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Lecture 3 
 

Systems of Linear Equations 
 
In this lecture we will discuss some ways in which systems of linear equations arise, how 
to solve them, and how their solutions can be interpreted geometrically.  
 
Linear Equations 
     We know that the equation of a straight line is written as y mx c= + , where m is the 
slope of line(Tan of the angle of line with x-axis) and c is the y-intercept(the distance at 
which the straight line meets y-axis from origin). 
Thus a line in R2 (2-dimensions) can be represented by an equation of the form 

1 2a x a y b+ =  (where a1, a2 not both zero). Similarly a plane in R3 (3-dimensional space) 
can be represented by an equation of the form 1 2 3a x a y a z b+ + =   (where a1, a2, a3 not 
all zero).  
 
A linear equation in n variables 1 2, , , nx x x   can be expressed in the form 

1 1 2 2 n na x a x a x b+ + + = (hyper plane in n
  ) --------(1)   

           
 

where 1 2, , , na a a and b are constants and the “a’s” are not all zero.  
 
Homogeneous Linear equation 
 
In the special case if b = 0, Equation (1) has the form  1 1 2 2 0n na x a x a x+ + + =    (2) 
This equation is called homogeneous linear equation. 
 
Note A linear equation does not involve any products or square roots of variables. All 
variables occur only to the first power and do not appear, as arguments of trigonometric, 
logarithmic, or exponential functions.  
 
Examples of Linear Equations 
 
(1) The equations  

( )1 2 3 2 1 32 3 2 2 5 2x x x and x x x+ + = = + +  are both linear 

(2) The following equations are also linear 
1 2 3 4

1
1 22

3 7 2 3 0

3 1 1n

x y x x x x

x y z x x x

+ = − − + =

− + = − + + + =

 

 
(3) The equations 1 2 1 2 2 13 2 4 6x x x x and x x− = = −  

are not linear because of the presence of 1 2x x  in the first equation and 1x  in the second. 
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System of Linear Equations 
 
A finite set of linear equations is called a system of linear equations or linear system. The 
variables in a linear system are called the unknowns.  
 
For example, 

1 2 3

1 2 3

4 3 1
3 9 4

x x x
x x x
− + = −
+ + = −

             

is a linear system of two equations in three unknowns x1, x2, and x3.  
 
General System of Linear Equations 
A general linear system of m equations in n-unknowns 1 2, , , nx x x  can be written as 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =





   



        (3) 

          
Solution of a System of Linear Equations 
A solution of a linear system in the unknowns 1 2, , , nx x x is a sequence of n numbers 

1 2, , , ns s s such that when substituted for 1 2, , , nx x x  respectively, makes every 
equation in the system a true statement. The set of all such solutions { }1 2, , , ns s s of a 
linear system is called its solution set. 
 
Linear System with Two Unknowns 
 
When two lines intersect in R2, we get system of linear equations with two unknowns 
 

For example, consider the linear system 1 1 1

2 2 2

a x b y c
a x b y c

+ =
+ =

 

 
The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this 
system is infact a point of intersection of these lines.  
 
Note that there are three possibilities for a pair of straight lines in xy-plane: 

 
1. The lines may be parallel and distinct, in which case there is no intersection and 

consequently no solution. 
2. The lines may intersect at only one point, in which case the system has exactly 

one solution. 
3. The lines may coincide, in which case there are infinitely many points of 

intersection (the points on the common line) and consequently infinitely many 
solutions. 
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Consistent and inconsistent system 
 
A linear system is said to be consistent if it has at least one solution and it is called 
inconsistent if it has no solutions.  
 
Thus, a consistent linear system of two equations in two unknowns has either one 
solution or infinitely many solutions – there is no other possibility.  
 
Example consider the system of linear equations in two variables 

1 2 1 22 1, 3 3x x x x− = − − + =  
Solve the equation simultaneously: 
Adding both equations we get 2x  = 2, Put 2x  = 2 in any one of the above equation we 
get 1 3x = . So the solution is the single point (3, 2). See the graph of this linear system 

 
 
   x2             
        
        
              
             2     
        
      x1   
         l2             3        
      
 l1  (a)                 
 
This system has exactly one solution 
 
See the graphs to the following linear systems: 
 

1 2

1 2

( ) 2 1
2 3

a x x
x x
− = −

− + =
  1 2

1 2

( ) 2 1
2 1

b x x
x x
− = −

− + =
 

 
    x2           x2   
        
        
            2  
             2     
        
      x1   
         l2             3       3 
           l1  
 l1  (a)             (b)    
 

    (a) No solution.                        (b) Infinitely many solutions. 
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Linear System with Three Unknowns 
 
Consider r a linear system of three equations in three unknowns: 

1 1 1 1

2 2 1 2

3 3 3 3

a x b y c z d
a x b y c z d
a x b y c z d

+ + =
+ + =
+ + =

 

 
In this case, the graph of each equation is a plane, so the solutions of the system, If any 
correspond to points where all three planes intersect; and again we see that there are only 
three possibilities – no solutions, one solution, or infinitely many solutions as shown in  
figure. 

 
 
Theorem 1 Every system of linear equations has zero, one or infinitely many solutions; 
there are no other possibilities. 
 

Example 1 Solve the linear system 
1

2 6
x y
x y
− =
+ =

 

 
Solution 

Adding both equations, we get 7
3

x = . Putting this value of x in 1st equation, we 

get 4
3

y = . Thus, the system has the unique solution 7 4, .
3 3

x y= =   

 
Geometrically, this means that the lines represented by the equations in the system 

intersect at a single point 7 4,
3 3

 
 
 

 and thus has a unique solution. 

 

Example 2 Solve the linear system 
4

3 3 6
x y
x y
+ =
+ =

 

Solution 
Multiply first equation by 3 and then subtract the second equation from this. We obtain
 0 6=  
This equation is contradictory.  
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Geometrically, this means that the lines corresponding to the equations in the original 
system are parallel and distinct. So the given system has no solution. 
 

Example 3 Solve the linear system 
4 2 1

16 8 4
x y
x y
− =
− =

 

 
Solution  
 
Multiply the first equation by -4 and then add in second equation. 
 

                 
16 8 4
16 8 4

0 0

x y
x y

− + = −
− =

=
 

Thus, the solutions of the system are those values of x and y that satisfy the single 
equation 4 2 1x y− =                                                       
 
Geometrically, this means the lines corresponding to the two equations in the original 
system coincide and thus the system has infinitely many solutions.   
 
