  Trapezoidal method results.
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one order of magnitude. This empirical observation is evidence that the method 
is O(h2).

5.2.5 �A ccuracy of Euler-Type Methods

It has been stated that the Euler and backward Euler methods are O(h) and that 
the trapezoidal method is O(h2). These results can be shown more convincingly for 
the exponential test problem given by Equation 5.8, the exact solution of which is the 
negative exponential. This can be written in the following incremental form:

	

y t at

y y ah ah ah ahn n

( ) exp( )

exp( ) ( ) (

= −

= − = − + −+1
21

1
2

1
6

))3 +




 yn

	 (5.16)

The original Euler method has the recurrence (see Equation 5.9)

	 yn+1 = (1 − ah)yn

which represents the first two terms in the series solution. The error term, therefore, 
is proportional to h2, but this error is made at each step. The global error at the end 
of many steps is proportional to h itself, so the entire process is O(h).

For the backward Euler, the recurrence is

	
y

ah
y ah ah ah yn n n+ =

+
= − + − +1

2 31
1

1
( )

( ( ) ( ) ( ) ) 	 (5.17)

This equation, when compared to the exact series expansion, is accurate to the 
first two terms, and the term involving h2 is the magnitude of the error. So, once 
again, each step is O(h2) while the global error is O(h).

For the trapezoidal method,

	
y

ah

ah
y ah ah ahn n+ = −

+
= − + − +1

2 31 2
1 2

1
1
2

1
4

( )
( )

( ) ( ) ( )
/
/

)




 yn 	 (5.18)

This equation is in agreement with the first three terms of the exact expansion, so 
the step error is O(h3), while the global error is O(h2).

5.3 �R K Methods

These are among the most popular methods for solving ODE-IVPs. They are explicit 
and are based on the idea of using intermediate points in each major time step (note: 
even though the independent variable often is time, it can be distance, volume, or 
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some other quantity). Recall that any explicit method can encounter stability issues 
if the time step is not carefully chosen.

Consider the general ODE-IVP

	

dy

dt
f y t y y= =( , ), ( )0 0 	 (5.19)

To calculate yn+1 at tn+1 = tn + h with a known value of yn, Equation 5.19 can be 
integrated over the interval [tn, tn+1] as

	
y y f y t dtn n

t

t

n

n

+ = +
+

∫1

1

( , ) 	 (5.20)

RK methods are derived by applying a numerical integration method to the inte-
gral on the right-hand side.

5.3.1 � Second-Order RK Method

It is straightforward to derive the recurrence relations for the second-order RK 
method. Suppose that the trapezoidal rule is used to evaluate the integral on the 
right-hand side in Equation 5.20:

	
f y t dt h f y t f y tn n n n

t

t

n

n

( , ) [ ( , ) ( , )]= + + +

+

∫ 1
2 1 1

1

	 (5.21)

Since yn+1 is not known, consider approximating it by f y tn n( , )+ +1 1  where yn+1 is a 
“first estimate” for yn+1 calculated by the forward Euler method:

	

y y hf y t

y y h f y t f y t

n n n n

n n n n n n

+

+ +

= +

= + +

1

1 1

1
2

( , )

[ ( , ) ( , ++1)]
	 (5.22)

A standard computational notation is as follows:

	

k hf y t

k hf y k t

y y k k

n n

n n

n n

1

2 1 1

1 1 2

1
2

=

= +

= + +

+

+

( , )

( , )

[ ]

	 (5.23)

Without proof, this method is O(h2).
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5.3.2 �F ourth-Order RK Method

The fourth-order RK method can be derived in a manner similar to that for the 
second-order method. The basic idea, once again, is to subdivide the interval h and 
to use successive approximations to yn+1. The final yn+1 is a weighted average of the 
individual approximations. The resulting equations are

	

k hf y t

k hf y
k

t
h

k hf y
k

n n

n n

n

1

2
1

3
2

2 2

2

=

= + +






= +

( , )

,

,tt
h

k hf y k t h

y y k k

n

n n

n n

+




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= + +

= + + ++

2

1
6

2

4 3

1 1 2

( , )

[ 22 3 4k k+ ]

	 (5.24)

This method can be shown to be O(h4) and is perhaps the most popular method 
for solving ODE-IVPs numerically.

Example 5.4: Second- and Fourth-Order RK Methods

Suppose chemical A is in solution in a perfectly stirred tank and its concentration 
is CA

0 ( )g/L . The constant volumetric flow into and out of the tank is F (L/min) and 
the tank volume is V(L). A mass balance on component A leads to

	
V

dC
dt

FCA
A= − 	 (5.25)

The analytical solution is

	 C CA A
tF V= −0e / 	 (5.26)

Calculations for the second-order RK method are shown in Figure 5.5. Also 
shown are the analytical (exact) solution and that produced by the Euler method 
using the same h = 0.1 min.

It is obvious that the second-order RK method produces significantly better 
results than those of the Euler method. Figure 5.5 also illustrates that it is straight-
forward to implement this method in Excel®. Similar calculations using the fourth-
order RK method are shown in Figure 5.6.

From Figure 5.6, it can be seen that the fourth-order RK method produces 
essentially exact results for this problem. As previously stated, the overall error 
associated with the fourth-order RK method is O(h4). The method is easy to imple-
ment in Excel since it is an explicit method.
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5.4 �S tiff ODEs

Stiffness often refers to a system with a very short time constant. For the system 
model

	 yʹ = −ay + s(t); y(0) = y0	 (5.27)

the time constant is 1/|a|; if a is large, the time constant is small. Note that the units 
of a are time−1.

dt = 0.1 Tau = 0.5

Time RK2 k1 k2 Exact Euler

0 1.0000 –0.2000 –0.1600 1.0000 1.0000

0.1 0.8200 –0.1640 –0.1476 0.8187 0.8000

0.2 0.6642 –0.1328 –0.1196 0.6703 0.6400

0.3 0.5380 –0.1076 –0.0968 0.5488 0.5120

0.4 0.4358 –0.0872 –0.0784 0.4493 0.4096

0.5 0.3530 –0.0706 –0.0635 0.3679 0.3277

0.6 0.2859 –0.0572 –0.0515 0.3012 0.2621

0.7 0.2316 –0.0463 –0.0417 0.2466 0.2097

0.8 0.1876 –0.0375 –0.0338 0.2019 0.1678

0.9 0.1519 –0.0304 –0.0274 0.1653 0.1342

1 0.1231 –0.0246 –0.0222 0.1353 0.1074

FIGURE 5.5  Second-order RK results for mixing tank.

 dt = 0.1 Tau = 0.5
Time RK4 k1 k2 k3 k4 Exact Euler

0 1.0000 –0.2000 –0.1800 –0.1820 –0.1636 1.0000 1.0000
0.1 0.8187 –0.1637 –0.1474 –0.1490 –0.1339 0.8187 0.8000
0.2 0.6703 –0.1341 –0.1207 –0.1220 –0.1097 0.6703 0.6400
0.3 0.5488 –0.1098 –0.0988 –0.0999 –0.0898 0.5488 0.5120
0.4 0.4493 –0.0899 –0.0809 –0.0818 –0.0735 0.4493 0.4096
0.5 0.3679 –0.0736 –0.0662 –0.0670 –0.0602 0.3679 0.3277
0.6 0.3012 –0.0602 –0.0542 –0.0548 –0.0493 0.3012 0.2621
0.7 0.2466 –0.0493 –0.0444 –0.0449 –0.0403 0.2466 0.2097
0.8 0.2019 –0.0404 –0.0363 –0.0367 –0.0330 0.2019 0.1678
0.9 0.1653 –0.0331 –0.0298 –0.0301 –0.0270 0.1653 0.1342

1 0.1353 –0.0271 –0.0244 –0.0246 –0.0221 0.1353 0.1074

FIGURE 5.6  Fourth-order RK results for mixing tank.
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The solution to this equation can be written as

	
y t y e e s x e dxat at ax

t

( ) ( )= +− − ∫0
0

	 (5.28)

Even if a is very large, if s(t) is a slowly varying function, the system responds 
slowly. To follow this slow response numerically is problematic since the stability 
of the method depends only on a and has nothing to do with s(t). A very small time 
step might be required, even though the overall system response is a slowly varying 
function. This is one example of a phenomenon called stiffness.

Another example of stiffness occurs with a system (two or more) of ODEs each 
with greatly different time constants. For example, consider the system

	

′ = − + +

′ = − +

y y z

z z y

3

107 	 (5.29)

The very short time constant in the second equation requires a very small h to 
follow both y and z in time. Problems of instability can easily arise. To solve stiff 
problems, the most typical approach is to use an implicit method, which is known 
to exhibit excellent stability properties (recall the backward Euler method). Special 
software packages are available for solving stiff systems. Fortunately, many of the 
straightforward chemical engineering problems encountered in practice do not yield 
stiff systems, but when difficulties arise, stiffness might well be the culprit.

5.5 �S olving Systems of ODE-IVPs

The following is a system of ODE-IVPs:

	

dy
dt

f y y y t y y
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dt

f y y
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f y y y t y
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2 20

1 2

0

0

=

= == yn0

	 (5.30)

The only difference between solving a single ODE-IVP and solving a system of them 
is that all variables and functions become vectors. This is illustrated in Example 5.5.

Example 5.5: Solving a System of ODE-IVPs

Suppose the following chemical reactions take place in a continuous stirred tank 
reactor (CSTR):
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A B C

k

k

k

k

⇔ ⇔
2

1

4

3

	 (5.31)

where the rate constants are as follows:

	 k1 = 1 min−1, k2 = 0 min−1, k3 = 2 min−1, k4 = 3 min−1

The initial charge to the reactor is all A, so the initial conditions are (in mol/L)

	
C C CA B C0 0 0

1 0 0= = =

An unsteady-state mass balance on each component leads to the following set 
of ODEs:

	

dC
dt

k C k C

dC
dt

k C k C k C k C

dC
dt

A
A B

B
A B B C

C

= − +

= − − +

=

1 2

1 2 3 4

kk C k CB C3 4−

	 (5.32)

The following spreadsheet displays a solution to this system using the Euler 
method for time only up to 0.13 min to conserve space:

k1 = 1 k2 = 0
k3 = 2 k4 = 3
h = 0.01

Time CA CB CC
0.00 1.0000 0.0000 0.0000
0.01 0.9900 0.0100 0.0000
0.02 0.9801 0.0197 0.0002
0.03 0.9703 0.0291 0.0006
0.04 0.9606 0.0382 0.0012
0.05 0.9510 0.0471 0.0019
0.06 0.9415 0.0556 0.0028
0.07 0.9321 0.0639 0.0038
0.08 0.9227 0.0720 0.0050
0.09 0.9135 0.0798 0.0063
0.10 0.9044 0.0873 0.0077
0.11 0.8953 0.0946 0.0092
0.12 0.8864 0.1017 0.0108
0.13 0.8775 0.1085 0.0125



111Ordinary Differential Equations (Initial Value Problems)

Shown in Figure 5.7 is the solution for time up to 5 min at which time a steady 
state has been essentially reached. It can be observed that component A decreases 
monotonically while B and C increase.

5.6 �Hig her-Order ODEs

Consider a general second-order ODE-IVP of the form

	

d y

dt
f y y t y y y y

2

2 0 00 0= ′ = ′ = ′( , , ) ( ) ( ) 	 (5.33)

Since all of the methods discussed apply only to first-order equations, one way 
to solve those of the form of Equation 5.33 is to convert them into two simultaneous 
first-order equations. This is easily accomplished by defining a new variable z as 
follows:

	

dy

dt
z y y= =; ( )0 0 	 (5.34)

Equation 5.34 is a first-order ODE-IVP involving both y and z. If this equation is 
differentiated with respect to t and substituted into Equation 5.33, there results

	

dz
dt

f y z t z y= =( , , ); ( ) )0 0′( 	 (5.35)

Equations 5.34 and 5.35 constitute a system of coupled ODE-IVPs. This system 
can be solved numerically by any of the methods previously discussed.
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FIGURE 5.7  Euler solution for three simultaneous ODE-IVPs.
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Example 5.6: Second-Order System Response

A linear second-order dynamic system is defined by the ODE-IVP

	
τ

θ
τζ

θ
θ2

2

2 2
d y
d

dy
d

y f+ + = ( )
	 (5.36)

where
τ = the system time constant
ζ = the damping factor
f(θ) = the system input or forcing function

and the initial value of y and yʹ are given.
By defining a dimensionless time as t = θ/τ and assuming a constant input of 1 

(a unit step function occurring at time zero), the model equation becomes

	

d y
dt

dy
dt

y
2

2 2 1+ + =ζ 	 (5.37)

The only parameter of this model is the damping factor. The damping factor 
determines if the system is overdamped (ζ > 1), underdamped or oscillatory (ζ < 1), 
or critically damped (ζ = 1).

In order to solve this model equation numerically with, for example, the Euler 
method, it must be converted into two first-order equations as follows:

Define a new variable z such that

	

dy
dt

z y y= =; ( )0 0 	 (5.38)

Differentiating this expression with respect to t and substituting into the original 
model equation, there results

	

dz
dt

z y z y= − − = ′1 2 0 0ζ ; ( ) ( ) 	 (5.39)

Equations 5.38 and 5.39 are two first-order ODE-IVPs that can be solved by 
any of the methods previously described. Calculations using the Euler method 
with h = 0.1 and ζ = 0.5 are shown in the following spreadsheet for t up to 2. The 
formulas for the right-hand side of the equations for y and z are shown in bold 
type.
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A graph of the system output appears in Figure 5.8. Note that the system 
response is oscillatory and overshoots before settling to the final steady-state value 
of 1.

Example 5.7: A VBA Program for the Euler Method

In certain circumstances, it can be more efficient to write a VBA program to solve 
ODE-IVPs numerically. Such cases include times when it is convenient to sim-
ply alter a subroutine subprogram that defines the right-hand side function and 
also when there is a large system of ODE-IVPs involved. This example shows the 
development of a VBA program to implement Euler’s method for any number of 
simultaneous ODEs. First, a program Specification is given that defines the Excel 
interface to the program followed by an Algorithm Design, Coding in VBA, and 
Testing using a problem previously solved using only Excel.

Specification

The following “mock-up” of an Excel spreadsheet for solving any number of ODE-
IVPs using the Euler method represents a program specification:

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 2 4 6 8 10

y

t

Second-order response ζ = 0.5

FIGURE 5.8  Response of a second-order system to a step response.
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Algorithm Design

The structure chart of Figure 5.9 shows an algorithm design for the main program 
and for a subroutine to calculate the right-hand side functions. A dictionary of 
variables is also given.

VBA Code

A listing of the VBA code for this program is shown below:
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Euler
method

Solve by
Euler method

n <-- Cells(1,1)
h <-- Cells(1,3)
MaxTime <--

Cells(1,5)

ActRow <--
3

Time <-- 0
i = 1 To N

y(i) <--
Cells(ActRow,

i+1)

Time <--
TimeMax

FCalc(Time,yN,f) i = 1 to N Time <-- Time +
h

ActRow <--
ActRow + 1

Cells(ActRow,
1) <-- Time

Cells(ActRow,i+
1) <-- y(i)

i = 1 to N

y(i) <-- y(i)
+ h*f(i)

FCalc(Time,y,N,f)

Zeta = 0.5 f(1) <-- y(2) f(2)<-- -1 - 2*Zeta*y(2) - y(1)

DoneGet N, h,
MaxTime and

initial conditions

Name
N
h
TimeMax
y
ActRow
Time
f
Func
Zeta

 
�e number of simultaneous ODEs to solve
�e time step (or step for any independent variable)
�e maximum time over which the solution is sought
N-length vector of dependent variables
Pointer to current row in spreadsheet
Current value of time
N-length vector of right side functions
Subroutine to calculate f given y and N
Damping factor for second order system

Usage

FIGURE 5.9  Algorithm design for Euler method.
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Program Execution

The following spreadsheet shows program execution up to Time = 1. These results 
are identical to those of Example 5.6.

2 = N 0.1  = h 10 = TimeMax
T y z

0 0.0000 0.0000
0.1 0.0000 0.1000
0.2 0.0100 0.1900
0.3 0.0290 0.2700
0.4 0.0560 0.3401
0.5 0.0900 0.4005
0.6 0.1301 0.4514
0.7 0.1752 0.4933
0.8 0.2245 0.5264
0.9 0.2772 0.5513
1 0.3323 0.5685

Exercises

Exercise 5.1: Dynamic flow in a tank can be modeled by making a mass 
balance on the fluid in the tank (Figure 5.10). The nature of the resulting 
ODE-IVP depends on the model used for the outlet valve. If a linear valve is 

Fin

Fout

h

A = cross-sectional area

FIGURE 5.10  Dynamic flow in a tank schematic.
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assumed, then the model ODE is linear. A more accurate valve description 
makes the outlet flow a nonlinear function of the height. Both of these cases 
are considered in that which follows.

		  Mass balance:

	 d(mass in tank at any time)/dt = Input – Output + Generation	

	 Assume a pure (single) component of constant density fluid:

	

d V

dt
F Fin out

ρ = −
	 (5.40)

	 where
ρ	 =	 density
V	 =	 volume
F	 =	 mass flow rate

	 In terms of cross-sectional area and height,

	

d Ah

dt
F Fin out

ρ = − 	 (5.41)

	 Since density and area are constant,

	

dh

dt

F F

A
in out= −

ρ
	 (5.42)

	 Fout can be
	 a.	 Directly proportional to h: Fout = Cv h in which case the model 

equation is

	

dh

dt

F C h

A
in v= −

ρ
	 (5.43)

	 b.	 A function of h, such as Fout = Cv h1/2 and the model becomes

	

dh

dt

F C h

A
in v= −

ρ
	 (5.44)

	 Additional pertinent data are as follows:
•	 Tank diameter = 6 ft
•	 Density of liquid = 62.5 lb/ft3

•	 Valve constant Cv = 250 lb/h-ft for the linear case
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•	 Valve constant Cv = 500 lb/h-ft0.5 for the nonlinear case
•	 Initial height = 4 ft
•	 Fin = 1000 lb/h (initial steady-state inlet flow)
•	 t = time (h)

	 Fin undergoes a change at time 0+ to 1400 lb/h until time 10 h, after which 
it returns to 1000 lb/h.

	 a.	 Solve the linear ODE (Fout proportional to h) using Euler’s method. 
Start with a Δt of 0.5 and again with Δt = 0.05 to determine an accept-
able Δt. Use an IF function to generate the proper values for Fin.

	 b.	 Repeat part a for the nonlinear case (Fout proportional to h1/2).