Parametric Representation 
 
 It is very convenient to describe the solution set in this case is to express it 
parametrically. We can do this by letting y = t and solving for x in terms of t, or by 
letting x = t and solving for y in terms of t.  
 
The first approach yields the following parametric equations (by taking y=t in the 
equation 4 2 1x y− = ) 
                        

4 2 1,
1 1 ,
4 2

x t y t

x t y t

− = =

= + =
 

 
We can now obtain some solutions of the above system by substituting some numerical 
values for the parameter.  

Example   For t = 0 the solution is 1( ,0).
4

 For t = 1, the solution is 3( ,1)
4

 and for 1t = −  

the solution is 1( , 1) .
4

etc− −   

 

Example 4 Solve the linear system 
2 5

2 2 4 10
3 3 6 15

x y z
x y z
x y z

− + =
− + =
− + =
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Solution 
Since the second and third equations are multiples of the first.  
 
Geometrically, this means that the three planes coincide and those values of x, y and z 
that satisfy the equation 2 5x y z− + =  automatically satisfy all three equations. 
 
We can express the solution set parametrically as  
 
                   1 2 1 25 2 , ,x t t y t z t= + − = =  
Some solutions can be obtained by choosing some numerical values for the parameters. 
 
For example   if we take 1 2y t= =  and 2 3z t= =  then  

1 25 2
5 2 2(3)
1

x t t= + −
= + −
=

  

Put these values of x, y, and z in any equation of linear system to verify  
 

2 5
1 2 2(3) 5
1 2 6 5
5 5

x y z− + =
− + =
− + =
=

 

 
Hence x = 1, y = 2,  z = 3  is the solution of the system. Verified.  
 
Matrix Notation 
 
The essential information of a linear system can be recorded compactly in a rectangular 
array called a matrix.  
 

Given the system 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

      

With the coefficients of each variable aligned in columns, the matrix 
1 2 1
0 2 8
4 5 9

− 
 − 
 − 

 

is called the coefficient matrix (or matrix of coefficients) of the system. 
 
An augmented matrix of a system consists of the coefficient matrix with an added column 
containing the constants from the right sides of the equations. It is always denoted by Ab 
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                                 Ab = 
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
 
Solving a Linear System 
 
In order to solve a linear system, we use a number of methods. 1st of them is given 
below.  
 
Successive elimination method  In this method the 1x  term in the first equation of a 
system is used to eliminate the 1x  terms in the other equations. Then we use the 2x  term 
in the second equation to eliminate the 2x  terms in the other equations, and so on, until 
we finally obtain a very simple equivalent system of equations. 
 
 

Example 5 Solve  
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

  

 
Solution We perform the elimination procedure with and without matrix notation, 
and place the results side by side for comparison: 

1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

           
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
To eliminate the 1x  term from third equation add 4 times equation 1 to equation 3,  

1 2 34 8 4 0x x x− + =  

1 2 34 5 9 9x x x− + + = −   

       2 33 13 9x x− + = −  
 
The result of the calculation is written in place of the original third equation: 

1 2 3

2 3

2 3

2 0

2 8 8

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 

 
Next, multiply equation 2 by ½ in order to obtain 1 as the coefficient for 2x  
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1 2 3

2 3

2 3

2 0

4 4

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
To eliminate the 2x  term from third equation add 3 times equation 2 to equation 3, 

 
The new system has a triangular form 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

   
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Now using 3rd equation eliminate the x3 term from first and second equation i.e. multiply 
3rd equation with 4 and add in second equation. Then subtract the third equation from first 
equation we get 
 

1 2

2

3

2 3
16
3

x x
x
x

− = −
=
=

  
1 2 0 3
0 1 0 16
0 0 1 3

− − 
 
 
  

 

 
Adding 2 times equation 2 to equation 1, we obtain the result 
 
   

 
1

2

3

29 1 0 0 29
16 0 1 0 16

0 0 1 33

x
x
x

=  
  =  
  =  

       

          
 
This completes the solution.  
Our work indicates that the only solution of the original system is (29, 16, 3).  
 
To verify that (29, 16, 3) is a solution, substitute these values into the left side of the 
original system for x1, x2 and x3 and after computing, we get 
 
      (29) – 2(16) +  (3) = 29 – 32 + 3 = 0 
                2(16) – 8(3) = 32 – 24 = 8 
   –4(29) + 5(16) +  9(3)  = –116 + 80 + 27 = –9 
 
The results agree with the right side of the original system, so (29, 16, 3) is a solution of 
the system. 
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This example illustrates how operations on equations in a linear system correspond to 
operations on the appropriate rows of the augmented matrix. The three basic operations 
listed earlier correspond to the following operations on the augmented matrix. 
 
 
Elementary Row Operations 
  
1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of 

another row.  
2. (Interchange) Interchange two rows. 
3. (Scaling) Multiply all entries in a row by a nonzero constant. 
 
Row equivalent matrices 
 
A matrix B is said to be row equivalent to a matrix A of the same order if B can be 
obtained from A by performing a finite sequence of elementary row operations of A. 
If A and B are row equivalent matrices, then we write this expression mathematically as 
A B.  

For example  
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 



1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 are row equivalent matrices 

because we add 4 times of 1st row in 3rd row in 1st matrix.  
 
Note If the augmented matrices of two linear systems are row equivalent, then the two 
systems have the same solution set. 
 
Row operations are extremely easy to perform, but they have to be learnt and practice. 
 
 
Two Fundamental Questions 
 

1. Is the system consistent; that is, does at least one solution exist? 
2. If a solution exists is it the only one; that is, is the solution unique? 

 
We try to answer these questions via row operations on the augmented matrix. 
 
Example 6 Determine if the following system of linear equations is consistent 

 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

       

 
Solution 
 
First obtain the triangular matrix by removing x1 and x2 term from third equation and 
removing x2 from second equation.  
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First divide the second equation by 2 we get 
 

1 2 3

2 3

1 2 3

2 0
4 4

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

             

1 2 1 0
0 1 4 4
4 5 9 9

− 
 − 
 − − 

 

 
 
Now multiply equation 1 with 4 and add in equation 3 to eliminate x1 

from third equation. 
 
 

1 2 3

2 3

2 3

2 0
4 4

3 13 9

x x x
x x
x x

− + =
− =

− + = −

               

1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
Now multiply equation 2 with 3 and add in equation 3 to eliminate x2 

from third equation. 
 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

               
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Put value of x3 in second equation we get  

2 4(3) 4x − =  

2 16x =  

 
Now put these values of x2 and x3 in first equation we get  
 

1 2(16) 3 0x − + =  
 

1 29x =  
 
So a solution exists and the system is consistent and has a unique solution. 
 
 
Example 7 Solve if the following system of linear equations is consistent. 

2 3

1 2 3

1 2 3

4 8
2 3 2 1
5 8 7 1

x x
x x x
x x x

− =
− + =
− + =
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Solution The augmented matrix is 
0 1 4 8
2 3 2 1
5 8 7 1

− 
 − 
 − 

 

 
To obtain x1 in the first equation, interchange rows 1 and 2:  

2 3 2 1
0 1 4 8
5 8 7 1

− 
 − 
 − 

 

 
To eliminate the 5x1 term in the third equation, add –5/2 times row 1 to row 3: 

2 3 2 1
0 1 4 8
0 1/ 2 2 3/ 2

− 
 − 
 − − 

  

 
Next, use the x2 term in the second equation to eliminate the –(1/2) x2 term from the 
third equation. Add ½ times row 2 to row 3: 

2 3 2 1
0 1 4 8
0 0 0 5 / 2

− 
 − 
  

  

 
The augmented matrix is in triangular form.  
To interpret it correctly, go back to equation notation: 
 

1 2 3

2 3

2 3 2 1

4 8

0 2.5

x x x
x x

− + =

− =

=

 

There are no values of x1, x2, x3 that will satisfy because the equation 0 = 2.5 is never 
true. 
Hence original system is inconsistent (i.e., has no solution).  
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Exercises 
 
1. State in words the next elementary “row” operation that should be performed on the 

system in order to solve it. (More than one answer is possible in (a).) 
 

1 2 3 4

2 3 4

3 4

3 4

. 4 2 8 12
7 2 4
5 7

3 5

a x x x x
x x x

x x
x x

+ − + =
− + = −

− =
+ = −

  

1 2 3 4

2 3

3

4

. 3 5 2 0
8 4
2 7

1

b x x x x
x x

x
x

− + − =

+ = −
=
=

 

 
2. The augmented matrix of a linear system has been transformed by row operations into 

the form below. Determine if the system is consistent. 
 

1 5 2 6
0 4 7 2
0 0 5 0

− 
 − 
  

 

 
3. Is (3, 4, –2) a solution of the following system? 
 

1 2 3

1 2 3

1 2 3

5 2 7
2 6 9 0
7 5 3 7

x x x
x x x
x x x

− + =
− + + =
− + − = −

 

 
4. For what values of h and k is the following system consistent? 
 

1 2

1 2

2
6 3

x x h
x x k
− =

− + =
 

 
Solve the systems in the exercises given below; 
 

5.  
2 3

1 2 3

1 2 3

5 4

4 3 2

2 7 1

x x
x x x
x x x

+ = −

+ + = −

+ + = −

  6.  
1 2 3

1 2 3

1 2 3

5 4 3
2 7 3 2

2 7 1

x x x
x x x
x x x

− + = −
− + = −

− − =

 

 
 
 

7.  
1 2

1 2 3

2 3

2 4

3 3 2

0

x x
x x x

x x

+ =

− − =

+ =

  8.  
1 3

2 3

1 2 3

2 4 10
3 2

3 5 8 6

x x
x x

x x x

− = −
+ =

+ + = −
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent 
linear system. 
 

9. 
1 3
2 6 5

h− 
 − − 

    10. 
1 2
4 2 10

h − 
 − 

 

 
Find an equation involving g, h, and that makes the augmented matrix correspond to a 
consistent system. 
 

11. 
1 4 7
0 3 5
2 5 9

g
h
k

− 
 − 
 − − 

   12. 
2 5 3
4 7 4
6 3 1

g
h
k

− 
 − 
 − − 

 

 
Find the elementary row operations that transform the first matrix into the second, and 
then find the reverse row operation that transforms the second matrix into first. 
 

13. 
1 3 1 1 3 1
0 2 4 , 0 1 2
0 3 4 0 3 4

− −   
   − −   
   − −   

  14. 
0 5 3 1 5 2
1 5 2 , 0 5 3
2 1 8 2 1 8

− −   
   − −   
      

 

 

15. 
1 3 1 5 1 3 1 5
0 1 4 2 , 0 1 4 2
0 2 5 1 0 0 3 5

− −   
   − −   
   − − −   

 

 



5-Vector Equations                                                                                                                                       VU 

                                                                                                                                                                                                  
                                                       © Virtual University Of Pakistan                                                            46 

 

Lecture 5 

Vector Equations 
This lecture is devoted to connect equations involving vectors to ordinary systems of 

equations. The term vector appears in a variety of mathematical and physical contexts, 

which we will study later, while studying “Vector Spaces”. Until then, we will use vector 

to mean a list of numbers. This simple idea enables us to get interesting and important 

applications as quickly as possible. 

Column Vector 

“A matrix with only one column is called column vector or simply a vector”. 

e.g. [ ] [ ] 1 2 3 4

2
3

3 1 , 2 3 5 ,3
1

5

TT T w w w wu v w
 

     = − = = = =    −    

 are all 

column vectors or simply vectors.  

Vectors in R2 

If  is the set of all real numbers then the set of all vectors with two entries is denoted    

by 2 = ×   . 

For example:  the vector [ ] 3
3 1

1
Tu  

= − =  − 
 2∈  

Here real numbers are appeared as entries in the vectors, and the exponent 2 indicates that 

the vectors contain only two entries. 

Similarly R3 and R4 contain all vectors with three and four entries respectively. The 
entries of the vectors are always taken from the set of real numbers R. The entries in 
vectors are assumed to be the elements of a set, called a Field. It is denoted by F .     
Algebra of Vectors 

Equality of vectors in 2  

  Two vectors in R2 are equal if and only if their corresponding entries are equal. 

  1 1 2
1 1 2 2

2 2

If ,
u v

u then u v iff u v u v
u v

v   
= = ∈ = = ∧ =   
   

  

   So  
4 4
6 3
   

≠   
   

  as 4 4=  but 6 3≠  
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Note In fact, vectors 
x
y
 
 
 

 in R2 are nothing but ordered pairs ( ),x y of real numbers both 

representing the position of a point with respect to origin. 