Exercise 5.2: Solve the ODEs of Exercise 5.1 using the second-order RK 
method. Find acceptable values of h when using the second-order RK 
method.

Exercise 5.3: Solve the ODEs of Exercise 5.1 using the Euler VBA program 
as given in Example 5.7.

Exercise 5.4: Suppose the following chemical reactions take place in a con-
tinuous stirred tank reactor (CSTR):

	
A B

k

k

⇔
2

1

	 where the rate constants are as follows:

	 k1 = 1 min−1, k2 = 0.5 min−1

		  The charge to the reactor is all component A, so initially, the concentra-
tions within the reactor are

	
C CA B0 0

1 0= = ( )gmol/L

		  An unsteady-state mass balance on each component leads to the follow-
ing set of ODEs:

	

dC

dt
k C k C

dC

dt
k C k C

A
A B

B
A B

= − +

= −

1 2

1 2

	 (5.45)

		  Solve this ODE-IVP system using the Euler method in Excel with a time 
step of 0.1 min and repeat with a time step of 0.01 min. If a significant dif-
ference results (compare values at a specific time to see if they are different), 
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repeat with a time step of 0.001, etc. until a satisfactory time step is found. 
Integrate out to time = 2 min. Plot the solutions in each case and compare 
them. Report the percent difference in the solutions at time = 1 min.

		  Perform experiments by changing the rate constants in one of the solu-
tions to see how Excel immediately recalculates the solution and updates 
the graph.

Exercise 5.5: Solve the ODEs of Exercise 5.4 using the second-order RK 
method. Compare results for Δt = 0.1 min and for Δt = 0.01 min.

Exercise 5.6: Solve the ODEs of Exercise 5.4 using the Euler VBA program 
as given in Example 5.7. Use time steps of 0.1, 0.01, and 0.001 min, respec-
tively, and deduce which is the most appropriate for an acceptable solution.

Exercise 5.7: Solve the ODEs of Exercise 5.7 using the Euler VBA program as 
given in Example 5.7. Use time steps of 0.1, 0.01, and 0.001 min and com-
pare the results to find an acceptable solution.

Exercise 5.8: Implement the second-order RK method for any number of 
simultaneous ODE-IVPs in VBA. Use Example 5.7 as a model for design-
ing, coding, and testing the program. Solve the problem of Exercise 5.7 to 
test the program.

Exercise 5.9: Penicillin Fermentation
		  A model for a batch reactor in which penicillin is produced by fermen-

tation has been derived as follows (Constantantinides et al. 1970) for cell 
production and penicillin synthesis, respectively:

	

dy

dt
b y

b

b
y y

dy

dt
b y y

1
1 1

1

2
1
2

1

2
3 1 2

0 0 03

0 0 0

= − =

= =

( ) .

( ) .

	 (5.46)

	 where
y1	=	 dimensionless concentration of cell mass
y2	=	 dimensionless concentration of penicillin
t	 =	 dimensionless time, 0 ≤ t ≤ 1

	 Experiments have determined that

	

b

b

b

1

2

3

13 1

0 94

1 71

=

=

=

.

.

.
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	 a.	 Solve this ODE-IVP using the Euler method and Excel (not VBA).
	 b.	 Solve this ODE-IVP using the second-order RK method and Excel (not 

VBA).
	 c.	 Solve this ODE-IVP using the Euler VBA program as given in Example 

5.7.
	 d.	 Solve this ODE-IVP using the second-order RK VBA program from 

Exercise 5.8.

		  In all cases, experiment with the time step to assure an accurate solution. 
Also, graph y1 and y2 versus time with appropriate annotations.

Exercise 5.10: Bioreaction Kinetics
	 The “Monod” model for bioreaction kinetics can be expressed as

	

ds
dt

ksx
k s

dx
dt

y
ksx

k s
bx

s s x xs

s

= −
+

=
+

−
= =( ) , ( )0 0o o 	 (5.47)

	 where
s	 =	 Growth limiting substrate concentration (ML−3)
x	 =	 Biomass concentration (ML−3)
k	 =	 Maximum specific uptake rate of the substrate (T−1) = 5
ks	=	 Half saturation constant for growth (ML−3) = 20
y	 =	 Yield coefficient (MM−1) = 0.05
b	 =	 Decay coefficient (T−1) = 0.01

		  Initial conditions are so = 1000 and xo = 100.
	 a.	 Solve this ODE-IVP using the Euler method and Excel (not VBA).
	 b.	 Solve this ODE-IVP using the second-order RK method and Excel (not 

VBA).
	 c.	 Solve this ODE-IVP using the Euler VBA program as given in 

Example 5.7.
	 d.	 Solve this ODE-IVP using the second-order RK VBA program from 

Exercise 5.8.
		  An appropriate maximum time over which to integrate these equations 

must be determined by experimentation. Also, experiment with the time 
step to guarantee good results. Graph s and x versus time with appropriate 
annotations (do this with data for only an appropriate time step).

Exercise 5.11: Implement the fourth-order RK method for any number of 
simultaneous ODE-IVPs in VBA.

		  The only thing a user must change to use the program is the Subroutine 
to calculate the “right-hand side” functions for the ODEs. The user must 
also specify the required input data. A suggested user interface associated 
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with the Excel spreadsheet that interacts with the VBA program is as shown 
in Example 5.7.

		  In what follows, some hints are given to assist in preparing the VBA 
program.

		  Recall the algorithm for using the fourth-order RK method with only 
one ODE:

	

k hf y t

k hf y
k

t
h

k hf y
k

n n

n n

n

1

2
1

3
2

2 2

2

=

= + +






= +

( , )

,

, tt
h

k hf y k t h

y y k k

n

n n

n n

+






= + +

= + + ++

2

1
6

2

4 3

1 1 2

( , )

[ 22 3 4k k+ ]

	 (5.48)

		  To generalize this to N simultaneous ODEs, make each k, y, and f an 
array with subscripts from 1 to N. Here are suggested ReDim statements:

	 ReDim k1(N) as double
	 ReDim k2(N) as double
	 ReDim k3(N) as double
	 ReDim k4(N) as double
	 ReDim y(N) as double
	 ReDim f(N) as double
	 ReDim z(N) as double

		  Use a subroutine (such as Sub FCalc of Example 5.7) that has as input 
the current time, the y array, and the number of equations (N), and it returns 
N right-hand-side functions (f). This subroutine must be called four times 
per time step. Note that y, k1, k2, k3, and k4 are N-length vectors.

	 1.	 Once at the base point f(yn, tn)

	 2.	 A first time at the half-way point f y
k

t
h

n n+ +






1

2 2
,

	 3.	 A second time at the half-way point f y
k

t
h

n n+ +






2

2 2
,

	 4.	 And finally at the end point f(yn + k3, tn + h)

		  It is suggested to define another array (call it z) and use this for the first 
argument in the subroutine calls at the half-way and end points. Also, define 
a second time variable (call it Ttemp). For example, for the first call at the 
half-way point, use the sequence
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	 z(i) = y(i) + k1(i)/2	 i = 1, 2,..., N
	 Ttemp = Time + h/2
	 Call FCalc(Ttemp, z(), N, f())
	 k2(i) = h*f(i)		  i = 1, 2,..., N

		  It is strongly urged to sketch out the logic of the code and to “run 
through” this logic carefully before actually starting to write the code.

		  Finally, test the resulting VBA program by solving the ODE-IVP of 
Exercise 5.10. Experiment with the time step to be sure that an acceptable 
solution is being generated. Beware of the results for a time step of 0.1.



123

6 Ordinary Differential 
Equations (Boundary 
Value Problems)

6.1 � Introduction

So-called boundary value problems (BVPs) occur most often when the system 
model is a second-order ODE and the known information is available for two dif-
ferent values of the independent variable. For example, consider the following ODE 
problem:

	

d y

dx
f x y y x y y x y

2

2 1 1 2 2= = =( , ) ( ) ( ) 	 (6.1)

This problem differs from ODE-IVP since two initial conditions are not given. The 
two values of the independent variable where information is available are usually at a 
physical boundary of the system, and the problem is referred to as a boundary value 
problem. Here is a more specific example:

Example 6.1: Heat Conduction in a Rod

A copper rod of length 1 m is placed between two tanks, one containing boiling 
water and the other containing ice. The rod is exposed to the air. The mathemati-
cal model for this system can be expressed as follows:

	

d T

dx

h
Dk

T Ta

2

2

4= −( ) 	 (6.2)

where
h	 =	 Heat transfer coefficient between rod and air = 50 W/(m2 K)
D	 =	 Diameter of the rod = 4 cm = 0.04 m
k	 =	 Thermal conductivity of the rod = 390 W/(m K)
Ta	 =	 Air temperature = 25°C
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The boundary conditions are

T(0) = 100°C
T(1) = 0°C

The methods covered in Chapter 5 cannot be used directly for this problem. The 
standard procedure would be to convert Equation 6.2 into two first-order ODEs, 
which would require two initial conditions. In the present example, 0 ≤ x ≤ 1, and 
only one condition is available at x = 0. Therefore, some strategy must be used so that 
available methods can be applied.

6.2 � Shooting Method

The shooting method, as the name implies, makes a guess at a second initial condi-
tion and then applies one of the numerical methods covered in Chapter 5 to “shoot” 
at the far boundary. Based on the error in the result from the known second bound-
ary condition, the guessed initial condition is adjusted until the condition is satisfied. 
This idea is now applied to the problem of Example 6.2.

Example 6.2: Shooting Method for Heat Conduction in a Rod

First, the second-order ODE is transformed into two first-order ODEs. Define 

F
dT
dx

= .

Then, the converted problem becomes

	

dF
dx

h
Dk

T T

dT
dx

F

T
F
T

a= −

=

=
=
=

4

0 100
0
1 0

( )

( )
( ) ?
( )

	 (6.3)

Since F(0) is not known, a guess is made and the problem is solved as an IVP. 
The value of T at x = 1 is then checked; if it is too low, F(0) is increased (aimed too 
low); if too high, F(0) is decreased (aimed too high).

At the Excel® level, the Goal Seek tool can be used to converge the second 
boundary condition. This process is illustrated in the following spreadsheet where 
the initial guess was F(0) = −100 (the derivative must be negative if the temperature 
is to decrease).
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The lower right-hand cell contains the value of T(1), which should be zero. It was 
driven to (nearly) zero using Goal Seek by varying F(0). The initial “guess” was –100 
for F(0) and Goal Seek found the value –277.237.

6.3 � Split BVPs Using Finite Differences

Another approach to solving BVPs is to discretize the ODEs using finite differ-
ences. The boundary conditions are applied directly, and the resulting set of equa-
tions are solved simultaneously. This approach is well suited to linear problems 
(ones that lead to a set of linear algebraic equations). When the problem leads to 
nonlinear equations, a tool (such as Solver) must be used. There are also other 
methods that have been developed for nonlinear problems, but these are beyond 
the scope of the present discussion (an excellent discussion is given in Riggs 1994). 
Note that the shooting method can be used without undue difficulty on nonlinear 
problems.

Example 6.3: Finite Difference Solution for Heat Conduction in a Rod

Consider the same problem as in Example 6.2, which used the shooting method. 
Dividing the line from 0 to 1 into equal increments of Δx and writing the finite 
difference form of the equation using a central difference approximation, at the 
ith node, there results

	

T T T
x

h
Dk

T Ti i i
i a

− +− + = −1 1
2

2 4
∆

( ) 	 (6.4)

with the conditions

T0 = 100
Tn+1 = 0
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There are n interior points. The relationship between n and Δx is

	
∆x

n
=

+
1
1

	 (6.5)

Writing the equation at i = 1 gives (let 4h/Dk = a, and recall that T0 = 100)

	

T T T
x

a T T

T T a T T x

a

a

0 1 2
2 1

1 2 1
2

2

2 100

2

− + = −

− + = − −

−

∆
∆

( )

( )

( ++ + = − −

+ − = +

a x T T a x T

a x T T a x T
a

a

∆ ∆

∆ ∆

2
1 2

2

2
1 2

2

100

2 10

)

( ) 00

	 (6.6)

Let

	

b a x

c a x Ta

= +
=

( )2 2

2

∆

∆
	 (6.7)

Then the equation for i = 1 becomes

	 bT1 – T2 = c + 100	 (6.8)

Writing the equation for i = 2 gives

	

T T T
x

a T T

T T T a T T x

T

a

a

1 2 3
2 2

1 2 3 2
2

1

2

2

2

− + = −

− + = −

−

∆
∆

( )

( )

( ++ + = −

− + + − =
−

a x T T a x T

T a x T T a x T

T

a

a

∆ ∆

∆ ∆

2
2 3

2

1
2

2 3
22

)

( )

11 2 3+ − =bT T c

	 (6.9)

Each succeeding equation is like this one, until i = n, in which case (recall that 
Tn+1 = 0) the following results:

	

T T T
x

a T T

T T a T T x

n n n
n a

n n n a

− +

−

− + = −

− + = −

1 1
2

1
2

2

2 0
∆

∆

( )

( )

TT a x T a x T

T a x T a x T
n n a

n n a

−

−

− + = −

− + + =
1

2 2

1
2 2

2

2

( )

( )

∆ ∆

∆ ∆

−− + =−T bT cn n1

	 (6.10)
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Writing all of the equations simultaneously gives a system of linear algebraic 
equations, which can be solved in Excel using the SYSLIN function (or any other 
method). Note that the matrix of the linear system for problems like this is tridiago-
nal (has nonzero elements on the diagonal and just above and below the diago-
nal). These can be solved by SYSLIN, but it is much more efficient to use special 
numerical methods that take advantage of the “sparseness” of the matrix. The 
function SYSLIN3 does exactly this and was used to produce the results shown in 
the following spreadsheet:

h 50.000
D 0.040
k 390.000
4h/Dk 12.821
Ta 25.000
n 9.000 Dx = 0.100
a = 12.821
b 2.128
c 3.205

c T
2.128 –1.000 103.205 76.966

–1.000 2.128 –1.000 3.205 60.594
–1.000 2.128 –1.000 3.205 48.785

–1.000 2.128 –1.000 3.205 40.025
–1.000 2.128 –1.000 3.205 33.192

–1.000 2.128 –1.000 3.205 27.409
–1.000 2.128 –1.000 3.205 21.935

–1.000 2.128 –1.000 3.205 16.068
–1.000 2.128 3.205 9.056

x T
0.000 100.000
0.100 76.966
0.200 60.594
0.300 48.785
0.400 40.025
0.500 33.192
0.600 27.409
0.700 21.935
0.800 16.068
0.900 9.056
1.000 0.000

A =

Solution by Finite Diff Dx = 0.1

0.000
20.000
40.000
60.000
80.000

100.000

0.000 0.200 0.400 0.600 0.800 1.000

Distance

T
em

pe
ra

tu
re

 

6.4 � More Complex Boundary Conditions with ODE-BVPs

Consider again the problem of heat transfer in a rod, where the ODE is

	

d T

dx

h

Dk
T Ta

2

2

4= −( ) 	 (6.11)

However, now assume that the left boundary is still exposed to boiling water, 
but that the right side is insulated (no heat flow). From Fourier’s law of heat 
conduction,
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q hA

dT

dx
= − 	 (6.12)

If q = 0, this implies that 
dT

dx
= 0. So, now the boundary conditions for the prob-

lem are

	

T

dT

dx

( )

( )

0 100

1
0

=

= 	 (6.13)

The shooting method can be used to solve this problem with no difficulty by 
transforming the second-order ODE into two first-order ones with one of the vari-
ables being the temperature gradient. That is, define F such that

	

dT

dx
F

dF

dt

h

Dk
T Ta

=

= −4
( )

	 (6.14)

In the shooting method, the procedure is to assume a value for F(0) and “shoot” for 
a value F(1) = 0.

The finite difference method can also be applied. The only thing that changes is 
the “last” equation (Equation 6.10). Recall the finite difference equation when i = n:

	

T T T

x
T Tn n n

n a
− +− + = −1 1

2

2

∆
α( ) 	 (6.15)

where

	
a

h

Dk
= 4

The right-hand boundary condition can be written using the right-hand second-
order correct finite difference formula (the third equation in Table 4.2). This is the 
second-order correct backward difference formula applied at the right boundary:

	

3 4
2

0

4
3

4
3

1
3

1 1

1
1

1

T T T
x

T
T T

T T

n n n

n
n n

n n

+ −

+
−

−

− + =

= − = −

∆
	 (6.16)
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Substituting for Tn+1 results in

	

T T T

x
a T T

T T T T a

n n n
n a

n n n n

− +

− −

− + = −

− + − =

1 1
2

1 1

2

2
4
3

1
3

∆
( )

∆∆

∆ ∆

x T T

T a x T a x T

n a

n n a

2

1
2 22

3
2
3

( )−

− +




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= −−

	 (6.17)

So, the last of the n equations is special and accounts for the insulated boundary 
condition.

Another more complex boundary condition involves what is often called (incor-
rectly) the radiation boundary condition. For example, at the end of the rod, there 
might be heat transfer to the surroundings as follows:

	

− = −

= − −

kA
dT

dx
hA T T

dT

dx

h

k
T T

a

a

( )
[ ( ) ]

( )
[ ( ) ]

1
1

1
1

or

	 (6.18)

As with the simpler insulated boundary condition, this more complex one pre
sents no particular difficulty when solving using the shooting method together with 
Goal Seek. When applying finite differences, the equation representing the bound-
ary (i = n) must be altered.

Exercises

Exercise 6.1: Consider the problem of heat transfer in a fin with variable ther-
mal conductivity. For a rectangular fin of thickness 2B and length L, it can 
be shown (with suitable assumptions) that the governing ODE is

	

d
dx

k
dT
dx

h
B

T Ta







= −( ) 	 (6.19)

	 where
	T =	 T(x) is the temperature in the fin (°F)
	h =	 Heat transfer coefficient between fin and air [Btu/(h ft2 °F)]
	B =	 The half thickness of the fin, 0.02 in. (note: inches)
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	L =	 Length of the fin, 1.5 in. (note: inches)
	 k =	 Thermal conductivity of the fin [Btu/(h ft °F)]
	Ta = 	Air temperature = 90°F
	Tw =	 Temperature of the wall to which the fin is affixed = 450°F
	 h =	 40 Btu/(h ft2 °F)

		  The thermal conductivity of the fin varies with distance as follows:

	 k = k0 (1 + x)	 (6.20)

	 k0 = 60 Btu/(h ft °F)

		  The boundary conditions are

	

T T

dT L
dy

w( )

( )

0

0

=

= (insulated)

		  Defining a dimensionless distance, y = x/L, and differentiating the first 
term in the ODE (using the equation for k as a function of x), the result is 
(should be verified)

	
k

d T

dy
k L

dT
dy

hL
B

T Ta

2

2 0

2

+ = −( ) 	 (6.21)

	 with boundary conditions

	

T T

dT
dy

w( )

( )

0

1
0

=

= (insulated)

	 a.	 Convert the ODE to two first-order ODEs and solve this problem using 
the Euler method together with the shooting method.

	 b.	 Change the second boundary condition to T(L) = Ta (90°F) and repeat 
the solution.

	 c.	 Change the right-hand boundary condition (B.C.) to the “radiation,” 
which can be expressed as

	

dT
dy

hL
k

T Ta

( )
[ ( ) ]

1
1= − −
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Exercise 6.2: Consider the problem of diffusion and reaction in a cylindrical 
pore (e.g., in a solid catalyst) where component A reacts at the walls of the 
cylinder according to

	 A B
r

→ 	 (6.22)

	 where

	 r kCA= 2  (second-order reaction) 	 (6.23)

		  In this system, component A diffuses into the pore due to lower concen-
tration of A inside the pore than at the pore mouth. Since B is produced by 
the reaction, the concentration of B inside the pore is larger than at the inlet, 
causing diffusion of B out of the pore. At the inlet of the pore (x = 0), the 
concentration is CA0. The end of the pore (x = L) is assumed to be sealed, so 
there is no flux of A at x = L. The mathematical model for this system can 
be expressed as follows:

	

D
d C

dx
kC

C C

dC L

dx

A
A

A

A A

A

2

2
2

00

0

=

=

=

( )

( )

	 (6.24)

		  The second boundary condition is the “no flux at x = L” condition. This 
is a split BVP that can be solved using the shooting method. Here are some 
data for the problem:

k	 = 0.01 L/(gmol s) (rate constant)
CA0	= 1.0 gmol/L (inlet concentration)
DA	 = 1 × 10−3 cm2/s (diffusivity)
L	 = 1 cm (length of pore)

		  Prepare an Excel spreadsheet to solve this problem using the Euler 
method. Use Goal Seek to implement the shooting method. Be sure to get a 
reasonable value of the unknown boundary condition (by experimentation) 
before invoking Goal Seek.

Exercise 6.3: Consider the same problem as in Exercise 6.2, but with a first-
order reaction:

	 A B
r

→ 	 (6.25)
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	 where

	 r = kCA (first-order reaction) 	 (6.26)

		  The model equations then become

	

D
d C

dx
kC

C C

dC L
dx

A
A

A

A A

A

2

2

00

0

=

=

=

( )

( )

	 (6.27)

		  Apply the finite difference method to solve this problem (first introduce a 
dimensionless distance y = x/L). Use the same data as for the second-order 
reaction case. For the right-hand boundary condition, do not forget to use a 
second-order correct finite difference form.

Exercise 6.4: Consider heat transfer in a counter-current heat exchanger as 
depicted in Figure 6.1.

		  When the flow direction of the two streams is opposite, counter-current 
flow exists and the system equations take the form

	

dT
dx

U D
m C

T T

dT
dx

U D
mC

T T

i i

p

i i

p

′ = −
′ ′

′ −

= ′ −

π

π

( )

( )

with ′′T T L( ) ( )0 and known 	 (6.28)

where
	 T =	Temperature on the shell (outer) side
	 T′ =	Temperature on the tube (inner) side
	 Ui =	Overall heat transfer coefficient based on Di

	Di =	Inside diameter of the inner pipe (tube side)
	 m =	Mass flow rate on the shell side
	m′ =	Mass flow rate on the tube side

Shell side T2

T2

T 1́

T1

T1

T 2́

Shell side

Tube side

Figure 6.1  Double pipe heat exchanger schematic.
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	Cp =	Fluid heat capacity on the shell side
	 ′Cp = Fluid heat capacity on the tube side
	 L =	Length of the heat exchanger

		  Pertinent data are as follows:

	

U D

m C

U D

mC

i i

p

i i

p

π

π

′ ′
=

=

1 2

0 5

.

.
	 (6.29)

		  Assume that the length of the exchanger = 1 and then consider the 
boundary conditions

	 T′(0) = 180; T(1) = 70

		  In order to integrate the two ODEs from x = 0 to x = 1, T(0) must be 
guessed and the integration performed to see if the target of 70 is hit. In 
effect, the single nonlinear equation T(1) – 70 = 0 must be solved.

		  Use the Euler method along with Goal Seek to solve this problem (at the 
Excel level). Begin using Δx = 0.1; find T(0) that satisfies the right-hand 
boundary condition. Then reduce Δx until comparable temperature profiles 
result. Finally, plot the temperature profiles with appropriate annotations on 
the graph. Assume that temperatures are in degrees Celsius.

Exercise 6.5: The transient BVP for a rectangular fin can be stated as follows:

	

∂
∂

− − = ∂
∂

2

2
2 1T

x
T T

T
taβ

α
( )

	

0 1

0

1

0 0

1

2

≤ ≤

=

=

=

x

T t T

T t T

T x

( , )

( , )

( , )

	 α and β are constants.
		  Define a dimensionless temperature and time as follows:

	
θ τ α= −

−
=T T

T T
ta

a1
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		  The BVP then becomes

	

∂
∂

− = ∂
∂

2

2
2θ β θ θ

τx

		  The new boundary conditions are

	

θ

θ

θ

( , )

( , )
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0 1
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1

1
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−

		  The steady-state model results when the time derivative is zero:

	

∂
∂

− = = = −
−

2

2
2 2

1

0 0 1 1
θ β θ θ θ

x

T T
T T

a

a

( ) ( )

		  The steady-state solution can be shown to be

	
θ β

β
β

ss
a

a

x T T
T T

x= − + −
−







sinh[ ( )]
sinh

sinh
sin

1 2

1 hhβ

		  For simplicity, take Ta = 0, T1 = 1, T2 = 0, and β = 4.
	 a. 	 Solve the steady-state dimensionless problem using the shooting method 

and the Euler method. Check the results with the analytical solution.
	 b. 	 Solve the steady-state dimensionless problem using finite differences. 

Again, compare the results with the analytical solution.

Exercise 6.6: (Note: This problem involves significant VBA programming and 
complex logic.) Solve the ODE-BVP of Equation 6.11 with boundary condi-
tions given by Equation 6.13 using the VBA program of Example 5.7 (Euler 
method). The requisite ODE and boundary conditions are repeated below:

	

d T

dx
T Ta

2

2
= −α( ) 	 (6.30)

	

T

dT
dx

( )

( )

0 100

1
0

=

= 	 (6.31)
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	 where
	 α =	 12.8
	Ta =	 25

		  While Goal Seek can be invoked from VBA, it is not possible to use it 
in the context of the Euler program. Therefore, it is necessary to include 
VBA code to implement one of the methods described in Chapter 1 to solve 
a single nonlinear equation. In particular, use the secant method to do this. 
The logic changes required in the Example 5.4 VBA program must be care-
fully thought out, but in general, the steps required are as follows:

	 a.	 Execute the current VBA program logic for one initial guess for T′(0).
	 b.	 Run the current VBA program logic for a second initial guess for T′(0).
	 c.	 Use the results of steps a and b to produce a new guess for T′(0) and 

use the logic of the secant method to proceed (replace one of the initial 
guesses and repeat this step until convergence is achieved). The process 
is converged when T′(1) is close to zero.

Exercise 6.7: Solve the problem of Exercise 6.2 using the instructions given in 
Exercise 6.6. That is, use the Euler VBA program of Example 5.4 together 
with the secant method. As with Exercise 6.6, this problem requires signifi-
cant logic planning and VBA programming.

Reference

Riggs, J.B., An Introduction to Numerical Methods for Chemical Engineers, 2nd ed., Texas 
Tech University Press, Lubbock, TX. pp. 241–282 (1994).
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7 Regression Analysis and 
Parameter Estimation

7.1 � Introduction and the General 
Method of Least Squares

The problem of regression analysis is to find coefficients (parameters) of a function 
that are believed to properly represent a set of experimental data and to perform 
statistical analyses to confirm (or deny) that the function gives a good fit to the data. 
Without the additional statistical analysis, just finding the parameters of some can-
didate function is called curve fitting. Curve fitting, while useful in certain circum-
stances, is not as powerful as regression analysis. Consider data as represented in 
Figure 7.1.

It is assumed that x, the independent variable, is error free (this might be time 
or temperature, for example), and y, the dependent variable, contains experimental 
error. In chemical and biomolecular engineering applications, theoretical knowl-
edge often exists of the function that should “fit” the data. If the deviations (errors) 
between the data and the fitting function are statistically distributed with a nor-
mal distribution with zero mean and constant variance, then it can be shown that a 
proper way to find the unknown coefficients of the function is to minimize the sum 
of squares of the errors. It is common nomenclature to call the errors “residuals,” 
which are defined as follows:

	 r y y i ni i
calc

i
data

d= − =; , , ,1 2  	 (7.1)

where nd is the number of data points, yi
calc is the value of y calculated from the fitting 

function, and yi
data  is the associated data value. The function to be minimized is then

	
q ri

i

nd

=
=

∑1
2

2

1

	 (7.2)

This is, therefore, called the method of least squares. If the fitting function can 
be represented as

	 y f c c c x x x i ni
calc

i n m d= =( , , , ; , , , ) , , ,1 2 1 2 1 2   	 (7.3)

where the xi are the “independent variables” (e.g., time, temperature, distance, etc. in 
which there are no significant errors) and y is the “dependent variable” that contains 
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random errors (perhaps due to measurement error or some other error source). The 
ci are unknown model parameters to be determined. Note that the unknowns to be 
determined are not represented by x. It takes some time to change the usual mind-set 
that x is the unknown.

To minimize Equation 7.2, differentiate with respect to the unknown parameters 
and set the result to zero (seeking a stationary point):

	

∂
∂

= ∂
∂

= =
=

∑q
c

r
r
c

j n
k

i
i

ji

nd

1

0 1 2, , , 	 (7.4)

If ri is expanded into a Taylor’s series about a point c0 (this is an “initial guess” 
of the c’s), then

	

r r c
r c

c
ci i

i

kk

n

k= + ∂
∂

⋅
=

∑( )
( )0

0

1

∆ 	 (7.5)

where

	 ∆c c ck k k= − 0 	 (7.6)

Substituting Equation 7.5 into Equation 7.4 gives

	

r
r
c

r
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


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∂
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∑∑
11

0 1 2∆ , ,,,n 	 (7.7)

In Equation 7.7, it is understood that the residuals and their derivatives are evalu-
ated at c0 (the initial guess).

y

x

FIGURE 7.1  Data with experimental error in the dependent variable.
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By expanding Equation 7.7 and defining

	
Z

f c

ck
k

= ∂
∂
( )0

	 (7.8)

the following set of equations in matrix–vector form result where the summations 
are over all data points:
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	 (7.9)

A shorthand representation of Equation 7.9 is

	 GΔc = –b	 (7.10)

where G is the left-hand side matrix, Δc is the vector of unknowns, and b is the right-
hand side vector. Since Equations 7.9 and 7.10 are applicable to any fitting function, 
these are often called the normal equations of the general method of least squares. 
The symmetric matrix G is referred to here as the Gauss–Newton matrix, but it goes 
by several other names in the literature.

7.2 �Li near Regression Analysis

If the Zs are constant (not dependent on the cs), Equation 7.10 is a linear system and 
the unknown coefficients can be easily determined. Note that a “linear regression” 
does not require the fitting function to be linear (a straight line); the only requirement 
is that the Zs are constants (the function is linear in its parameters).

Another way of getting the coefficients for a limited number of fitting functions is 
to use X–Y scatter graphs in Excel® and add a trendline.

7.2.1 � Straight Line Regression

Consider “straight line” regression where theory dictates that the data should lie on a 
straight line (or in the absence of a theoretical justification, a plot of the data suggests 
that a straight line should suffice). The fitting function is then

	 y c c xi
calc

i= +1 2 	 (7.11)
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To calculate the regression coefficients using Equation 7.9, proceed as follows:
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If the initial guess is taken to be zero (this is always suggested for linear prob-
lems), then

	 Δck = ck	 (7.13)

and

	 r y y c ci i
data

i
calc= − = = =( )since when0 01 2 	 (7.14)

The equations to solve for the unknown coefficients become
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	 (7.15)

The following Excel spreadsheet shows the calculation of all quantities required 
in these equations:

Example 7.1: Evaporation Coefficient Correlation

Figure 7.2 displays data for an evaporation coefficient for different air velocities 
over a pool of liquid.

Shown in Figure 7.3 is a plot of the original data produced with Excel. Note the 
regression equation that is displayed on the graph, which was calculated by Excel 
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by adding a “trendline.” To add the trendline, after having plotted the data as an 
X–Y scatter plot, right click the mouse on any data point. This brings up a menu of 
choices, one of which is Add trendline. A number of choices appear for the fitting 
function. After selecting the fitting function, click on the Options tab; some check 
boxes appear at the bottom. One of these says “Display Equation on Chart,” and 
the other says “Display R-squared Value on Chart.” Check both of these boxes, 
and the result should look like that shown in Figure 7.2. The quantity R2 is covered 
in more detail later.

0
0

0.2
0.4
0.6
0.8

1.2
1.4
1.6
1.8

1

100 200
Air velocity, cm/sec

Ev
ap

. c
oe

ff.
 m

m
2 /s

ec

R2 = 0.9053

y = 0.0038x + 0.0692

Scatter plot of regression data

300 400

FIGURE 7.3  Scatter plot of evaporation coefficient data.

x           
Air velocity 

cm/sec

       y       
Evap. coeff 
mm^2/sec

20 0.18
60 0.37

100 0.35
140 0.78
180 0.56
220 0.75
260 1.18
300 1.36
340 1.17
380 1.65

FIGURE 7.2  Evaporation coefficient data.
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 x           
Air 

velocity 
cm/sec

       y       
Evap. coeff 
mm^2/sec x^2 x y y^2

20 0.18 400 3.6 0.0324
60 0.37 3600 22.2 0.1369

100 0.35 10000 35 0.1225
140 0.78 19600 109.2 0.6084
180 0.56 32400 100.8 0.3136
220 0.75 48400 165 0.5625
260 1.18 67600 306.8 1.3924
300 1.36 90000 408 1.8496
340 1.17 115600 397.8 1.3689
380 1.65 144400 627 2.7225

sums 2000 8.35 532000 2175.4 9.1097

Equations: 10 2000 8.35
2000 532000 2175.4

G Inv. 0.40303 –0.001515 c1= 0.069242
–0.001515 7.576E-06 c2= 0.003829

Note the following in the spreadsheet:
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 	 (7.16)

The cs are identical to those found by Excel when a trendline was added to the 
plot of the data. The cs were determined using the inverse of the matrix G. The 
G matrix and its inverse have other powerful uses as well, as will be covered in 
later discussions.

One might (justifiably) ask why learn all of these details when Excel produced 
the desired results so easily. The reasons are twofold. First, it is always useful to 
know the details behind any automatic computations. Second, the computational 
details are required when the problem is nonlinear (they are not done automatically 
by Excel).

7.2.2 � Curvilinear Regression

The next example considers data that obviously cannot be represented by a straight line. 
The fitting function is often chosen as a polynomial or other function that can “bend” to 
better represent the data. It is important that although the fitting function is nonlinear in 
the dependent variable (x), it remains linear in the unknown coefficients (c).
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Example 7.2: Curvilinear Regression

Consider the data given in Figure 7.4. A scatter plot of the data is shown in Figure 
7.5. From the plot, it does not appear that a straight line can represent the data 
adequately. In the absence of a physical system model (conservation of mass, 
energy, or momentum principles), the usual procedure is to simply seek a func-
tion that will represent the data in an appropriate manner (this can be highly sub-
jective—even very approximate models are better than a pure guess about the 
function).