Addition of Vectors 

Given two vectors u and v in R2, their sum is the vector u + v obtained by adding 

corresponding entries of the vectors u and v, which is again a vector in 2
   

 

For  1 1 2

2 2

,
u v

u v
u v
   

= = ∈   
   

  Then 1 1 1 1 2

2 2 2 2

u v u v
u v

u v u v
+     

+ + = ∈     +     
=   

 

For example, 
1 2 1 2 3
2 5 2 5 3

+
+ = =

− − +
       
       
       

 

 

Scalar Multiplication of a vector 

 

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu 

obtained by multiplying each entry in u by c.  

For example, if 
3 3 15

5, 5
1 1 5

u and c then cu     
= = = =     − − −     

 

Notations The number c in cu is a scalar; it is written in lightface type to distinguish it 

from the boldface vector u. 

Example 1 Given 
1 2

,
2 5

u and v   
= =   − −   

find 4u,   (-3) v, and 4u + (-3) v 

 

Solution 
1 4 1 4 2 6

4 4 , ( 3) ( 3)
2 4 ( 2) 8 5 15

u v
× −         

== = = − = − =         − × − − −         
 

 

And 
4 6 2

4 ( 3)
8 15 7

u v
− −     

+ − = + =     −     
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Note: Sometimes for our convenience, we write a column vector 
3
1

 
 − 

 in the form  

(3, –1). In this case, we use parentheses and a comma to distinguish the vector (3, –1) 

from the 1 2×  row matrix [3   –1], written with brackets and no comma.  

Thus  
3

[3 1]
1

 
≠ − − 

   but   
3
1

 
 − 

= (3, –1) 

Geometric Descriptions of R2 

Consider a rectangular coordinate system in the plane. Because each point in the plane is 

determined by an ordered pair of numbers, we can identify a geometric point (a, b) with 

the column vector
a
b
 
 
 

. So we may regard R2 as the set of all points in the plane.  

See Figure 1.         x2  

      

       .(2, 2) 

        x1 

      (-2, -1).  .(3, –1) 

     

    Figure 1 Vectors as points. 

 

Vectors in R3 

       Vectors in R3 are 3 1×  column matrices with three entries. They are represented 

geometrically by points in a three-dimensional coordinate space, with arrows from the 

origin sometimes included for visual clarity.  

Vectors in Rn 

     If n is a positive integer, Rn (read “r-n”) denotes the collection of all lists (or ordered 

n- tuples) of n real numbers, usually written as 1n×  column matrices, such as 

    [ ]1 2
T

nu u u u=   

     The vector whose all entries are zero is called the zero vector and is denoted by O. 

(The number of entries in O will be clear from the context.) 
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Algebraic Properties of Rn 

For all u, v, w in Rn and all scalars c and d: 

 

 (i)  u + v = v + u    (Commutative)      

 (ii)  (u + v) + w = u + (v + w)    (Associative)   

(iii) u + 0 = 0 + u = u     (Additive Identity)   

(iv)  u + (–u) =( –u) + u = 0    (Additive Inverse)      

  where –u denotes (–1)u 

(v)  c(u + v) = cu + cv         (Scalar Distribution over Vector Addition) 

(vi)  (c + d)u = cu + du        (Vector Distribution over Scalar Addition) 

(vii)  c(du) = (cd)u      

(viii) 1u=u 

Linear Combinations Given vectors v1, v2, …, vp in Rn and given scalars c1, c2, …, cp 

the vector defined by  

1 1 2 2 p py c v c v c v= + + +   

is called a linear combination of v1, … , vp using weights c1, ... , cp.  

          Property (ii) above permits us to omit parenthesis when forming such a linear 

combination. The weights in a linear combination can be any real numbers, including 

zero. 

Example 

 For 1 2

1 2
,

1 1
v v

−   
= =   
   

 , if 1 2
5 1
2 2

w v v= −  then we say that w is a linear combination of 

v1 and v2. 

Example  As (3, 5 , 2) = 3(1, 0 , 0) + 5(0, 1 , 0) + 2(0, 0 , 1) 

 (3, 5 , 2) =  3 1v  + 5 2v + 2 3v   where 1v = (1, 0 , 0) , 2v = (0, 1 , 0)  3v = (0, 0 , 1) 

So  (3, 5 , 2) is a vector which is linear combination of  1v , 2v , 3v  

Example 5 Let 1 2

1 2 7
2 , 5 , 4 .
5 6 3

a a and b
     
     = − = =     
     − −     
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Determine whether b can be generated (or written) as a linear combination of a1 and a2. 

That is, determine whether weights x1 and x2 exist such that 

                                  x1 a1 + x2 a2 = b     (1) 

If the vector equation (1) has a solution, find it. 

Solution Use the definitions of scalar multiplication and vector addition to rewrite the 

vector equation 

1 2

1 2 7
2 5 4
5 6 3

x x
     
     − + =     
     − −     

 

 

      a1  a2 b 

  ⇒  
1 2

1 2

1 2

2 7
2 5 4
5 6 3

x x
x x
x x

     
     − + =     
     − −     

 

  ⇒  
1 2

1 2

1 2

2 7
2 5 4
5 6 3

x x
x x
x x

+   
   − + =   
   − + −   

      (2) 

⇒       
1 2

1 2

1 2

2 7
2 5 4

5 6 3

x x
x x

x x

+ =
− + =
− + = −

         (3)  

We solve this system by row reducing the augmented matrix of the system as follows: 

2 1 3 1

1 2 7
2 5 4
5 6 3

2 ; 5By R R R R

 
 − 
 − − 

+ +

 

                  

/
2 3

1 2 7
0 9 18
0 16 32

1 1;
9 16

By R R

 
 
 
  

   
   
   
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1 2 7
0 1 2
0 1 2

 
 
 
  

 

                         3 2 1 2; 2By R R R R− −  

                        

1 0 3
0 1 2
0 0 0

 
 
 
  

 

                           

The solution of (3) is x1 = 3 and x2 = 2. Hence b is a linear combination of a1 and a2, 

with weights x1 = 3 and x2 = 2. 

Spanning Set 

       If v1, . . .  , vp are in Rn, then the set of all linear combinations of v1, . . .  , vp is 

denoted by Span { v1, . . .  , vp } and is called the subset of Rn spanned (or generated) by 

v1, . . .  , vp . That is, Span { v1,  . . .  , vp} is the collection of all vectors that can be 

written in the form of  c1v1 + c2v2 + … + cpvp, with c1, . . . , cp scalars. 

If we want to check whether a vector b is in Span {v1,  . . .  , vp } then we will see whether 

the vector equation 

             x1v1 +x2v2 + ... + xpvp = b has a solution, or  

 Equivalently, whether the linear system with augmented matrix [ v1, …  , vp     b] has a 

solution. 