The function next up the ladder of complexity from a straight line is a qua-
dratic, which can be written as follows:

	 ycalc = c1 + c2x + c3x2	 (7.17)
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FIGURE 7.5  Effect of additive on drying time.
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FIGURE 7.4  Drying time data.
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To set up the least-squares (normal) equations, proceed by finding the Zs (the 
derivatives of ycalc with respect to the unknown coefficients):
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Z x

1

2

3
2

1=

=

=

	 (7.18)

Since the Zs are not dependent on the cs, this is still a linear regression problem.
Taking c0 = 0 (i.e., all initial guesses of the cs = 0), the normal equations result 

from Equation 7.9 as follows:

	 r y y xi i
data calc= − =( ( ) )since 0 0 	 (7.19)
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Shown below is an Excel spreadsheet that performs the indicated calculations:

 x y x^2 x^3 x^4 yx yx^2
0 12.0 0 0 0 0 0
1 10.5 1 1 1 10.5 10.5
2 10.0 4 8 16 20 40
3 8.0 9 27 81 24 72
4 7.0 16 64 256 28 112
5 8.0 25 125 625 40 200
6 7.5 36 216 1296 45 270
7 8.5 49 343 2401 59.5 416.5
8 9.0 64 512 4096 72 576

36 80.5 204 1296 8772 299 1697

So, the normal equations become
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These linear algebraic equations can be solved using any of the methods pre-
viously discussed. The solution is shown below in terms of the approximating 
function:

	 y = 12.2 − 1.85x + 0.183x2	 (7.22)

This equation together with the correlation coefficient can be found using 
Excel’s graphing capabilities. Simply plot the data (points only) and add a trendline 
(Figure 7.6). Use the appropriate Option to show the equation and R2. The coef-
ficients for the quadratic trendline are identical to those calculated previously.

This example will be amplified upon discussion after having introduced the “sta-
tistical part” of regression analysis.

7.3 �H ow Good is the Fit from a Statistical Perspective?

There are several tools to help visualize if the chosen function is a good one. Five of 
these will be covered:

•	 Residual plots
•	 Correlation coefficient
•	 Parameter standard deviations
•	 Parameter confidence intervals
•	 Parameter t-ratios

7.3.1 �R esidual Plots

When the residuals (ycalc – ydata) versus x are plotted, these values should distribute 
themselves somewhat evenly about zero, and their magnitude should be approxi-
mately constant (these were the basic assumptions for the least-squares method).

y = 0.1829x2 – 1.8465x + 12.185
R2 = 0.9227
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FIGURE 7.6  Effect of additive on drying time with trendline.
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7.3.2 � Correlation Coefficient

A quantitative measure of the “goodness of fit” is provided by the correlation 
coefficient:

where	
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	 (7.23)

An R2 value near 1 indicates that all residuals are small and that the fit is “good.” 
An elaborate treatment regarding R2 and the analysis of variance for regression anal-
ysis is beyond the scope of the present discussion.

7.3.3 � Parameter Standard Deviations

The parameter (regression coefficient) variances (and thus standard deviations) can 
be estimated from the matrix G of Equation 7.10. The following is stated without 
proof:

	 var( )c S s Ge= = −2 1 	 (7.24)

where

	
s

r

e

i

i

nd

2

2

1= =
∑

ν 	 (7.25)

and ν is the number of degrees of freedom (see Equation 7.26).
Variance [var(c)] represent the parameter variances. S is sometimes called the 

variance–covariance matrix. Variance is a measure of the spread of expected values 
of random variables belonging to a specific probability distribution. As has been 
mentioned previously, the validity of the least-squares method for determining 
regression parameters is based on errors in the data having a normal (Gaussian) 
distribution (the familiar bell-shaped curve) with zero mean and constant variance. 
The values of the parameters determined from data with such normal errors are, in a 
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sense, average values—they too are subject to errors. If the variance of the errors in 
the data were known, then the parameters themselves would be normally distributed. 
However, it is rarely the case that this variance is known with certainty. Therefore, 
the variance must be estimated. The matrix S of Equation 7.24 provides an estimate 
of the variances of the individual parameters (the diagonal elements of S) as well as 
the off-diagonal covariances between pairs of parameters (no further treatment of 
the covariances is given here).

When the variances must be estimated, the probability distribution of the param-
eters is the t-distribution. The t-distribution is similar to the normal distribution, but 
it has an additional argument called the degrees of freedom, which is the difference 
between the number of data points and the number of parameters:

	 Degrees of freedom = ν = nd − n	 (7.26)

The t-distribution probability density function looks very much like that of the 
normal distribution, but it is “shorter” and has a longer tail. Figure 7.7 displays the 
t-distribution with 3 and 10 degrees of freedom as well as the normal distribution. 
The t-distribution with an infinite number of degrees of freedom is coincident with 
the normal distribution.

7.3.4 � Parameter Confidence Intervals

As previously stated, the regression parameters have the t-distribution. Again, with-
out proof, the following inequality can be written:

	
c t s S c c t s Si e ii i i e ii− < < +− −1 2 1 2α α/ / 	 (7.27)

where ci  is the true value of ci.
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FIGURE 7.7  Plot of the t-distribution.
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7.3.5 �U sing t-Ratios (t-Statistics) for Individual Parameter Significance

When choosing an arbitrary function to fit a set of data (such as the quadratic in 
Example 7.2), it might be asked if all three terms in the equation are needed or if 
it can be simplified by dropping perhaps the linear term (the one involving c2 x). To 
answer this question, statistics gives the answer. It can be shown that the ratio of the 
optimal parameter values divided by their standard deviations (as determined by 
Equation 7.7) has a t-distribution with nd – n – 1 degrees of freedom. That is,

	
t

c

si
i

i

= 	 (7.28)

Looking at a table of the t-distribution (Google it), it will be noticed that for α = 
0.025 (two-sided confidence of 95%), for more than 3 degrees of freedom, the tabu-
lated values are all near 2. So, for convenience, it can be stated as an informal test 
of the null hypothesis that a parameter’s contribution is insignificant (i.e., its value 
is zero) if the calculated value |ti| < 2 and rejected if the calculated value |ti| ≥ 2. This 
can be done more formally by using the precise value of the t-distribution with the 
proper number of degrees of freedom. In Excel, this can be found using the func-
tion TINV(α, ν). Note that α and not α/2 is used with the TINV function. This is 
because the function returns what is called the two-tailed t-value; α is split between 
the negative tail and the positive tail of the t-distribution. Only a much more detailed 
study of the statistics associated with these arguments would explain these concepts 
fully, but this is beyond the present discussion. Suffice it to say that if a parameter 
t-ratio (Equation 7.28) is less than about 2, it can be concluded that the parameter is 
no different than zero and can be removed from the correlating equation.

Example 7.3: Applying Statistics to the Problem of Example 7.2

Consider again the quadratic function fit to the drying time data of Example 7.2. 
In what follows, each of the statistical tools for determining the quality of the “fit” 
is demonstrated.

Residual Plot

The residual plot for Example 7.2 (quadratic curve fit) appears in Figure 7.8.
With only 9 data points, the data distribute nicely about zero, and the magnitude 

does not (visually) appear to be a function of x. It can be concluded that the fit is ade-
quate. Note that a single point with a very large residual is a candidate “outlier” and 
might be omitted if this can be justified (poor experimental procedure, other extenuat-
ing circumstances, etc.). However, the arbitrary exclusion of outliers must be avoided.

Correlation Coefficient

From Equation 7.23, the R2 value for Example 7.2 can be calculated as 0.9227. This 
value is identical to that shown in the trendline graph in Figure 7.4.
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Parameter Standard Deviations

The G matrix for Example 7.2 was

 9 36 204
36 204 1296

204 1296 8772

The associated inverse matrix is

 0.660606 –0.30909 0.030303
–0.30909 0.224459 –0.02597
0.030303 –0.02597 0.003247

x residual resid^2
0 0.185 0.034225
1 0.0389 0.001513
2 –0.7414 0.549674
3 0.3441 0.118405
4 0.7954 0.632661
5 –0.3875 0.150156
6 0.2954 0.087261
7 –0.1559 0.024305
8 0.2586 0.066874

sum 1.665074
se^2 0.277512

0.183326 –0.085777 0.008409
–0.085777 0.06229 –0.007208

0.008409 –0.007208 0.000901
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0 5 10Re
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FIGURE 7.8  Residual plot for Example 7.2.
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The final results are shown in Figure 7.9.

To obtain the parameter variances, the diagonal elements must be multiplied 
by se

2 (see Equation 7.25). se
2 is the sum of squares of residuals divided by the 

degrees of freedom (number of data points – number of parameters; 6 in the 
present case). Shown below is the calculation of se

2 followed by the matrix whose 
diagonal elements are the parameter variances:

Parameter Confidence Intervals (95%)

From Equation 7.27, the 95% parameter confidence intervals are shown in the fol-
lowing inequalities:

	

c

c

c

1

2

11 633 12 185 12 737

2 168 1 847 1 525

: . . .

: . . .

< <

− < − < −

33 0 1442 0 1829 0 2216: . . .< <

	 (7.29)

An examination of these confidence intervals reveals that the uncertainty in all 
three parameters is not unreasonably large.

Parameter t-Ratios

From Equation 7.28, the t-ratios for the three parameters are shown in Figure 7.10.
The t-ratios for c1, c2, and c3 have absolute values considerably greater than 2. 

Therefore, it can be concluded that all parameters are significant and must be 
retained in the correlating equation.

 Parameter Variance Standard deviation
c1 0.1833 0.4282

c2 0.0623 0.2496
c3 0.0009 0.0300

FIGURE 7.9  Parameter standard deviations.

Parameter t-ratio
c1 28.4582
c2 –7.3986
c3 6.0932

FIGURE 7.10  Parameter t-ratios.
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Example 7.4: Another Curvilinear Regression Problem

Consider fitting a polynomial to the data in Figure 7.11.
A typical first step when choosing a fitting function (in the absence of one 

based on theory) is to prepare a graph of the data. When using Excel, a variety of 
trendline types can also be helpful in arriving at a suitable functional form. Shown 
in Figure 7.12 is a plot of the data together with both quadratic and cubic poly
nomial fitting functions.

The graph in Figure 7.12 suggests clearly that a cubic fitting function is superior 
to a quadratic one. A cubic fitting function is as shown by the following equation:

	 ycalc = c1 + c2v + c3v2 + c4v3	 (7.30)

The derivative of Equation 7.29 with respect to each of the four parameters gives

	 Z1 = 1, Z2 = v, Z3 = v2, Z4 = v3	 (7.31)

v y Data
0.00 1.766
0.25 2.478
0.50 3.690
0.75 6.397
1.00 6.649
1.25 10.045
1.50 12.924
1.75 15.957
2.00 17.008
2.25 21.196
2.50 24.113
2.75 25.570
3.00 28.258
3.25 32.129
3.50 32.494
3.75 34.031
4.00 34.088
4.25 32.974
4.50 31.815
4.75 30.647
5.00 26.050
5.25 23.453
5.50 17.694
5.75 9.444

6.00 1.734

FIGURE 7.11  Data for curvilinear regression.



152 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

The normal equations [see Equation 7.10] are as shown in Equation 7.32:

	

1

2

3

4

25.00       75.00       306.25       1406.25                   482.60
75.00     306.25     1406.25       6886.80                 1697.26

306.21     406.25     6886.80     35126.95                 6779.00
1406.25   6886.80   35126.95   184262.87               29158.68

c
c
c
c

 
 
  =

 
  

 
 
 
 
 	

(7.32)

Solving these equations gives

c1 2.2241
c2 0.1829
c3 5.8748
c4 –0.9855

The gross sum of squares of residuals = 0.5191.

The inverse of G is as follows:

 0.4810 –0.5869 0.1915 –0.0182

–0.5869 1.0442 –0.3946 0.0407

0.1915 –0.3946 0.1604 –0.0173
–0.0182 0.0407 –0.0173 0.0019

The parameter standard deviations and t-ratios are shown in Figure 7.13.
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FIGURE 7.12  Curvilinear data showing quadratic and cubic fitting functions.

 Base value Std. dev t-ratios

c1 2.2241 0.4997 4.451

c2 0.1829 0.7363 0.248

c3 5.8747 0.2886 20.357

c4 –0.9855 0.0316 –31.2

FIGURE 7.13  Parameter values, standard deviations, and t-ratios.
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From Figure 7.13, it can be deduced that c2 is poorly determined. Upon remov-
ing the term involving c2, the new model equation is given by

	 y = c1 + c2x2 + c3x3	 (7.33)

When the computations are repeated using the revised fitting function, the 
optimal coefficients, standard deviations, and t-ratios are as shown in Figure 7.14.

Now, all t-ratios are well above 2, and Equation 7.33 gives an adequate repre-
sentation of the data.

As a note of warning, when turned out that two of the original parameters had 
t-ratios less than 2, it was appropriate to remove only the one with the smallest (in 
absolute value) t-ratio. Once the worst actor removed, the revised t-ratio of the 
other offender was greater than 2.

7.4 �R egression Using Excel’s® Regression Add-In

Now that all of the computations for regression analysis the “hard way” (e.g., do it your-
self) have been covered, a little secret can be revealed: Excel will do almost everything 
that has been discussed as long as the problem is one of linear regression. To invoke this 
package, go to Data/Data Analysis/Regression. The following spreadsheet displays the 
original data and columns for other terms to be included in the original fitting function 
(Equation 7.30). Also shown is the window that is presented by the Regression Add-In:

 Base value Std. dev. t-ratios
c1 2.327 0.274 8.489
c2 5.944 0.075 79.209
c3 –0.993 0.013 –76.610

FIGURE 7.14  Revised parameter values, standard deviations, and t-ratios.
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For the Input Y Range, the first column was selected, and for the Input X Range, 
the next three columns were identified. Since the first row contains labels, the 
“Labels” box was checked. Also checked was the Confidence Level box and 95% for 
the confidence level. For the Output options, the New Workbook radio button was 
checked, and the following is the output from the Regression Add-In:

The analysis of variance (ANOVA) portion is not covered here. The other results 
are identical to those that were performed “by hand.” Note that the t Stat (same as 
t-ratio) for v is less than 2, so the associated term (involving v) was deleted and the 
analysis was repeated. To do this, the second data column was not included in the 
X-Range in the Regression Add-In window. Results when doing that are as follows:
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Once again, the results are identical with the “hand calculations.” One might ask 
why the hand calculations were explained when Excel Add-In would perform all of 
the requisite computations? The reasons are twofold: (1) so the power and results 
from the Regression Add-In can be fully appreciated, and (2) the Regression Add-In 
works only for linear regression, where the Zs in Equation 7.9 do not involve the 
unknown parameters. For nonlinear regression, the calculations must be done “by 
hand.” Nonlinear regression is covered in Chapter 9.

7.5 �N umerical Differentiation and 
Integration Revisited

When data to be differentiated or integrated contain random errors (usually experi-
mental errors), it can be advantageous to first fit the data to an appropriate function 
using regression techniques. Then, the fitted function can be differentiated or inte-
grated analytically. Example 7.5 illustrates this approach.

Example 7.5: Mean Heat Capacity of Gaseous Propane

The mean heat capacity of a gas is determined by the relationship

	
C

C dT

T Tp

p
T

T

ref

ref=
−

∫
	 (7.34)

The data of Figure 7.15 are for gaseous propane.

Point
number

Temperature
(K)

Heat capacity
(kJ/kg-mol-K)

1
2
3
4

6
5

7
8
9

10
11
12
13
14
15
16
17
18 1500

1400
1300
1200
1100
1000

800
900

700
600
500
400
300

273.15
200
150
100

50 34.16
41.3

48.79
56.07
68.74
73.93
94.01

112.59
128.7

142.67
154.77
163.35

174.6
182.67
189.74
195.85
201.21
205.89

FIGURE 7.15  Heat capacity data for propane gas (reference temperature = 50 K).
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A plot of the data is shown in Figure 7.16.
Because of the curvature, initially a cubic polynomial fit to the data was tried. 

Two parameters had t-ratios less than 2, and the coefficient of the cubic term was 
the worst actor. This led to a quadratic fit with the following result:

	 Cp = −6.17 × 10−5T 2 + 0.2175T + 18.1968	 (7.35)

Integrating this function between limits of 50 and 1500 K and dividing by the 
temperature range gives a mean heat capacity of 138.79 kJ/(kg mol K). Performing 
the integration by the trapezoidal rule on the same data gives a result of 139.70. 
Since the data are quite smooth (small experimental error), it is to be expected that 
these results will be similar.

Exercises

Exercise 7.1: For the data shown below:

v y

0 1.766

0.25 2.478

0.5 3.690

0.75 6.397

1 6.649

	 a.	 Fit the data to a quadratic polynomial. As a first step, plot the data and 
add a quadratic polynomial trendline—this will indicate what the coef-
ficients will be when they are calculated. Do these calculations by hand; 
determine c1, c2, c3, the parameter standard deviations, the t-ratios, and 
the R2 value (which can also be checked from the trendline).

	 b.	 Repeat the calculations of part a using the Excel Data Analysis/
Regression Add-In.

	 c.	 Based on the results of parts a and b, if any of the t-ratios suggest an 
alteration in the fitting function, change the function and recalculate all 
necessary quantities using the Excel Data Analysis/Regression Add-In.
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FIGURE 7.16  Plot of heat capacity of propane (reference temperature = 50 K).
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	 d.	 Fit the data to a fourth-degree polynomial using an Excel trendline 
only. Comment on the results (Is it good, and if so why? Is it bad, if so 
why?).

Exercise 7.2: Consider the following data:

x y

0 0.998

0.1 1.061

0.2 1.050

0.3 1.111

0.4 1.298

0.5 1.482

0.6 1.751

0.7 2.211

0.8 2.658

0.9 3.262

1 3.965

	 a.	 Plot the data in the usual way.
	 b.	 Plot the data again, but with no connecting line.
	 c.	 Add a trendline to the data; display the equation and the R2 value.
	 d.	 Use the Excel Regression Add-In to fit the data to a cubic polynomial: 

y = c1 + c2x + c3x2 + c4x3. Based on the calculated t-ratios (called t-stat 
in the results table), should all four constants be retained? If not, use the 
Excel Regression Add-In to redo the regression with the most signifi-
cant terms in the fitting polynomial. Continue this until all t-ratios are 
satisfactory.

	 e.	 (Optional) Now that the answers are known, redo step d by hand using 
the appropriate equations and formulas. Formulate the linear equations 
to be solved, and calculate the value of R2, the parameter standard devi-
ations (called the standard error by the Excel Add-In), and the t-ratios. 
Again, repeat this step until all t-ratios are satisfactory.

Exercise 7.3: The Clausius–Clapyron equation relates the latent heat of 
vaporization to temperature and vapor pressure according to the following 
equation:

	
ln( )p

H
RT

kv= − +∆ 	 (7.36)

		  Data for water are shown below (units are K for T and mmHg for p). Use 
linear regression to find the heat of vaporization of water; the published 
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value is –540 cal/g. The heat of vaporization (/R) is the slope of the line 
described by Equation 7.36.

  1/T In(P)

0.002755 6.2649

0.002740 6.3404

0.002725 6.4149

0.002710 6.4886

0.002695 6.5615

0.002681 6.6333

0.002667 6.7043

0.002653 6.7743

0.002639 6.8436

0.002625 6.9121

0.002611 6.9797

Exercise 7.4: The data shown below are to be fitted to the function

	
y c c

x

x
c ecalc x= + + −

1 2 2 3

ln
	 (7.37)

		  Consider the following data (these are “artificial” and were generated to 
suit this problem):

x y Data

1 –0.3680

1.1 –0.2540

1.2 –0.1740

1.3 –0.1170

1.4 –0.0749

1.5 –0.0429

1.6 –0.0183

1.7 0.0009

1.8 0.0161

1.9 0.0282

2 0.0380

2.1 0.0458

2.2 0.0521

2.3 0.0572

2.4 0.0612

2.5 0.0645

2.6 0.0671

2.7 0.0690

2.8 0.0705

2.9 0.0716

3 0.0723
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	 a.	 Find the three parameters c1, c2, and c3 using the Excel Data Analysis 
Regression Add-In. If any of the parameters are insignificant based on 
the t-ratios, repeat the calculations using the reduced model.

	 b.	 Do the calculations for the three parameter models by hand. Your 
results should be the same as those from part a.

Exercise 7.5: The following are vapor–liquid equilibrium data for the binary 
system SO2–water at 20°C.

x (mole fr. SO2 in liquid) y (mole fr. SO2 in vapor)

0 0

5.62E–05 0.000685

0.00014 0.00158

0.00028 0.00421

0.000422 0.00763

0.000564 0.0112

0.000842 0.01855

0.001403 0.0342

0.001965 0.0513

0.00279 0.0775

0.0042 0.121

0.00698 0.212

0.01385 0.443

0.0206 0.682

0.0273 0.917

		  Fit these data to an appropriate polynomial form. First, plot the data 
and successively fit a linear, quadratic, cubic, and quartic trendline, not-
ing the R2 value each time; when the R2 no longer improves, use the Excel 
Regression Add-On to find the parameters and statistical indicators. Verify 
that the polynomial chosen does indeed satisfy the usual statistical criteria. 
In all cases, the constant term must be zero since the (0, 0) data point is 
without error.
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8 Partial Differential 
Equations

8.1 � Introduction

The most frequently occurring partial differential equations (PDEs) involving two 
independent variables are as follows:

Parabolic:

	

∂
∂

= ∂
∂

u

t

u

x

2

2
one-dimensional unsteady state 	 (8.1)

Elliptic:

	

∂
∂

+ ∂
∂

=
2

2

2

2
0

u

y

u

x
two-dimensional steady state 	 (8.2)

Hyperbolic:

	

∂
∂

+ ∂
∂

=
2

2

2

2
0

u

t

u

x
vibration of a string 	 (8.3)

In this chapter, only parabolic and elliptic PDEs are considered.

8.2 � Parabolic PDEs

The equation

	

∂
∂

= ∂
∂

u

t

u

x
α

2

2
	 (8.4)

describes many phenomena in chemical and biomolecular engineering. Examples 
are one-dimensional, unsteady-state heat conduction (where α is the thermal dif-
fusivity), fluid flow (where α is kinematic viscosity), and molecular diffusion (where 
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α is the molecular diffusivity). The heat conduction examples are most widely used 
since they are easy to visualize.

Recall Example 6.1 involving heat conduction in a thin rod of length 1 (when the 
perimeter is insulated). For transient operation (unsteady state), this system can be 
described by

	

∂
∂

= ∂
∂

u u

xθ

2

2
	 (8.5)

where α is the thermal diffusivity of the rod material and θ is a dimensionless time 
defined as

	 θ = αt	 (8.6)

This kind of problem is a PDE-IVP. It is a boundary value problem in x and an 
initial value problem in θ. It remains to specify initial and boundary conditions. For 
simplicity, consider the following:

	 u(0,θ) = 0; u(1,θ) = 1; u(x,0) = 1  (1 everywhere except x = 0)	 (8.7)

Physically, this represents heat transfer in a one-dimensional object (a rod or slab) 
with unit initial temperature. At time 0, the temperature at the left boundary under-
goes a step change to zero while the right boundary is maintained at a temperature 
of 1. This problem can be solved analytically to give

	

u x
n

n n x
n

= + −
=

∞

∑2 1

1

2 2

π
π θ πexp( ) sin( ) 	 (8.8)

The following spreadsheet shows the calculation of one temperature at the center-
line (x = 0.5) and for θ = 0.1:

n n^2 Pi^2 Theta n Pi x exp(–B) sin C Term Sum

1 0.9869605 1.57080 0.372708 1 0.23727 0.23727

2 3.9478419 3.14159 0.019296 –5E–08 0.00000 0.23727

3 8.8826442 4.71239 0.000139 –1 –0.00003 0.23724

4 15.7913675 6.28319 1.39E–07 9E–08 0.00000 0.23724

5 24.6740117 7.85398 1.92E–11 1 0.00000 0.23724

Since x = 0.5, the solution at this point is u = 0.73724. This exercise gives a point 
that can be compared to that produced by any numerical solution.
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To solve such problems numerically, a popular approach is to substitute finite dif-
ference analogs for the derivatives and solve the resulting algebraic equations. There 
are many ways in which this can be done, a few of which are summarized below:

	 1.	Centered difference in x, forward difference in θ
	 2.	Centered difference in x, backward difference in θ
	 3.	Centered difference in x, centered difference in θ

8.2.1 � Explicit Method (Centered Difference in x, 
Forward Difference in θ)

Solution by centered difference in x, forward difference in θ, is now illustrated. This 
approach suffers the same shortcomings as the Euler method for ODEs (the trunca-
tion error is O(Δx)). By replacing the derivatives with the appropriate finite differ-
ence analogs (see Table 4.2) as follows:

	

u u u u u

x
j Mi j i j i j i j i j, , , , , ; , , , ;+ − +−

=
− +

=1 1 1
2

2
0 1

∆ ∆θ
 ii = +0 1 2 1, , , , N 	 (8.9)

M should be large enough to reach the steady-state solution.
This corresponds to a two-dimensional “grid” with θ on the vertical axis and x 

on the horizontal axis. Subscript j is an index for the θ axis while i is an index for 
the x-axis. When i = 0, the left boundary condition applies; when i = N + 1, the right 
boundary condition applies. The process begins with u known when j = 0 (θ = 0 or 
time = zero) for all i; these are the initial conditions (zero at all points—Equation 
8.7). The only unknown in this equation is ui,j+1. Solving for this unknown gives

	
u u

x
u u ui j i j i j i j i j, , , , ,( )+ − += + − +1 2 1 12

∆
∆

θ
	 (8.10)

Δθ and Δx must be determined so that reasonably accurate results occur (if possible). 
A typical value for N is 19, but a larger value might be required. This corresponds 
to Δx of 0.05.

This method is the simplest approach to solving the problem numerically. It can 
be implemented directly in Excel®, or a VBA Macro can be written.

Example 8.1: Transient Heat Conduction in a Rod

Shown below are the first few rows of an Excel program to solve Equation 8.10 
together with the initial and boundary conditions given in Equation 8.7:
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Values of Δθ of 0.01, 0.001, and 0.0001 were tried. Δθ = 0.001 gave nearly 
the same results as Δθ = 0.0001. The value of u corresponding to θ = 0.1 and x = 
0.5 was 0.7361. This compares favorably with the analytically computed value of 
0. 0.7372. When Δθ = 0.001, the numerically computed value was 0.7371. Given 
the simplicity of this method, these results are remarkably good. It must be pointed 
out, however, that when Δθ = 0.01, the solution was unstable (wildly fluctuating 
temperatures were the result).

8.2.2 �C entered Difference in x, Backward Difference in θ
In the interest of keeping this discussion brief, this method will not be implemented. 
The required algorithms are similar to what is discussed next. A potential signifi-
cant advantage of this approach is that it has excellent stability attributes. For more 
information, Google it.

8.2.3 �C rank–Nicholson Method (Centered Difference 
in x, Centered Difference in θ)

The third method (called the Crank–Nicholson method) applies some innovation 
in that the finite difference analog is “centered about a fictitious half-way point” as 
shown in Figure 8.1.

Here are the finite difference analogs for the terms in the PDE; the unknowns are 
at level j + 1 for any i:

	

∂
∂

=
−

+ ++u
t

u u
ji j i j, , ( ) ( )1 2 1 2

∆
∆

θ
θO centered about / 	 (8.11)

	

∂
∂

=
− +

+− + + + +
2

2
1 1 2 1 2 1 1 2

2
22u

x

u u u

x
xi j i j i j, , , (/ / /

∆
∆O )) ( )centered about i 	 (8.12)

t

x

Left-hand B.C.s
apply here

j+1
j+1/2

j
∆t

Right-hand B.C.
apply here

Initial condition apply hereCrank–Nicholson
finite difference module

∆x i–1 i+1i

FIGURE 8.1  Crank–Nicholson finite difference nomenclature.
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The j + 1/2 terms are replaced with its average at the j and j + 1 points:

	
u u ui j i j i j, , ,( )+ += +1 2 1

1
2/ 	 (8.13)

With these substitutions, Equation 8.5 is replaced by the following finite differ-
ence equations:

	

− + +






− = −− + + + + −u
x

u u ui j i j i j i j1 1

2

1 1 1 12 1, , , ,
∆
∆θ

22 1
2

1−






+ +

∆
∆
x

u ui j i jθ , , 	 (8.14)

Note that the unknowns are at level j + 1, so all terms on the right-hand side are 
known. When the finite difference equation is applied for all i, a tridiagonal system 
of equations results. Such systems can be solved very efficiently (as compared to full-
matrix linear systems) using a method called the Thomas algorithm (see below). The 
Matrix.xla function SYSLINT can also be used.

Example 8.2: Crank–Nicholson Method

The algorithm for solving the example problem can be summarized as follows:

	 1.	Start with all us at the initial conditions.
	 2.	Set up the tridiagonal set of equations for time Δθ. Apply the boundary 

conditions for i = 0 and i = N + 1.
	 3.	Use the Thomas algorithm or SYSLINT to find all us at Δθ.
	 4.	Repeat the process for 2 Δθ, 3 Δθ, and so forth.

The initial and boundary conditions of Equation 8.7 must be introduced. Let 
the vector v represent the present (known or level j) temperatures and u be the 
unknown (level j + 1) temperatures. The finite difference equations are as follows 
(note that the initial values for v are all 1). Recall that the left boundary value is 0 
while the right boundary value is 1.
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	 (8.15)
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This is a tridiagonal system. Once solved for all us, replace v with u and repeat 
for any desired number of time steps.

Figure 8.2 is a graph of the temperature when x = 0.5 (the centerline). The 
numerical solution at the centerline (when Δθ = 0.1 and Δx = 0.05) for θ = 0.1 is 
0.7370, which is the same as the infinite series solution to three significant figures. 
Accuracy to additional significant figures is easily obtained by reducing Δθ. It is 
highly significant that a value of Δθ = 0.01 is one or two orders of magnitude larger 
than was required with the Euler in time method.

8.3 �Th omas Algorithm for Tridiagonal Systems

The Thomas algorithm is well known in numerical mathematics as an implemen-
tation of Gaussian elimination applied specifically to tridiagonal systems. If each 
equation is of the form

	 ci xi−1 + di xi + ei xi+1 = bi	 (8.16)

applying Gaussian elimination to the system results in the following algorithm:
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	 (8.17)
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FIGURE 8.2  Centerline temperature (Δθ = 0.1, Δx = 0.05).
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Example 8.3: Illustration of the Thomas Algorithm

A three-equation, three-unknown example is as follows:

	

2 1 0
1 2 1
0 1 2

3
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2
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

( )note that the matrix is tridiagonal

The steps of the Thomas algorithm are shown below:
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/
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Example 8.4: VBA Program for the Crank–Nicholson Method

A VBA program that implements the Crank–Nicholson method for the problem 
of Equation 8.5 with the initial and boundary conditions of Equation 8.7 is shown 
below. Equation 8.15 forms the basis for the tridiagonal system to solve at each 
time step.
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The spreadsheet shown on the next page illustrates the program user interface and 
output. Note, particularly, the value for θ = 0.1 and x = 0.5. To three significant 
figures, this value is the same as that provided by the analytical solution.

To review, the Crank–Nicholson method involves writing second-order correct 
finite difference approximations by using a fictitious “halfway point” in time. To 
resolve the unknowns at the halfway point, the average between the old time points 
and the new time points is used. This leads to a tridiagonal system of linear equa-
tions to be solved at each time step. The resulting algorithm is second-order correct 
in both distance and time. Using the same example, the time step required by the 
Crank–Nicholson method was two orders of magnitude greater than when the Euler 
in time method was used.
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8.4 � Method of Lines

When using finite differences to solve the unsteady heat conduction problem, another 
approach involves writing finite difference equations at each grid point (node) only for the 
spatial variables while leaving the time derivative intact. This leads, generally, to a large 
number of simultaneous ODEs, which can be solved by, for example, a Runge–Kutta 
method. However, one must be careful since this set of ODEs can be stiff. Consider the 
same one-dimensional, unsteady state heat conduction problem as solved in Examples 
8.1 and 8.2. This problem is solved by the method of lines in the next example.

Example 8.5: Method of Lines

	

∂
∂

= ∂
∂

= = =

u u

x

u t u t u x

θ

2

2

0 0 1 1 0 1( , ) ; ( , ) ( , )
	 (8.18)

Applying a second-order correct finite difference analog for the spatial deriva-
tive term at “line” i gives

	

du
dt

u u u
x

i ni i i i= − + =− +1 1
2

2
1 2

∆
; , , 	 (8.19)

At the left boundary, ui−1 = 0 because of the left boundary condition. So, the ODE 
when i = 1 becomes

	

du
dt

u u
x

1 1 2
2

2= − +
∆

	 (8.20)

For 2 ≤ i ≤ n − 1, the ODEs are

	

du
dt

u u u
x

i ni i i i= − + = −− +1 1
2

2
2 3 1

∆
; , , 	 (8.21)

And the last equation (i = n – 1) is as follows because the right-hand boundary 
condition is 1:

	

du
dt

u u
x

n n n= − +−1
2

2 1
∆ 	 (8.22)

Shown below is a VBA subprogram FCalc that would be called by an ODE 
solver such as a Runge–Kutta method. The subprogram implements the right-
hand-side functions of Equations 8.20 through 8.22.
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The results for this implementation are essentially identical to the results shown 
in Example 8.2.

8.5 � Successive Overrelaxation for Elliptic PDEs

Consider Laplace’s equation in two dimensions (this is an elliptic equation):

	

∂
∂

+ ∂
∂

=
2

2

2

2
0

φ φ
x y

	 (8.23)

This equation represents many steady-state phenomena in two dimensions, such 
as temperature distributions, laminar flow distributions, and voltage distributions.

Example 8.6: Relaxation Method for an Elliptic Equation

Consider a rectangular (thin) flat plate as shown in Figure 8.3 with the given condi-
tions along each edge.

Substituting second-order correct finite difference analogs into Equation 8.23, 
there results

	

φ φ φ φ φ φi j i j i j i j i j i j

x y
− + − +− +

+
− +

=1 1
2

1 1
2

2 2
0, , , , , ,

∆ ∆
	 (8.24)

ymax jmax

∆y

∆x

2
j = 10

φ = 1 φ = 0

φ = 0

φ = 00 xmax i = 1 2 imax

FIGURE 8.3  Nomenclature: finite difference representation of heat transfer in a flat plate.
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Solving for ϕi,j gives

	
φ

φ φ φ φ
i j

i j i j i j i jx y

x,
, , , ,( ) ( )

=
+ + +

+
− + − +∆ ∆

∆

2
1 1

2
1 1

22 22 2∆y
	 (8.25)

If Δx = Δy, this can be written as the average of the four surrounding tempera-
tures as in Equation 8.26.

	
φ

φ φ φ φ
i j

i j i j i j i j
,

, , , ,=
+ + +− + − +1 1 1 1

4
	 (8.26)

To apply this recurrence relation, start by guessing the φ values at all nodes 
and then sweep through all i and j updating with the above “average of 4” for-
mula. This process is repeated until there is only a small change from one sweep 
(iteration) to the next or for a fixed number of iterations (easier). The process is 
called relaxation. The relaxation method is a procedure for solving simultaneous 
equations by guessing a solution and then reducing the errors that result by suc-
cessive approximations until all the errors are less than some specified amount. 
The VBA program shown below implements the relaxation method of Equation 
8.26 and for the boundary conditions shown in Figure 8.3. The program is set 
to 20 iterations; this is much easier testing to see if the temperatures cease to 
change. Results are shown in Figure 8.4.