Note 

(1) The set Span { v1, . . .  , vp} contains every scalar multiple of v1  

         because   cv1 = cv1 + 0v2 + …. + 0vp i.e every cvi can be written as a linear 

combination of v1, . . .  , vp 

(2) Zero vector 0 { , , }1 2Span v v vn= ∈ 

 as 0  can be written as the linear combination of  

1 2, , nv v v  that is 0 0 0 01 2F F Fv v vv n= + + +  here for the convenience it is mentioned 

that 0v   is the vector(zero vector) while 0F  is zero scalar (weight of all 1 2, , nv v v ) and in 

particular not to make confusion that 0v  and 0F  are same! 
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A Geometric Description of Span {v} and Span {u, v} 

     Let v be a nonzero vector in R3. Then Span {v} is the set of all linear combinations of v 

or in particular set of scalar multiples of v, and we visualize it as the set of points on the 

line in R3 through v and 0.  

     If u and v are nonzero vectors in R3, with v not a multiple of u, then Span {u, v} is the 

plane in R3 that contains u, v and 0. In particular, Span {u, v} contains the line in R3 

through u and 0 and the line through v and 0. 

Example 6 Let 1 2

1 5 3
2 , 13 , 8 .

3 3 1
a a and b

−     
     = − = − =     
     −     

  

Then Span {a1, a2} is a plane through the origin in R3. Does b lie in that plane? 

 

Solution  First we see the equation x1a1 + x2a2 = b has a solution?  

         To answer this, row-reduce the augmented matrix [a1   a2    b]: 

         

2 1

1 5 3
2 13 8

3 3 1
2By R R

− 
 − − 
 − 

+

 

       
1 5 3
0 3 2
0 18 10

− 
 − 
  

 

         3 26By R R+  

 
1 5 3
0 3 2
0 0 2

− 
 − 
 − 

 

Last row 20 2x⇒ = −  which can not be true for any value of 2x ∈  

⇒Given system has no solution 

1 2,{ }b Span a a∴ ∉         and  

in geometrical meaning, vector b  does not lie in the plane spanned by vectors 

1 2anda a  
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Linear Combinations in Applications 

The final example shows how scalar multiples and linear combinations can arise when a 

quantity such as “cost” is broken down into several categories. The basic principle for the 

example concerns the cost of producing several units of an item when the cost per unit is 

known: 

 

number cos total
of units per unit cos

t
t

     
⋅ =     

     
  

Example 7 A Company manufactures two products. For one dollar’s worth of product 

B, the company spends $0.45 on materials, $0.25 on labor, and $0.15 on overhead. For 

one dollar’s worth of product C, the company spends $0.40 on materials, $0.30 on labor 

and $0.15 on overhead.  

Let
.45 .40
.25 .30
.15 .15

b and c
   
   = =   
      

, then b and c represent the “costs per dollar of income” 

for the two products. 

 

a) What economic interpretation can be given to the vector 100b? 

b) Suppose the company wishes to manufacture x1 dollars worth of product B and x2 

dollars worth of product C. Give a vector that describes the various costs the 

company will have (for materials, labor and overhead). 

Solution 

(a) We have 
.45 45

100 100 .25 25
.15 15

b
   
   = =   
      

 

The vector 100b represents a list of the various costs for producing $100 worth of product 

B, namely, $45 for materials, $25 for labor, and $15 for overhead. 

 

(b) The costs of manufacturing x1 dollars worth of B are given by the vector x1b and the 

costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total costs 

for both products are given by the vector x1b + x2c. 
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Vector Equation of a Line 

Let x0 be a fixed point on the line and v be a nonzero vector that is parallel to the 

required line. Thus, if x is a variable  point on the line through x0 that is parallel to v, 

then the vector x – x0 is a vector  parallel to v as shown in fig below, 

 
So by definition of parallel vectors   x– x0 = tv   for some scalar t.  

   it is also called a parameter which varies from −∞  to +∞ . The variable point x traces 

out the line, so the line can be represented by the equation 

 x– x0 = tv --------------(1)        ( )t−∞ < < +∞                      

   This is a vector equation of the line through x0 and parallel to v.  

In the special case, where x0 = 0, the line passes through the origin, it simplifies to  

                                        x = tv         ( )t−∞ < < +∞   

 Parametric Equations of a Line in R2 

 Let x = (x, y) 2R∈  be a general point of the line through  x0 = (x0, y0) 2R∈  which is 

parallel to  
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  v = (a, b) 2R∈ , then eq. 1 takes the form 

(x, y) - (x0, y0) = t(a, b)      ( )t−∞ < < +∞             

                  ⇒  (x - x0  , y - y0) = (ta , tb)      ( )t−∞ < < +∞                 

                  ⇒  x = x0 + at,   y = y0 + bt   ( )t−∞ < < +∞                                     

These are called parametric equations of the line 2in R  . 

Parametric Equations of a Line in R3 

Similarly, if we let x = (x, y, z) 3R∈  be a general point on the line through   

x0 = (x0, y0 , z0) 3R∈  that is parallel to v = (a, b, c) 3R∈ , then again eq. 1 takes the form 

(x, y, z) = (x0, y0, z0) + t(a, b, c) ( )t−∞ < < +∞  

               ⇒     x= x0 + at,   y = y0 + bt,   z = z0 + ct   ( )t−∞ < < +∞                

These are the parametric equations of the line 3in R  

 
Example 8 
 

(a) Find a vector equation and parametric equations of the line in R2 that passes 

through the origin and is parallel to the vector v = (–2, 3). 

 

(b) Find a vector equation and parametric equations of the line in R3 that passes 

through the point P0(1, 2, –3) and is parallel to the vector v = (4, –5, 1). 

 

(c) Use the vector equation obtained in part (b) to find two points on the line that are 

different from P0. 

Solution 

 

(a) We know that a vector equation of the line passing through origin is x = tv.  

Let x = (x, y). Then this equation can be expressed in component form as 

(x, y) = t (–2, 3)  

            This is the vector equation of the line.  

Equating corresponding components on the two sides of this equation yields the 

parametric equations  x = – 2t,    y = 3t  
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(b) The vector equation of the line is   x = x0 + tv.  

 Let x = (x, y, z), Here x0 = (1, 2, –3) and v = (4, –5, 1), then above equation can 

be expressed in component form as 

 (x, y, z) = (1, 2, –3) + t (4, –5, 1)  

 

Equating corresponding components on the two sides of this equation yields the 

parametric equations 

 

   x = 1 + 4t,   y = 2 – 5t,   z = –3 + t   

 

(c)   Specific points on a line can be found by substituting numerical values for the 

parameter t.  

 

For example, if we take t = 0 in part (b), we obtain the point (x, y, z) = (1, 2, –3), 

which is the given point P0.  

 t = 1 yields the point (5, –3, –2) and   

            t = –1 yields the point (–3, 7, – 4). 

Vector Equation of a Plane 

Let x0 be a fixed point on the required plane W and v1 and v2 be two nonzero vectors that 

are parallel to W and are not scalar multiples of one another. If x is any variable point in 

the plane W. Suppose v1 and v2 have their initial points at x0, we can create a 

parallelogram with adjacent side’s t1v1 and t2v2 in which x – x0 is the diagonal given by 

the sum 

x – x0 = t1v1 + t2v2 

 

or, equivalently, x = x0 + t1v1 + t2v2     ---------------------(1) 

 

where t1 and t2 are parameters vary independently from −∞  to +∞ ,  

This is a vector equation of the plane through x0 and parallel to the vectors v1 and v2. In 

the special case where x0 = 0, then vector equation of the plane passes through the origin 

takes the form 
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   x = t1v1 + t2v2   1 2( , )t t−∞ < < +∞ −∞ < < +∞  

 

Parametric Equations of a Plane 

 

 Let x = (x, y, z) be a general or variable point in the plane passes through a fixed point   

x0 = (x0, y0, z0) and parallel to the vectors v1 = (a1, b1, c1) and v2 = (a2, b2, c2), then the 

component form of eq. 1 will be 

(x, y, z) = (x0, y0, z0) + t1(a1, b1, c1) +t2(a2, b2, c2) 

Equating corresponding components, we get  

   x = x0 +a1t1 + a2t2 

   y = y0 + b1t1 + b2t2          1 2( , )t t−∞ < < +∞ −∞ < < +∞             

   z = z0 + c1t1 + c2t2 

These are called the parametric equations for this plane. 

 

Example 9 (Vector and Parametric Equations of Planes) 

 

(a) Find vector and parametric equations of the plane that passes through the origin of 

R3 and is parallel to the vectors    v1 = (1, –2, 3) and v2 = (4, 0, 5). 

 

(b) Find three points in the plane obtained in part (a). 

 

Solution 

 

(a) As vector equation of the plane passing through origin  is x = t1v1 + t2v2.  

Let x = (x, y, z) then this equation can be expressed in component form as 

  (x, y, z) = t1(1, –2, 3) + t2 (4, 0, 5)  

            This is the vector equation of the plane.        

Equating corresponding components, we get 

 x = t1 + 4t2,     y = –2t1,     z = 3t1 + 5t2            

These are the parametric equations of the plane.  
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(b) Points in the plane can be obtained by assigning some real values to the          

            parameters t1 and t2:  

 

  t1 = 0 and t2 = 0      produces the point (0, 0, 0) 

 

  t1 = –2 and t2 = 1    produces the point (2, 4, –1)  

 

  t1 = ½ and t2 = ½     produces the point (5/2, –1, 4) 

Vector equation of Plane through Three Points 

If x0, x1 and x2 are three non collinear points in the required plane, then, obviously, the 

vectors v1 = x1 – x0 and v2 = x2 – x0 are parallel to the plane. So, a vector equation of the 

plane is 

x = x0 + t1(x1 – x0) + t2(x2 – x0)                                                

Example Find vector and parametric equations of the plane that passes through the 

points. P(2, – 4, 5), Q (–1, 4, –3) and R(1, 10, –7). 

Solution 

Let x = (x, y, z), and if we take x0, x1 and x2 to be the points P, Q and R respectively, 

then 1 0 ( 3,8, 8)x x PQ− = = − −


   and   2 0 ( 1,14, 12)x x PR− = = − −


     

So the component form will be 

 1 2( , , ) (2, 4,5) ( 3,8, 8) ( 1,14, 12)x y z t t= − + − − + − −  

This is the required vector equation of the plane. 

By equating corresponding components, we get 

 1 2 1 2 1 22 3 , 4 8 14 , 5 8 12x t t y t t z t t= − − = − + + = − −  

These are the parametric equations of the required plane.  

 

Question:    How can you tell that the points P, Q and R are not collinear? 

Finding a Vector Equation from Parametric Equations 

Example 11 Find a vector equation of the plane whose parametric equations are 

 

   1 2 1 2 1 24 5 , 2 8 ,x t t y t t z t t= + − = − + = +  
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Solution   First we rewrite the three equations as the single vector equation 

 

     1 2 1 2 1 2( , , ) (4 5 ,2 8 , )x y z t t t t t t= + − − + +                              

          ⇒  1 1 1 2 2 2( , , ) (4, 2,0) (5 , , ) ( ,8 , )x y z t t t t t t= + − + −  

                                ⇒  1 2( , , ) (4, 2,0) (5, 1,1) ( 1,8,1)x y z t t= + − + −  

This is a vector equation of the plane that passes through the point (4, 2, 0) and is parallel 

to the vectors v1 = (5, –1, 1) and v2 = (–1, 8, 1). 

 

Finding Parametric Equations from a General Equation 

 

Example 12 Find parametric equations of the plane x – y + 2z = 5. 

 

Solution First we solve the given equation for x in terms of y and z 

  x = 5 + y – 2z  

Now make y and z into parameters, and then express x in terms of these parameters.  

Let y = t1 and z = t2  

Then the parametric equations of the given plane are  

 x = 5 + t1 – 2t2,   y = t1,   z = t2 

 

Exercises 

1. Prove that u + v = v + u for any u and v in Rn. 

 

2. For what value(s) of h,  y belongs to Span {v1, v2, v3}?  Where 

 

 

1 2 3

1 5 3 4
1 , 4 1 , 3
2 7 0

v v v and y
h

− −       
       = − = − = =       
       − −       

 

 

3.  Determine whether b is a linear combination of a1, a2, and a3. 
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i). 1 2 3

1 2 6 11
0 , 3 , 7 , 5
1 2 5 9

a a a b
− −       

       = = = = −       
       −       

 

 

ii). 1 2 3

1 4 2 3
0 , 3 , 5 , 7

2 8 4 3
a a a b

−       
       = = = = −       
       − − −       

 

 

4.  Determine if b is a linear combination of the vectors formed from the columns of the 

matrix A.  