1 0 0 0 0 
1 0.4654 0.2322 0.0997 0 
1 0.6308 0.3649 0.1673 0 
1 0.6949 0.4309 0.2053 0 
1 0.7201 0.4605 0.2235 0 
1 0.7270 0.4691 0.2290 0 
1 0.7207 0.4612 0.2240 0 
1 0.6960 0.4322 0.2060 0 
1 0.6320 0.3663 0.1681 0 
1 0.4663 0.2332 0.1003 0 
1 0 0 0 0 

FIGURE 8.4  Relaxation results after 20 iterations.
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Because of symmetry, it is known that the values 0.2883 and 0.2924 should be 
the same, but even after 15 iterations, they are relatively far apart. To improve this, 
there is the method of successive overrelaxation or the SOR method. The idea here 
is that on each sweep, the newly calculated value is not used directly; instead an 
interpolation/​extrapolation formula as shown by the following equation is used:

	 ϕNew = ϕOld + SRF(ϕCalc − ϕOld)	 (8.27)

where SRF is the successive relaxation factor. If SRF = 1, the new value is equal to 
the calculated one. If SRF < 1, the formula interpolates, and if SRF > 1, it extrapo-
lates. Typically “good” values for SRF are between 1.2 and 1.5.

Example 8.7: Successive Overrelaxation

When Equation 8.27 is used with an SRF of 1.5 and 20 iterations, the results are as 
shown in Figure 8.5. Note that these data are symmetric to the precision shown.

Much more time could be spent on PDEs of various kinds and with a variety 
of boundary conditions. Time does not allow this, but with the background gained 
so far, the reader should be able to comprehend more advanced numerical analysis 
textbooks and research papers to learn about solving other kinds of problems. Want 
to know more? Google it!

1 0 0 0 0 
1 0.4666 0.2335 0.1005 0 
1 0.6327 0.3671 0.1686 0 
1 0.6971 0.4335 0.2068 0 
1 0.7223 0.4631 0.2251 0 
1 0.7290 0.4714 0.2304 0 
1 0.7223 0.4631 0.2251 0 
1 0.6971 0.4335 0.2068 0 
1 0.6327 0.3671 0.1686 0 
1 0.4666 0.2335 0.1005 0 
1 0 0 0 0 

FIGURE 8.5  Successive overrelaxation results for 20 iterations.
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Exercises

Exercise 8.1: Rework the problem of Example 8.1 using the simple explicit 
method and the following initial and boundary conditions:

	 a.	 u (x, 0) = 1; u (0, t) = u (1, t) = 0
	 b.	 u (x, 0) = 1; u(0, t) = 0; du(1, t)/dx = 0 (right side insulated)
	 c.	 u (x, 0) = x (linear initial temperature profile); u (0, t) = 1; u (1, t) = 0
	 d.	 u (x, 0) = sin(πx); u (0, t) = u (1, t) = 0
	 e.	 u (x, 0) = x; du (0, t)/dx = du (1, t)/dx = 0

Exercise 8.2: Rework Exercise 8.1 using the Crank–Nicholson method.

Exercise 8.3: Rework Exercise 8.1 using the method of lines.

Exercise 8.4: The boundary value problem for a rectangular fin is as follows:
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		  Define a dimensionless temperature and time as follows:

	
u
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		  The boundary value problem then becomes
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		  The BCs become
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		  The steady-state solution can be shown to be

	
u

x T T

T T

x
ss

a

a

= − + −
−





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sinh[ ( )]
sinh

sinh
sin

β
β

β1 2

1 hh β
	 (8.33)

		  For simplicity, take Ta = 0, T1 = 1, T2 = 0, and β = 4.
		  The steady-state problem was described in Exercise 6.5. The present 

exercise involves solving the transient problem by the methods presented in 
this chapter. Be sure that in each case, the eventual profile corresponds to 
the steady-state solution.

	 a.	 Solve the transient (PDE) dimensionless problem using the explicit 
method.

	 b.	 Solve the transient (PDE) dimensionless problem using the Crank–
Nicholson method.

	 c.	 Solve the transient (PDE) dimensionless problem using the method of 
lines.

Exercise 8.5: Resolve the example elliptic PDE of Equation 8.23 using the 
following boundary conditions and with an SOR factor of 1.4. Use a grid 
such that Δx = Δy.

dφ(0, y)/dy = 0 Insulated left boundary

φ(1, y) = 1 Right side at 1

dφ(x, 0)/dx = 0 Insulated bottom boundary

φ(x, 1) = 0 Top side at 0

		  Experiment with different SOR factors and compare the results.
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9 Linear Programming, 
Nonlinear Programming, 
Nonlinear Equations, and 
Nonlinear Regression 
Using Solver

9.1 � Introduction

Solver is a powerful tool that is a standard Excel® Add-In. It can produce solutions to 
many different kinds of problems, among which are the following:

•	 Linear programming
•	 Nonlinear programming
•	 Nonlinear regression
•	 Nonlinear sets of equations

Solver can also be used for simpler problems such as solving one nonlinear equa-
tion (such as those discussed in Chapter 1). It is a much more powerful tool than Goal 
Seek and might be used in instances where Goal Seek fails. For most problem types 
(except most notably linear programming), there is no guarantee that Solver will find 
a solution. An initial guess must be provided, and then Solver attempts to find better 
and better estimates for the unknowns until it finds conditions that indicate that a 
solution has been found, or it gives an error message stating failure.

9.2 � Linear Programming

Linear programming (LP) involves problems with an objective function (often profit 
or loss) and constraints (equality and inequality) that typically specify the avail-
ability (or lack thereof) of resources. The problem is to maximize (or minimize) the 
objective function while satisfying all of the constraints. As the name implies, the 
objective function and constraints are linear functions of the unknown variables. 
In this context, the word programming does not refer to a computer program but to 
the action or process of scheduling something such as assigning people to jobs or 
how to allocate resources. Many important engineering (and other) problems can be 
formulated as linear programs.
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Example 9.1: A Simple LP Problem

Consider the following LP in two variables:

	

Maximize

subject to

y x x

x

x x

= +

− ≤

+ ≤

2 4

4

8

1 2

2 1

1 2

x 	 (9.1)

It is typical to also impose so-called nonnegativity constraints. These are not 
essential but “traditional.” This can always be made the case by change of vari-
ables, but some lower limit is most often imposed. The nonnegativity constraints 
are expressed as

	

x

x

1

2

0

0

≥

≥
	 (9.2)

A graphical representation of this LP problem is shown in Figure 9.1. The solid lines 
represent the two constraints, and the arrows point into the feasible region (where both 
constraints are satisfied). Lines representing the objective function (y) are dashed. It is 
obvious from the figure that the maximum value of y on (or within) the feasible region 
is 28. This same result can be found by simply solving the two constraints as equalities.

In the late 1940s, George Dantzig perfected the so-called simplex algorithm for 
solving LP problems. This effort was initiated during World War II but was kept secret 
until 1946. The simplex method starts with an initial guess of the origin (called the 

9

x2

x2 – x1 ≤ 4

x2 + x1 ≤ 8

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 x1

y = 28

y = 20

FIGURE 9.1  Graphical interpretation of a linear programming problem.
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basic solution since it always satisfies all of the constraints). It then visits vertices based 
on those that give the most improvement in the objective function. It is actually a bit 
more complex than that, but this is the general idea. For a long time, researchers were 
surprised by the repeated successes of the simplex algorithm. It was finally proven that 
any LP problem can be solved in what is called polynomial time (Google it).

Solver can handle LPs very robustly. Before invoking Solver, a spreadsheet must 
be set up to represent the objective function and constraints. A typical spreadsheet 
setup for the example problem appears below:

The actual formulas for the cells in column B are shown in bold in column C. 
The initial values for x1 and x2 have been set to zero; other values could be used, but 
selecting the origin as initial values is the usual procedure.

To start Solver, use the menu Data/Solver. The following window shows the 
Solver Parameters filled in for the example problem. Note that cell B3 contains the 
value of the objective function, and the Max button is selected. The By Changing 
Variable Cells has the range indicator for x1 and x2. The constraints were included by 
using the Add button and entering the appropriate values. Note that the box next to 
Make Unconstrained Variables Non-Negative is checked.
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Importantly, the Select a Solving Method shows that the Simplex LP method has 
been chosen.

When the Solve button is selected, the spreadsheet changes to the following:

The Solver Results window indicates if a solution has been found that satisfies all 
constraints and optimality conditions. By selecting OK, the Solver Results window 
disappears, and the optimal values of x1 and x2 remain displayed on the spreadsheet 
(hitting cancel causes all spreadsheet values to revert to the initial ones).

The next example is a more realistic one of interest to chemical engineers. It is a 
very simplified version of what might be used by oil refinery management in order 
to optimize plant operation.

Example 9.2: Refinery Linear Program

Suppose that a refinery has four different types of crude oil (in a tank farm) avail-
able. In order to optimize plant operation (maximize profit), the plant management 
can process different amounts of the four crudes. Perhaps the hardest part of any 
LP problem is collecting the data and constructing the objective function and 
constraints. Figure 9.2 shows the product fractions that result from refining each 

Crude number
Gasoline

Diesel
Aviation fuel
Lube oil
Losses

Fractional
product

Availability
1000 Bbl/day 20 25 35 30

0.15
0.1

0.15
0.35
0.25

4321
0.15
0.25
0.25
0.25
0.01 0

0.05
0.15
0.2

0.55 0.3
0.3

0.25
0

0.05

FIGURE 9.2  Crude oil product fractions and availability.
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crude. Also shown is the availability of each crude oil. Figure 9.3 contains data 
regarding processing costs, sales price, and market demand.

Let x1, x2, x3, and x4 represent the amount of each crude to be processed 
(1000 Bbl/day). The objective function is the profit generated by processing the 
four crude oils in the optimal proportions. Profit for each crude is calculated as 
the amount of the crude (in barrels/day) times the profit margin (selling price – 
processing cost) times the fraction yield for each product. For example, for crude 
no. 1, the net profit is calculated as

	 x1[(56 − 52)(0.15) + (49 − 45)(0.25) + (62 − 55)(0.25) 	

	 + (70 − 60)(0.25)] * 1000 = 5850x1	 (9.3)

Using similar calculations for the other crudes, the objective function becomes

	 y = 5850x1 + 5050x2 + 5150x3 + 4450x4	 (9.4)

There are three kinds of constraints: crude availability, market demands, and 
nonnegativity.

Crude availability constraints:

	 x1 ≤ 20 x2 ≤ 25 x3 ≤ 35 x4 ≤ 30	 (9.5)

Demand constraints:

	

0 15 0 55 0 30 0 25 38

0 25 0 20 0 3

1 2 3 4

1 2

. . . .

. . .

x x x x

x x

+ + + ≤

+ + 00 0 35 18

0 25 0 15 0 25 0 15 30

0 2

3 4

1 2 3 4

x x

x x x x

+ ≤

+ + + ≤

.

. . . .

. 55 0 05 0 00 0 10 51 2 3 4x x x x+ + + ≤. . .

	 (9.6)

Nonnegativity constraints:

	 x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0	 (9.7)

Product
Processing cost

$/barrel
Selling price

$/barrel
Minimum daily

demand 1000 Bb1/day

38
18
30
5

56

49
62
70

Gasoline
Diesel
Aviation fuel
Lube oil

52
45
55
60

FIGURE 9.3  Financial and daily demand data for products.
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The following spreadsheet shows the setup for this LP problem. Note that the 
“initial guess” for all variables is zero.

A B C D E F
1
2
3
4
5
6
7
8
9

10
11
12
13
14

LHS RHS
Constraints

0

0
0
0
0
0
0
0
0

0

0 0 0
x2 x3 x4x1

38
18
30

5
20
25
35
30

comment
LE
LE
LE
LE
LE
LE
LE
LE
=5850*A2+5050*B2+5150*C2+4450*D2

gasoline
diesel
aviation fuel
lube oil
x1 upper
x2 upper
x3 upper
x4 upper

Obj. func.

When Solver is invoked, the spreadsheet changes to the following:

Therefore, it is optimal to process 15,000 Bbl/day of crude 1, 25,000 Bbl/day 
of crude 2, 30,833 Bbl/day of crude 3, and none of crude 4. In typical refinery 
operations, the constraining data change often, so when the LP is run on another 
day, the optimal values are apt to change.

9.3 �N onlinear Programming

Nonlinear programming (NLP), as the name implies, is similar to LP, but the objective 
function or constraints can be nonlinear functions. There are no algorithms (like the 
simplex method) that guarantee a solution for NLP problems. Many methods have been 
developed, and Solver has one of these built in (called Generalized Reduced Gradient). 
The subject of NLP is quite complex and far beyond what can be covered here. NLP is 
introduced by way of a simple example. Even the simplest of chemical and biomolecu-
lar engineering NLP problems can be too complex to warrant coverage here.

Example 9.3: An NLP Problem

Consider the following NLP:

	 Minimize y x x x x x x x= + + − − −2 2 2 4 61
2

2
2

3
2

1 2 1 2 	 (9.8)
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subject to

x x x

x x

x ii

1 2 3

1
2

2

2

5 5

0 1 2 3

+ + =

+ =

≥ =, , ,

	 (9.9)

Clearly, the objective function and the second (equality) constraint are nonlinear 
since they involve quadratic terms. For such problems, a good initial guess is often 
necessary if Solver is to find a solution. It is sometimes necessary to try several  
initial guesses before a proper solution can be found. In this case, the initial guess 
of [0 1 1] was tried. The following spreadsheet shows a setup for this problem:

The associated Solver window is as shown below–note that the Select a Solving 
Method displays GRG Nonlinear:
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After selecting Solve, the spreadsheet then appears as follows:

The solution shown may or may not be the global optimum. Also, there could 
be more than one solution (even a simple quadratic equation usually has two solu-
tions). The only way to discover this is to try several other initial guesses. This is 
left as an additional exercise.

9.4 �N onlinear Equations

The same algorithms that solve NLP problems can be applied to solving sets of non-
linear equation problems (NEPs). Material and energy balances applied to chemical 
and biomolecular engineering problems often lead to NEPs. The following example 
is typical of such problems.

Example 9.4: Continuous Stirred Tank Reactor (CSTR)

Consider a CSTR as depicted in Figure 9.4.
Q is the volumetric flowrate (L/s), V is the reactor volume (L), and Ci is the con-

centration of each of the four components (gmol/L).
Also consider the following hypothetical reactions taking place in the CSTR:

	

A B

A C

B D C

r

r

r

r

→

→ +

1

3

2

4

2



	 (9.10)

Q
CA0

V
CA, CB, CC, CD

Q
CA, CB, CC, CD

FIGURE 9.4  Continuous stirred tank reactor.
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where
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k1, k2, k3, and k4 are rate constants with the proper units. Typical values are as follows:
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	 (9.12)

The ri have units of gmol/L-s.
A mass balance on each of the four components leads to the following set of 

nonlinear equations:
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	 (9.13)

There are two ways in which to use Solver for nonlinear equations. The direct way 
is to set up the nonlinear equations as constraints with no objective function. The other 
way is to set up the spreadsheet to compute the sum of squares of residuals and use 
Solver to minimize this (without any constraints). The latter method is used in the fol-
lowing spreadsheet, where the feed consists only of component A with CA0 = 1. The 
volumetric flow rate is 50 gmol/s, and the reactor volume is 100 L/s. The equations are 
rearranged in the form f(x) = 0 so that the left-hand sides are residuals whose value at a 
solution is zero (within tolerance). The initial guess for all concentrations is 0.5 gmol/L.
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The Solver setup is as follows:

When Solver is invoked, the spreadsheet changes as shown below:

As with all nonlinear problems, it is always good practice to try several initial 
guesses to see if the same solution results. This is left as an exercise.
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9.5 �N onlinear Regression Analysis

Recall Equations 7.9 and 7.10. G is a matrix of constants for linear regression. 
For nonlinear regression (NLR), G is a function of the unknown parameters, and 
Equation 7.10 becomes a set of nonlinear equations; therefore, there are two possible 
approaches to solving NLR problems. One method involves treating Equation 7.10 as 
a set of constraints (with no objective function), and the other is to minimize the sum 
of squares of residuals (no constraints). The latter approach (to minimize the sum of 
squares of residuals) is very much the more straightforward of the two approaches.

A common NLR problem in chemical and biomolecular engineering involves 
finding model coefficients (parameters) for models in which the parameters occur 
nonlinearly. A typical problem is solved in Example 9.5.

Example 9.5: NLR in Reaction Kinetics

Consider the simple decomposition reaction of compounds A to B:

	 A→B	 (9.14)

Assuming an elementary reaction, the rate of disappearance of A is given by

	

dC
dt

kCA
A= − 	 (9.15)

where CA is the molar concentration of A. Assuming an initial condition of

	 CA(0) = 1 mol/L	 (9.16)

the solution to the separable differential Equation 9.15 can be obtained as follows:

	 1.	Rearrange the differential equation to the form

	

dC
C

kdtA

A

= − 	 (9.17)

	 2.	 Integrate both sides

	 ln(CA) = −kt + constant

	 3.	From the initial condition,

	 ln(1) = 0 = constant

	 4.	So, finally, the solution is

	 CA = e−kt	 (9.18)
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Further assume that the rate constant, k, is a function of temperature according 
to the Arrhenius form:

	 k c e c T= −
1

2 / 	 (9.19)

where T is the absolute temperature. The overall mathematical model for this 
system then becomes

	
C c t c TA = − −exp( )exp( )1 2 / 	 (9.20)

So, CA is the dependent variable, t and T are the two independent variables, 
and c1 and c2 are two parameters to be determined. A typical set of data appears 
in Table 9.1.

To show clearly that this is an NLR problem, the derivatives of the dependent 
variable with respect to the unknown parameters (Equation 7.9) lead to

	

Z t c T c t c T

Z
c t
T

1 2 1 2

2
1

= − − − −

= − −

exp( )exp( )exp( )

exp(

/ /

cc t c T1 2)exp( )− /
	 (9.21)

Clearly, the matrix G of Equation 7.10 involving the sum of products of the 
Z’s is dependent on the unknown coefficients c1 and c2, and the equations are 
nonlinear. Because the analytical derivatives for NLR problems are often complex 
(such as those of Equation 9.21), it is often simpler to determine these derivatives 
numerically.