 

i). 
1 0 2 5
2 5 0 , 11

2 5 8 7
A b

−   
   = − =   
   −   

   ii). 
1 0 5 2
2 1 6 , 1

0 2 8 6
A b

   
   = − − = −   
      

 

 

 

In exercises 7-10, list seven vectors in Span {v1, v2}. For each vector, show that the 

weights on v1 and v2 used to generate the vector and list the three entries of the vector. 

Give also geometric description of the Span {v1, v2}. 

 

 

7. 1 2

5 1
1 , 1

3 5
v v

   
   = − =   
   −   

  8. 1 2

2 1
0 , 0
1 2

v v
−   
   = =   
   
   

  

 

 

9. 1 2

2 3
6 , 9
4 6

v v
−   

   = = −   
   −   

  10. 1 2

3.7 5.8
0.4 , 2.1

11.2 5.3
v v

−   
   = − =   
   
   
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11. Let 1 2

1 5 3
3 , 8 , 5

1 2
a a b

h

−     
     = = − = −     
     −     

 . For what value(s) of h is b in the plane spanned 

by a1 and a2? 

 

12. Let 1 2

1 2
0 , 1 , 3 .

2 7 5

h
v v and y

−     
     = = = −     
     − −     

 For what value(s) of h is y in the plane 

generated by v1 and v2? 

 

13. Let 
2 2

.
1 1

u and   
=    −   

Show that 
h
k
 
 
 

 is in Span{u, v} for all h and k. 

 



6-Matrix Equations  VU 

 
©Virtual University Of Pakistan 62 

Lecture 6 
 

Matrix Equations 
 
A fundamental idea in linear algebra is to view a linear combination of vectors as the 

product of a matrix and a vector. The following definition will permit us to rephrase some 

of the earlier concepts in new ways. 

Definition  If A is an m n×  matrix, with columns a1, a2, … , an and if x is in Rn, then the 

product of A and x denoted by Ax, is the linear combination of the columns of A using 

the corresponding entries in x as weights, that is, 

 

[ ]
1

1 2 1 1 2 2... ...n n n

n

x
Ax a a a x a x a x a

x

 
 = = + + + 
  



 

Note that Ax is defined only if the number of columns of A equals the number of entries 

in x. 

 
Example 1  

 

a) 
4

1 2 1 1 2 1
3 4 3 7

0 5 3 0 5 3
7

 
− −         = + +        − −         

4 6 7 3
0 15 21 6

−       
= + + =       −       

 

 

b) 
2 3 2 3

4
8 0 4 8 7 0

7
5 2 5 2

− −     
      = +            − −     

8 21 13
32 0 32
20 14 6

− −     
     = + =     
     − −     

 

 
 
Example 2   For v1, v2, v3 in Rm, write the linear combination 3v1 – 5v2 + 7v3 as a 

matrix times a vector. 

Solution Place v1, v2, v3 into the columns of a matrix A and place the weights 3, -5, 

and 7 into a vector x.  

That is, 1 2 3 1 2 3

3
3 5 7 [ ] 5

7
v v v v v v Ax

 
 − + = − = 
  

 



6-Matrix Equations  VU 

 
©Virtual University Of Pakistan 63 

We know how to write a system of linear equations as a vector equation involving a 

linear combination of vectors. For example, we know that the system 

 

1 2 3

2 3

2 4
5 3 1

x x x
x x

+ − =
− + =

 is equivalent to  1 2 3

1 2 1 4
0 5 3 1

x x x
−       

+ + =       −       
   

Writing the linear combination on the left side as a matrix times a vector, we get 

1

2

3

1 2 1 4
0 5 3 1

x
x
x

 
−     =    −     

  

Which has the form Ax = b, and we shall call such an equation a matrix equation, to 

distinguish it from a vector equation. 

  
Theorem 1 If A is an m n×  matrix, with columns a1, a2 ,... , an and if b is in Rm, the 

matrix equation   Ax = b has the same solution set as the vector equation   

x1a1 + x2a2 + … + xnan = b 

which, in turn, has the same solution set as the system of linear equations whose 

augmented matrix is [ ]1 2 ... na a a b  

Existence of Solutions  The equation Ax = b has a solution if and only if b is a linear 

combination of the columns of A. 

 

Example 3 Let 
1 3 4
4 2 6
3 2 7

A
 
 = − − 
 − − − 

 and 
1

2

3

b
b b

b

 
 =  
  

.  

Is the equation Ax = b consistent for all possible b1, b2, b3? 
 
 
Solution Row reduce the augmented matrix for Ax = b: 
       

 
1 2 1 34 ,3R R R R+ +  

1 1

2 2 1

3 3 1

1 3 4 1 3 4
4 2 6 0 14 10 4
3 2 7 0 7 5 3

b b
b b b
b b b

   
   − − +   
   − − − +   

  
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3 2
1
2

R R−  

1

2 1

3 1 2 1

1 2 1

0 14 10 4

10 0 0 3 ( 4 )
2

b

b b

b b b b

 − − 
 
 + 
 
 + − +
  

  

 

The third entry in the augmented column is 3 1 2 1
13 ( 4 )
2

b b b b+ − +  

The equation Ax = b is not consistent for every b because some choices of b can make 

1 2 3
1
2

b b b− +  nonzero. 

The entries in b must satisfy 1
1 2 32 0b b b− + =  

 

This is the equation of a plane through the origin in R3. The plane is the set of all linear 

combinations of the three columns of A. See figure below. 

 
 

 
 
                                                             
 
 
The equation Ax = b fails to be consistent for all b because the echelon form of A has a 

row of zeros. If A had a pivot in all three rows, we would not care about the calculations 

in the augmented column because in this case an echelon form of the augmented matrix 

could not have a row such as [0  0  0  1]. 
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Example 4 Which of the following are linear combinations of 
4 0 1 1 0 2

A , B , C
2 2 2 3 1 4

−     
= = =     − −     

 

(a) 
6 8
1 8

− 
 − − 

  

(b) 
0 0
0 0
 
 
 

 (c) 
6 0
3 8
 
 
 

 

 

Solution 
 

(a)   
6 8
1 8

− 
 − − 

 = a A + b B + c C 

   = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

   =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 6   (1) 

  -b + 2c = -8  (2) 

  -2a + 2b + c = -1  (3) 

  -2a + 3b + 4c = -8  (4) 

 

Subtracting equation (4) from equation (3), we obtain 

  -b – 3c = 7      (5) 

Subtracting equation (5) from equation (2): 

  5c = -15 ⇒  c = -3 

 

From (2), -b + 2(-3) = -8 ⇒  b = 2 

From (3), -2a + 2(2) – 3 = -1 ⇒  a = 1 

Now we check whether these values satisfy equation (1). 