To solve the nonlinear equations associated with NLR, Solver can be used. 
However, in doing so, the statistical nature of the regression problem is ignored. 
It is necessary to calculate the G matrix at the solution. Once the parameters are 
known, the G matrix again becomes one of constants and can be inverted. Once 
the matrix G is known, all of the statistical aspects of the problem (Chapter 7) can 
be computed.

Table 9.1
Data for Kinetics NLR

Expt. No Time, s Temp, K CA

1 0.1 100 0.98

2 0.2 100 0.983

3 0.1 200 0.544

4 0.5 200 0.225

5 0.02 300 0.566

6 0.06 300 0.034
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Shown below is a spreadsheet for solving this problem using Solver:

Se
2 was minimized using Solver. The initial guesses for c1 and c2 were both 1000.

The following spreadsheet segment shows the Zs calculated using finite differ-
ences (second-order correct), the requisite Z products, and the sum of Zs required 
for Equation 9.10. Also shown are G–1, the parameter standard deviations, the opti-
mal c values, and the t-ratios.

It can be seen from the t-ratios that c1 is “borderline” well determined, while c2 
is more well determined. Since these results are based on very few data points, it 
is likely that the parameter behavior would improve with a much larger data set.

Exercises

Exercise 9.1: Linear programming.
		  It is required to produce one pound of an alloy that has at least 30% Pb 

and at least 30% Zn by mixing a number of available Pb–Zn–Sn alloys. 
Find the cheapest blend using the following data:

Available Alloy

Analysis (%)

Cost ($/lb)Pb Zn Sn

1 20 20 60 6.0

2 10 40 50 6.3

3 40 50 10 7.5

4 50 30 20 8.0

		  Use Solver for this LP problem.
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Exercise 9.2: Nonlinear regression.
		  A heterogeneous reaction is known to occur at a rate described by the 

following Langmuir–Hinshelwood expression:

	
r

k P

K P K P
A

A A R R

=
+ +

1
21( )

	 (9.22)

		  From initial rate measurements, k1 has been determined as 0.015 gmol/​
s-gcat-atm at 400 K. Using the following rate data at 400 K, estimate the 
values of KA and KR:

PA (atm) 1 0.9 0.8 0.7 0.6

PR (atm) 0 0.1 0.2 0.3 0.4

r 3.4e-5 3.6e-5 3.7e-5 3.9e-5 4.0e-5

		  This is an NLR problem. Solve this by minimizing the sum of squares 
of residuals using Solver. After you have determined the optimal values for 
KA and KR, calculate numerically (using second-order correct formulas) the 
derivatives Z1 and Z2 at each data point, form the G matrix, calculate the 
parameter standard deviations, and calculate the t-ratios for each parameter.

Exercise 9.3: Nonlinear programming.
		  Consider the following NLP:

	 minimize x x2
2

1
2−

	 subject to x x1
2

2
2 4+ =

		  First, solve this problem analytically by solving the constraint for x1
2 and 

substituting this into the objective function. Then differentiate the objective 
function (the only remaining variable is x2), set the derivative to zero, and 
find x2. Use the value for x2 to find the value(s) for x1. Next use Solver to find 
the solution(s). Use a starting point of [1, 1] and then [–1, –1] and see what 
solutions Solver finds from these starting points.

Exercise 9.4: Nonlinear equations.
		  The calculation of the equilibrium concentration when we have several 

reactions and components usually results in nonlinear algebraic equations. 
Consider the following three reactions involving seven components:

	

A B C D K
C C
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C C
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A E
3 =

	 (9.23)
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	 K1 = 1, K2 = 2, K3 = 4

		  Here, x1, x2, and x3 (the unknowns) are the extents of reaction at equilibrium, 
and the Cs are molar concentrations. Note that the extent of reaction is a num-
ber between 0 and 1. Zero indicates no production of products, while a value of 
1 means that the reaction goes to completion (no reactants remain). Given the 
extents of reaction, the following mass balances can be written:
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C C x C
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B B B B

C C B
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C C x C

B
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0 3 0= +

	 (9.24)

		  Initial conditions are CA0 = CB0 = 1; all others are zero. The nonlinear 
equations 9.23 can be expressed as
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	 (9.25)

		  When formulating an initial guess, make note of the following: the opti-
mal values for the variables must be between 0 and 1. Use Solver for this 
problem.

Exercise 9.5: Solve the following linear program:
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Exercise 9.6: Solve the following nonlinear program:

	

minimize

subject to
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Exercise 9.7: Solve the following nonlinear algebraic equations:
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		  Try to find more than one solution.

Exercise 9.8: Solve the following NLR problem:
		  Fit the function y = c1exp(c2/T) to the data shown below. After hav-

ing determined the optimal values for c1 and c2, calculate analytically or 
numerically (using second order correct formulas) the derivatives Z1 and 
Z2 at each data point, form the G matrix, calculate the parameter standard 
deviations and calculate the t-ratios for each parameter. Comment on the 
significance of the two parameters c1 and c2.

T y Data

100 0.63

110 0.60

120 0.57

130 0.53

140 0.51
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10 Introduction to MATLAB®

10.1 � Introduction

The name MATLAB® stands for Matrix Laboratory and was first published before 
graphical user interfaces were popular. It has evolved through many versions and is 
usually updated every 6 months or so. MATLAB is a popular computing environment 
in universities and research institutions. It is not, however, used often in industrial set-
tings because of somewhat expensive licensing fees. Inasmuch as many students of 
chemical and biomolecular engineering undertake postgraduate or professional studies 
where MATLAB can be popular, this programming environment is introduced here 
with the assumption that the reader is familiar with Excel® and VBA. This brief intro-
duction is intended only to present the rudiments of MATLAB. Full documentation 
is available at http://www.mathworks.com/help/techdoc/learn_matlab/bqr_2pl​.html. 
Several of the instructions in this chapter are taken from this reference.

When MATLAB starts up (in either Windows or Macintosh environments), the 
MATLAB Command Window and subsidiary windows appear as follows:

Menus change,
depending on
the tool you
are using.

Enter MATLAB
statements at the
prompt.

View or
change the
current folder.

Move, minimize,
resize, or
close a tool.

The >> icon is the command prompt. Anything entered after this is a MATLAB 
command. The Current Directory window displays folders and files associated with 
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the current directory (see Path discussion below). The Workspace Window shows the 
names of all variables that have been created, and the Command History shows a 
record of the most recent commands given at the Command Prompt.

The actual arrangement of the sub-windows might be different than shown. The 
Command Window is somewhat akin to the Excel Spreadsheet; it is through this win-
dow that MATLAB commands are given. While many useful things can be accom-
plished directly in the Command Window, for present purposes, it acts as the interface 
to MATLAB’s programming language. Most input and output are accomplished 
through the Command Window. For Excel/VBA users, it is convenient to think of the 
Command Window as comparable to the spreadsheet and MATLAB programs as simi-
lar to VBA macros. This is not a perfect metaphor but is sufficient for present purposes.

If a previously issued command is needed again, the Command History can be 
recalled using the ↑ key. The last command issued is shown first. Each time ↑ is 
pressed, the previous commands appear in reverse order of having been typed.

10.2 � MATLAB Basics

Perhaps the first thing to do when first using MATLAB is to set the Path. The Path is 
a list of directories that MATLAB searches for files. The default Path is where users 
usually want to store files and recover them later. A usual place for file storage might 
be on a thumb drive. Assume that the directory of interest is F:\MyDocuments\
MATLAB. To put this directory into the Path and to make it the default directory, go 
to the File menu and click on Set Path—the following window appears:

Click on Add Folder, Save, and then Close. Next, at the Command prompt, 
issue the following command (cd stands for change directory).

>> cd ‘F:\My Documents\MATLAB’

From this point forward, any file that is saved is deposited in the selected direc-
tory, and when opening a file, this directory will be searched first.



197Introduction to MATLAB®

A unique thing about MATLAB is that all variables are matrices. For example, 
the command shown in the Command Window below creates a variable named x 
(see that name having been added to the Workspace). Following the command, the 
current value of x is listed. To avoid having the value of x printed following the com-
mand, simply add a semicolon at the end of the command. It is important to note that 
all MATLAB identifiers are case sensitive.

In the interest of keeping this discussion brief, emphasis is given to the differences 
between Excel/VBA and MATLAB. When the MATLAB syntax is the same as that 
of Excel/VBA, no explanation is given. The useful command

>> clc

clears the Command Window. It is a good idea to always begin with a blank window.
To get the feel of MATLAB, some annotated Command Window sessions are 

now shown.
In the following example, the command diary is used. This command has the 

following syntax:

diary filename

where filename is any legal MATLAB file name. Everything that appears in the 
Command Window following this command is recorded in the file. To terminate 
recording, the command

diary off

is entered



198 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

Special attention should be given to the command

b = [4;5;6];

The interior semicolons indicate “start of a new row.” So, b is a column vector 
while a is a row vector.

Issuing the command

Dir

produces a list of the files in the current directory. Among those will be a file called 
session. (Note that the name session is arbitrary—any legal file name can be used.) 
This is a text file that can be opened within MATLAB or by any word processor. To see 
the file in MATLAB, go to File/Open. At the bottom of the window that appears, 
change the File of Type to All Files (the default is to show only MATLAB type 
files). Then click on the file name session and then Open. The following is displayed:

This is an exact duplicate of the Command Window session and includes every-
thing from the diary session command until diary off. The contents of the 
file are displayed in the Editor window. This window is similar to the VBA editor 
window in that this is where MATLAB programs are coded.

If a command (at the Command Window or in a MATLAB program) is very long, 
a continuation indicator is three (or more) consecutive periods . . . .

Table 10.1 enumerates the MATLAB operators. Most of these are the same as for 
Excel and VBA. A notable difference is the backslash operator \ (called left division), 
which is used primarily when solving sets of linear algebraic equations. Examples 
using this operator appear in the sequel.

The following MATLAB session shows a variety of matrix operations. It can be 
seen again that the semicolon is used to suppress printing when placed at the end of 
a command, and it also indicates the end of a row (and the beginning of a new one) in 
a matrix. The apostrophe is the transposition operator, and the built-in function inv 
takes the inverse of a matrix. If the inverse does not exist, an error message appears.
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Table 10.1
MATLAB Operators

Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
\ Left division 
^ Power
‘ Transpose
() Specify evaluation order
= Assignment
> Greater than
< Less than
> = Greater than or equal to
< = Less than or equal to
= = Equal to (logical)
~ = Not equal to
& Logical and
| Logical or
~ Logical not
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The following is a listing of a diary file where the randn function and the back-
slash operator are used:

The next MATLAB session shows the use of the pinv (pseudo-inverse function).
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Access to any element of an array is the same as in VBA. For example, using 
variables from the previous MATLAB session:

h(2) = -0.0631
p(3) = 0.1998
C(2, 4) = 0.3426

10.2.1 � MATLAB Colon Operator

The colon (:) is an important MATLAB operator. It occurs in several different con-
texts. The expression

1:10

produces a row vector containing the integers from 1 to 10:

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

generates

100 93 86 79 72 65 58 51

and

0:pi/4:pi

produces

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix:

A(1:k,j)

is the first k elements of the jth column of A. Therefore,

sum(A(1:4,4))

computes the sum of the fourth column assuming a 4×4 matrix. However, there is another 
way to perform this computation. The colon by itself refers to all the elements in a row 
or column of a matrix, and the keyword end refers to the last row or column. Therefore,

sum(A(:,end))

computes the sum of the elements in the last column of A.
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10.2.2 � MATLAB, M-Files, and Input from Command Window

While a sequence of commands in the Command Window can implement many algo-
rithms, it is awkward if selection (if-then-else) or repetition (e.g., while) logic is involved. 
The best way to do programming in MATLAB is to construct an M-file (comparable to 
a VBA Macro). These are called M-files since the automatic file type is .m.

Before writing a first M-file program, input/output with the command window 
must be covered. For MATLAB programs with small amounts of input, the input 
statement is used. For output to the Command Window, the usual method involves 
the fprintf statement. The syntax of the input statement is

Variable = input(‘prompt’)

For example,

A = input(‘Enter a number:’)

Note that strings are delimited by astrophes (recall that quote marks are used in 
VBA).

When executed, the prompt appears in the Command Window. A number is 
entered and stored in the variable A.

Shown next is an M-file that reads several numbers and computes the average of the 
numbers. After the M-file is a Command Window session that invokes the program.
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The fprintf function is somewhat complicated since it requires a cryptic for-
matting string. The format of the fprintf statement is

fprintf (<format string>, <variables>)

Here is an example:

fprintf (‘The sum is%5.3f\n’, Sum)

If the variable sum has a value of 16.12365, the output produced by the state-
ment is

The sum is 16.124

Note that the value of sum has been truncated to three digits after the decimal, 
and the last digit is rounded up. The \n at the end of the format string is the new line 
control character—any further output appears on a new line.

There are a large number of format string data type specifiers available for use 
with the fprintf function. Some of these are enumerated in Table 10.2.

Table 10.3 displays some of the available control characters for formatting.
Shown next is a revised version of the Average file. In this case, output is accom-

plished using the fprintf function. Following the program listing is the associated 
Command Window where the function file is called without putting the result into a 
variable since the result has already been output.

Table 10.2
Format Data Type Specifiers

Specifier Display

%d Integer/whole number
%f Floating point
%e Exponential
%g General (shortest format possible)
%c Character
%s Character string

Table 10.3
Format Control Characters

Control Character Description

\n New line
\t Tab
‘’ Two apostrophes prints one apostrophe
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10.3 � MATLAB Programming Language Statements

MATLAB’s programming language is similar to that of VBA. The assignment state-
ment has already been used and is indicated by the = sign. Some of the other state-
ments are discussed next.

10.3.1 �I f-Then-Else Statements

The syntax of the MATLAB If-Then-Else statement is as follows:

if condition1
  Statements1
else
  Statements2
end

Note that the words if, else, and end are all lowercase. Statements1 
and Statements2 can be any other MATLAB statements. The else clause is 
optional.
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10.3.2 � Looping Statements (For, While)

The syntax of the for statement is

for variable = initial_value:increment/decrement:final_value
  Statements
end

The increment/decrement is optional, and if omitted, the increment is 1.
The syntax of the while statement is

while condition
  Statements
end

Sufficient MATLAB programming background is now available so that programs 
previously written in VBA can be demonstrated in MATLAB.

Example 10.1: MATLAB Program for Averaging Numbers

The MATLAB program listing below reimplements the one of Example 2.2. In that 
example, numbers were input from a spreadsheet and stored in an array, the aver-
age of the numbers calculated, and the average output to the spreadsheet. Note 
that the % sign is used to indicate a comment. Following the MATLAB program 
listing is a Command Window session that executes the program and inputs a 
set of numbers, and the result is output to the Command Window. There is great 
similarity between this program and that of Example 2.2 with minor syntax dif-
ferences. The most significant difference is in the input/output portion. A direct 
comparison with the VBA program of Example 2.2 is advised.
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10.4 � MATLAB Function Arguments

All functions have this standard function syntax:

function[output1,..., outputM] = functionName(input1,..., 
inputN)

Input arguments are passed by value, while output arguments are passed by refer-
ence. Even if an input argument is changed by the function, the altered value is not 
returned after the function call. (Recall the argument passing descriptions given in 
Chapter 2.) Typically, output arguments are not defined at the time of calling, and the 
values returned are set by the function. As with VBA, the argument names used in 
the function definition are dummy arguments; the actual arguments are those used 
when the function is called.

Example 10.2: Argument Passing to and from a Function

The function shown below generates two vectors using the MATLAB function 
linspace. This built-in MATLAB function can be handy for generating equally 
spaced data. It generates the number of vector elements given by the third argu-
ment. The numbers start with its first argument and are equally spaced up to the 
value of the second argument. Dummy input arguments are named a and b, while 
dummy output arguments are called p and q.

Shown next is a Command Line session that sets the first two arguments (actual 
argument names x and y) and then calls the testfunction. The output argu-
ments (actual arguments f and g) are printed using the fprint command.
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10.5 � Plotting in MATLAB

MATLAB’s plotting capabilities are such that professional quality graphs can be 
generated. The commands for producing graphs vary from the very simple to the 
quite complex. In this coverage, only relatively simple plot commands are discussed, 
but more complete discussions are readily available.

10.5.1 P lotting Two Functions on the Same Graph

Consider the following MATLAB Command Window session:

The graph produced by the plot command is shown below:
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While labeling and changing the graph properties can be done under program 
control, it is much easier to use the plot editor. When in the plot window, go to Edit/
Axis Properties. Axis labels and a plot title can be added. Also, line types and colors 
can be changed along with a myriad other things. Shown below is an edited plot with 
some of these changes:
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10.6 �E xample MATLAB Programs

In this section, several MATLAB M-files are presented that perform operations pre-
viously visited using VBA. These include

•	 Solving a single nonlinear equation using fzero
•	 Solving ordinary differential equations using ode45
•	 Solving a boundary value problem using the ode45 and the shooting 

method
•	 Nonlinear equations using fsolve
•	 Nonlinear regression using minsearch

Example 10.3: Solving a Single Nonlinear Equation Using fzero

Consider finding a zero of the function

	 f(x) = x4 − e−x + 1	 (10.1)

The syntax for the fzero function is

var = fzero(‘equation’, init_guess)
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where

var	 =	 the final value of x
equation	 =	 name of the function representing the function to zero
init _ guess	=	 the initial guess of x

A listing of the M-file for the function is as follows:

Next is a Command Window session that invokes fzero and finds a value of 
x that is a root of the function:

The function fzero uses a combination of the methods discussed in Chapter 
1. Depending on the initial guess, it might find different roots than the one shown.

Example 10.4: Solving Ordinary Differential Equations Using ode45

The built-in MATLAB function ode45 uses a Runge–Kutta method and a variable 
time step. Based on how rapidly the solution functions are changing, the time step 
is altered to improve accuracy. The user need not be aware of the details of the 
algorithm, but when it is necessary to know the number of time steps, it can be 
useful to call the function length, which is illustrated in the example problem 
below.

Recall the problem of Example 5.5. Suppose the following chemical reactions 
take place in a continuous stirred tank reactor (CSTR):

	
A B C

k

k

k

k

⇔ ⇔
2

1

4

3

	 (10.2)

where the rate constants are as follows:

	 k1 = 1 min−1, k2 = 0 min−1, k3 = 2 min−1, k4 = 3 min−1
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The initial charge to the reactor is all A, so the initial conditions are (in mol/L)

	
C C CA B C0 0 0

1 0 0= = =

An unsteady-state mass balance on each component leads to the following set 
of ODEs:

	

dC
dt

k C k C

dC
dt

k C k C k C k C

dC
dt

A
A B

B
A B B C

C

= − +

= − − +

=

1 2

1 2 3 4

kk C k CB C3 4−

	 (10.3)

The syntax of the ode45 function is

[t, y] = ode45(@rhs_function, tspan, initial_conditions)

where

t	 	 =	 the independent variable vector.
y	 	 =	� the dependent variable matrix (first column 

is the first dependent variable, second column 
is the second, etc.).

rhs _ function	 =	� an M-file function defining the right-hand sides 
of first-order ODEs. The @ sign signifies this as 
a function name.

tspan	 =	 a vector of initial and final values of t.
initial _ conditions	 =	 a vector of initial conditions.

The following is an M-file listing of a function called chemrxsys. Within the 
function, the rate constants are fixed, and the right-hand-side functions are 
identified.
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Shown next is a Command Window session in which ode45 is called to solve 
this problem. Also, a graph is produced (the graph shown was enhanced by edit-
ing it).
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When comparing this graph to that of Example 5.5, the two plots are essentially 
identical.

Example 10.5: Solving a Boundary Value Problem 
Using ode45 and the Shooting Method

Recall the problem of Example 6.2 involving heat conduction in a rod. The requi-
site ODEs and boundary conditions are

	

dT
dx

F

dF
dx

h
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	 (10.4)
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Shown below is a MATLAB script (no function heading) file that prompts the 
user for two initial guesses for F(0). These guesses are used by the secant method 
to converge the right and boundary conditions, which is T(1) = 0.

The function RodConduction, which defines the two right-hand-side func-
tions for the two ODEs, appears below:
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The plot generated by the script (with initial guesses of –100 and –150, respec-
tively) is shown below:
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This plot is essentially identical to that of Example 6.2.

Example 10.6: Nonlinear Equations Using fsolve

Recall the problem of Example 9.4 involving a CSTR. The appropriate equations 
and data are as follows:

	

k

k

k

k

1
1

2
1 2 1 2

3

4

1 5

0 1

0 1

=

= −

= −

−. s

. s

. s

/L /gmol

L/gmol

/

== −

=

=

0 5

50

100

. sL/gmol

gmol/s

L/s

Q

V

	 (10.5)

	

C C V k C k C k C Q

C C V k C k

A A A A C

B B A

= + − − +( )
= + −

0 1 2
3 2

3
2

0 1 42

/ /

CC Q

C C V k C k C k C Q

C C V

B

C C A C B

D D

2

0 2
3 2

3
2

4
2

0

( )
= + − +( )
= +

/

//

kk C QB4
2( ) /

	 (10.6)



214 Numerical Methods for Chemical Engineers Using Excel®, VBA, and MATLAB®

The MATLAB function fsolve is used to solve sets of nonlinear equations. The 
syntax for fsolve is as follows:

x = fsolve(func, x0)

where

x		  =	 a vector of unknowns
func	=	 a function M-file that evaluates the right-hand side of f(x) = 0
x(0)	 =	 a vector of initial guesses for x

The following is a listing of a function CSTR, which codes Equation 10.6 in the 
form f(x) = 0:

A MATLAB Command Window session where the initial guess for the concen-
trations is given and fsolve is called appears below. The solution vector for the 
concentrations is essentially identical to that of Example 9.4.
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Example 10.7: Nonlinear Regression Using minsearch

The built-in function minsearch is based on a rather unsophisticated algorithm. 
There are more robust unconstrained minimization functions available in some 
of the MATLAB Toolboxes, but unfortunately, these are not standard. For simple 
problems, minsearch often works well enough. It is used here to minimize the 
sum of squares between fictitious data (program generated data) and a function in 
which the regression coefficients appear nonlinearly.

The syntax of minsearch is as follows:

params = fminsearch(@function, initial_guess,[], xdata, 
ydata)

where

params	 = The regression coefficients
function	 = �The name of the function that calculates the sum of squares
initial_guess	 = Vector of initial guesses for coefficients
[]	 = �An “empty” argument that is not needed for present purposes
xdata, ydata	 = Vectors holding the experimental data

The specific nonlinear regression problem to be considered is to find the coef-
ficients, c(1) and c(2), in the function of Equation 10.7.

	 ycalc = c(1)ec(2)x	 (10.7)

A MATLAB script file saved as NIRMAIN.M that generates data using c(1) = 
2 and c(2) = 0.5, adds Gaussian random noise to these data (to make things a 
bit more realistic), calls fminsearch, and prints results is shown below:

Shown next is a listing of the function NLRegress, which provides fminsearch 
with the objective function to minimize. In this case, it is the sum of squares of residu-
als between data and calculated values.
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Finally, the following shows a MATLAB Command Window session that calls 
the script file. The results are displayed in the Command Window.

The coefficients used to generate the data were 2 and 0.5, respectively. The 
values of 2.0174 and 0.4989 are optimal for the data with random noise added.

Note: Each time this program is run, the results will be slightly different. This is 
because a different set of random numbers is generated on each run.

10.7 �Cl osing Comment Regarding MATLAB

As with the coverage of VBA in this text, this chapter has only touched the “tip of 
the iceberg” with respect to MATLAB. It is intended that with the background of 
the introductory material present here, a student can explore the vastness of available 
MATLAB features and functions. For example, the nonlinear regression example 
(Example 10.7) used the function minsearch, which is not a highly robust mini-
mization algorithm. Another MATLAB function that is particularly suited to non-
linear regression is nlfit and its companion nlparci, which provides confidence 
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intervals for each parameter. A MATLAB add-on Optimization Toolbox provides 
several algorithms for nonlinear programming. There are many other Toolboxes 
available for specialized areas. If one searches diligently, a MATLAB function set 
can be found for any of a vast number of application areas.

Exercises

Exercise 10.1: Solve the problem described in Exercise 5.1 using MATLAB.

Exercise 10.2: Solve the problem described in Exercise 5.4 using MATLAB.

Exercise 10.3: Solve the problem described in Exercise 5.7 using MATLAB.

Exercise 10.4: Solve the problem described in Exercise 5.10 using MATLAB.

Exercise 10.5: Solve the problem described in Exercise 5.11 using MATLAB.

Exercise 10.6: Solve the problem described in Exercise 6.1 using MATLAB. 
Implement the secant method, as in Example 10.5, to converge the right-
hand boundary condition. Use ode45 to solve the ODEs.

Exercise 10.7: Solve the problem described in Exercise 6.2 using MATLAB. 
Implement the secant method, as in Example 10.5, to converge the right-
hand boundary condition. Use ode45 to solve the ODEs.

Exercise 10.8: Solve the problem described in Exercise 6.4 using MATLAB. 
Implement the secant method, as in Example 10.5, to converge the right-
hand boundary condition. Use ode45 to solve the ODEs.

Exercise 10.9: Solve the problem described in Exercise 6.5 using MATLAB. 
Implement the secant method, as in Example 10.5, to converge the right-
hand boundary condition. Ignore part b and use ode45 to solve the ODEs.

Exercise 10.10: Solve the problem described in Exercise 6.6 using MATLAB. 
Implement the secant method, as in Example 10.5, to converge the right-
hand boundary condition. Use ode45 to solve the ODEs.

Exercise 10.11: Solve the problem described in Exercise 9.2 using MATLAB. 
Use the fminsearch function to minimize the sum of squares of residuals.

Exercise 10.12: Solve the problem described in Exercise 9.4 using MATLAB. 
Use the fsolve function to minimize the sum of squares of residuals.

Exercise 10.13: Solve the problem described in Exercise 9.7 using MATLAB. 
Use the fsolve function to minimize the sum of squares of residuals.

Exercise 10.14: Solve the problem described in Exercise 9.8 using MATLAB. 
Use the fminsearch function to minimize the sum of squares of residuals.
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Appendix: Additional 
Features of VBA

A.1 � Introduction

VBA is a mega system of programming language and objects. It is probably impos-
sible for any one person to be familiar with all of the documented features of VBA. 
However, the object-oriented nature of the system makes it extensible both by “offi-
cial” Microsoft® documented items as well as those added by third party developers 
and individual programmers. In this appendix, a few additional features of VBA are 
presented that might be useful to chemical and biomolecular engineering students 
and practitioners. The following items are covered:

	 1.	How to call both built-in functions and Add-In functions from VBA Macros
	 2.	How to include user-defined functions as Add-Ins that can be accessed by 

other VBA subs and functions
	 3.	How to return arrays from functions, which can in turn be included as 

Add-Ins

Warning: The author is not a VBA expert. The methods presented in this appen-
dix are ones that have been found to work. No claim is made for their uniqueness or 
efficiency. When viewed by a true VBA “guru,” these techniques might be consid-
ered naïve. Engineers often settle for things that work as opposed to ones that are 
perfect.

A.2 �Ca lling Excel® Built-In Functions in VBA Macros

To use Excel functions for which there is no VBA counterpart (e.g., ATAN2), the 
Application object can be used as shown in Chapter 2. Given the code

the variable Rads is assigned the value π/2.
Note that using the Application object does not work with functions for which 

there is a VBA counterpart (even if the names are different). For example, the code 
shown below produces the error message that appears after the code:
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A.3 �Ca lling Excel® Add-In Functions in VBA Macros

Consider the following VBA sub:

Since the sub involves matrices and vectors, the usual Option Base 1 is used. 
Five variables are declared as dynamic arrays whose elements are of type Variant. 
This data type has been avoided in purely numerical computations but is necessary 
here to allow assignment to array variables. The statement

	 A = Application.Run(“MatRnd”, 3)

executes the MatRnd function from the Matrix.XLA add-in and produces a 3 × 3 
matrix of random integers (the default range is –10 to 10), and this matrix is assigned 
to the variable A. The next statement creates a 3 × 1 vector (b) of random integers.
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The statement

	 Ainv = Application.Run(“Mat_Pseuoinv”, A)

calls the Matrix.XLA add-in function to calculate the pseudoinverse of A, which is 
then stored in the variable Ainv. The next statement uses the Excel function MMULT 
to produce the solution to the system Ax = b. The last statement again uses MMULT; 
in this case, the variable bb should have the same values as the original right-hand 
side, b. To see these results, it is best to run the Macro in Debug mode and use the 
Set Watch feature to display the values stored in each variable. This is the first use of 
the Variant data type in this text. See the next section for more details on this type.

Shown below is another VBA sub that performs the same operations as the last 
example.

Here, an “anonymous” Dim statement is used for all variables (no data type is 
indicated). The structure and data type of these variables are established when they 
are assigned something. For example, in the case of the variable A, the assignment 
statement stores a 3 × 3 matrix of random integers. Although this example is more 
compact than the previous one, it is not as explicit. From an engineering perspective, 
since they both work the same, there is no reason to prefer one over the other.

A.4 � Variant Data Type

The following is an excerpt from “The Power of Variants” (http://www.tushar-mehta​
.com/publish_train/book_vba/08_variants.htm#_ftn1):

A variable declared as type Variant can contain any type of data. Unlike a 
variable that declared on a specific type, say, String or Integer, which can only 
contain a text string or a specific range of integers respectively, a variant can 
contain any data—text or an integer value or a real, i.e., a floating point, value. 
It can even behave like an array or refer to an object, either built into Excel or 
a user defined type. Essentially, there are almost no rules on what a developer 
can do with a variant. For example, with aVar declared as a variant each of 
the assignment statements is legitimate.
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With this background, it can be seen why the Variant data type was used in the 
prior example when it was desired to assign an entire array to a variable.

Dim aVar as Variant
aVar = “a”
aVar = 1
aVar = Array (1,22,333)
set aVar = ActiveSheet
aVar = 3.1415927

The common wisdom is that one should stay away from variants. By and 
large, that is true. If one knows the data type of a variable it is best to declare it 
correctly. There are many benefits to doing so, the most significant being that 
the VBA compiler can ensure data and program integrity. With a variant one 
could accidentally assign a text string to what might be intended to be a num-
ber. Essentially, the developer gets the flexibility of a variable that can take any 
type of data together with the responsibility of ensuring proper data type use. 
That’s a steep burden and one best avoided whenever possible. Consequently, 
in those cases where the data type is pre-determined and will not change, it is 
indeed best to declare the variable of the particular type.

However, there are many instances where a variant allows one to do things 
that otherwise would be impossible. The power of a variant comes from the 
fact that it is a simple data element and yet can contain any—and that means 
any—type of data. It can be a string or a Boolean or an integer or a real num-
ber. Hence, when the data type returned by a function can vary, one is obli-
gated to use a variant for the returned value.

As we will see in a later section of this chapter, the ability to create an 
array in a variant makes it possible to create functions that would otherwise 
be impossible. For example, a function can return either an error condition or 
an array of values. It also allows a developer to write a User Defined Function 
(UDF) that returns multiple values in a single call to the function. A variant 
is also one way to pass an array as a ‘by value’ argument to a procedure. One 
Excel-specific reason to use a variant is that it provides a very efficient way to 
exchange information between Excel and VBA.

Finally, in the advanced section of the chapter, we will use the variant data 
type to create an array of arrays. This makes it possible to create, and work 
with, data structures that would otherwise be impossible. It also allows one to 
operate on an entire row of an array.

In the hands of a creative—and defensive—developer, the power of a vari-
ant can be nearly limitless.
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A.5 � VBA Function that Returns an Array

Consider the following VBA Function Macro.

Before going into any detail about this code, it is important to see how one enters 
a stand-alone function into the VBA system. Recall that when writing a Sub Macro, 
the Macros option is chosen from the Developer tab, in which case the VBA editor 
appears with a blank Sub. It is not possible to change the word Sub to Function 
and proceed as usual. Instead, the Visual Basic® option must be chosen from the 
Developer tab, which gives a blank screen in the VBA editor. Look for the name 
of the associated VBA project (something like Book 2, for example); right click on 
the project name and select Insert/Module. This gives a blank editor page where 
the code for the function is to be entered. When the associated Excel Worksheet is 
saved, the function Macro is saved with it (the Worksheet must be saved as a macro-
enabled one). Another oddity of function Macros occurs when they are to be edited. 
The function name does not appear when visiting Developer/Macros. However, if the 
name of the function is typed on the appropriate line, then the Edit button activates 
and the Macro can be edited as though it were a Sub Macro.

Referring now to the code for the function Trapezoid shown above, there are 
several things to note:

	 1.	The function has two arguments called x and f, which are arrays of inde-
pendent variable and associated function value whose definite integral is 
required. The function uses the trapezoidal rule to calculate the integral, 
which is returned to the calling spreadsheet.

	 2.	The Public declaration might not be required, but it guarantees that any-
one can use the function without permission.

	 3.	The Variant type of the function allows an array to be returned from the 
function.

	 4.	The anonymous Dim statement allows anything to be assigned to the asso-
ciated variables.
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	 5.	The three assignment statements create Objects whose elements can be 
accessed with subscripts. They are actually accessed as two-dimensional 
arrays with a second subscript of 1—that is, they are addressed as Npts × 
1 arrays instead of vectors of length Npts. The items to the right of the = 
sign are function arguments.

	 6.	The variable Npts takes on the upper bound of subscripts of XX, whose 
length is that of the input arrays.

	 7.	The initialization IntTrap(1, 1) = 0# sets the first value of the inte-
gral to floating point zero (that is what the #means).

	 8.	The For loop computes the integral at each x-value using the trapezoidal 
rule.

	 9.	The final assignment Trapezoid = IntTrap returns the array of inte-
gral values in the function name.

Shown next is a spreadsheet in which the x and y columns contain an independent 
variable varying between 0 and 1 and associated function values for the simple func-
tion exsin x. The third column was selected and the text = trapezoid( was 
typed. At this point, the data values for x were selected followed by a comma, then 
the selection of the second column of values (for f), and finally a close parenthesis.

Note that the cell ranges for x and f appear within the parentheses. To view the 
entire column of results, it is necessary to strike Shift/Ctrl/Enter. The results 
appear in the spreadsheet shown below.
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A.6 �C reating Excel® Add-Ins

Suppose that the function for calculating an integral using the trapezoidal rule is to 
be used in more than one spreadsheet and is to be used frequently. It would be useful 
to have this function available as an Excel Add-In (like the Matrix.xla functions). To 
do this, once the function has been thoroughly tested, simply save the spreadsheet as 
an Excel Add-In. When saving, change the file type accordingly. The file is saved in 
a special directory reserved for Add-Ins (this can be overridden if desired). To acti-
vate the Add-In, choose the File/Options/Add-Ins menu. At the bottom of the screen 
is an option to manage Add-Ins—choose Go. This brings up a screen with Add-In 
names and a check box in front of each. Be sure the box is checked for the macro to 
be activated. If the name of the Add-In does not appear, choose Browse to locate the 
file for the Add-In.

Shown below is a spreadsheet in which the Trapezoid Add-In is used. The column 
where results are to appear is selected and then Formulas/Insert Function. Choose 
User Defined from the “Or Select a Category” menu. Find and select Trapezoid and 
click OK.

Note that the user is automatically prompted to select the range for x and f. This 
feature is added when the Add-In is created and activated—no special programming 
is required.
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After selecting the range for x and f, hit Shift/Ctrl/Enter to display the 
results as follows:
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