  4(1) + 2 = 6 
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It means that 
6 8
1 8

− 
 − − 

is the linear combination of A, B and C. 

Thus 

              
6 8
1 8

− 
 − − 

= 1A + 2B – 3C 

(b)   
0 0
0 0
 
 
 

= a A + b B + c C 

  = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

   =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 0   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 0  (3) 

  -2a + 3b + 4c = 0  (4) 

Subtracting equation (3) from equation (4) we get 

                                b + 3c = 0                        (5) 

Adding equation (2) and equation (5), we get 

                                5c = 0   ⇒     c = 0  

Put c = 0 in equation (5), we get  b = 0 

Put b = c = 0 in equation (3), we get a = 0 

⇒     a = b = c =0 

 

It means that 
0 0
0 0
 
 
 

is the linear combination of A, B and C. 

Thus 
0 0
0 0
 
 
 

= 0A + 0B + 0C 

 

(c)  
6 0
3 8
 
 
 

= a A + b B + c C 
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  = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

  =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 6   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 3  (3) 

  -2a + 3b + 4c = 8  (4) 

Subtracting (4) from (3), we obtain 

  -b – 3c = -5  (5) 

Subtracting (5) from (2): 

  5c = 5 ⇒  c = 1 

 

From (2), -b + 2(1) = 0 ⇒  b = 2 

 

From (3), -2a + 2(2) + 1 = 3 ⇒  a = 1 

Now we check whether these values satisfy (1). 

  4(1) + 2 = 6 

   

It means that 
6 0
3 8
 
 
 

is the linear combination of A, B and C. 

Thus 
6 0
3 8
 
 
 

= 1A + 2B +1C 

Theorem 2 Let A be an m n×  matrix. Then the following statements are logically 

equivalent.  

(a) For each b in Rm, the equation Ax = b has a solution. 

(b) The columns of A Span Rm. 

(c) A has a pivot position in every row. 
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This theorem is one of the most useful theorems. It is about a coefficient matrix, not an 

augmented matrix. If an augmented matrix [A   b] has a pivot position in every row, then 

the equation Ax = b may or may not be consistent. 

Example 4 Compute Ax, where 
1

2

3

2 3 4
1 5 3

6 2 8

x
A and x x

x

   
   = − − =   
   −   

 

Solution From the definition, 

1

2 1 2 3

3

2 3 4 2 3 4
1 5 3 1 5 3

6 2 8 6 2 8

x
x x x x
x

         
         − − = − + + −         
         − −         

   

1 2 3

1 2 3

1 2 3

2 3 4
5 3

6 2 8

x x x
x x x
x x x

     
     = − + + −     
     −     

   

1 2 3

1 2 3

1 2 3

2 3 4
5 3

6 2 8

x x x
x x x
x x x

+ + 
 = − + − 
 − + 

 

Note 

In above example the first entry in Ax is a sum of products (sometimes called a dot 

product), using the first row of A and the entries in x.  

That is  [ ] [ ]
1

2 1 2 3

3

2 3 4 2 3 4
x
x x x x
x

 
  = + + 
  

 

Examples 

In each part determine whether the given vector span 3R  

 

 

 

 

 

 

 

1 2

3

1 2

3 4

1 2

3 4

( ) (2, 2, 2), (0, 0, 3),
(0, 1, 1)

( ) (3, 1, 4), (2, 3, 5),
(5, 2, 9) , (1, 4, 1)

( ) (1, 2,6), (3, 4, 1),
(4,3,1), (3, 3, 1)

a v v
v

b v v
v v

c v v
v v

= =
=
= = −
= − = −
= =
= =
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Solutions 

(a) We have to determine whether arbitrary vectors 1 2 3( , , )b b b b=   in 3R   can be 

expressed as a linear combination                                   of the vectors 1 2 3, ,v v v   

Expressing this in terms of components given by  

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

( , , ) (2, 2, 2) (0,0,3) (0,1,1)
( , , ) (2 0 0 ,2 0 ,2 3 )
2 0 0
2 0
2 3

b b b k k k
b b b k k k k k k k k k
k k k b
k k k b
k k k b

= + +
= + + + + + +

+ + =
+ + =
+ + =

 

2 0 0
2 0 1
2 3 1

A
 
 =  
  

           has a non zero determinant  

Now 

det( ) 6 0A = − ≠  

Therefore 1 2 3, ,v v v    span 3R   

(b) The set S{ 1 2 3 4, , ,v v v v }of vectors in  3R  spans V= 3R  if  

1 1 2 2 3 3 4 4 1 1 2 2 3 3

1

2

3

.......(1)

(1,0,0)
(0,1,0)
(0,0,1)

c v c v c v c v d w d w d w
with

w
w
w

+ + + = + +

=
=
=

 

With our vectors  1 2 3 4, , ,v v v v    equation (1) becomes 

1 2 3 4 1 2 3(3,1, 4) (2, 3,5) (5, 2,9) (1,4, 1) (1, ,0,0) (0,1,0) (0,0,1)c c c c d d d+ − + − + − = + +  

Rearranging the left hand side yields  

1 2 3 4 1 2 33 2 5 1 1 0 0c c c c d d d+ + + = + +  

1 2 3 4 1 2 31 3 2 4 0 1 0c c c c d d d− − + = + +  

1 2 3 4 1 2 34 5 9 1 0 0 1c c c c d d d+ + − = + +  

1 1 2 2 3 3b k v k v k v= + +
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3 2 5 1 1 0 0
1 3 2 4 0 1 0
4 5 9 1 0 0 1

 
 − − 
 − 

 

 

 

The reduce row echelon form  

 

 

 

 

Corresponds to the system of equations  

 

1 3 4 2 3

2 3 4 2 3

1 2 3

5 31 1 1 ( ) ( )
17 17

4 11 1 1 ( ) ( )
17 17

7 110 1 ( ) ( )
17 17

c c c d d

c c c d d

d d d

+ + = +

−
+ + − = +

−
= + + −

         ……………(2) 

So this system is inconsistent. The set S does not span the space V.  

Similarly Part C can be solved by the same way.  

Exercise 

1. Let  

3
1 5 2 0 7

2
3 1 9 5 , , 9

0
4 8 1 7 0

4

A x and b

 
− −    −    = − − = =    

   − −     − 

.  

It can be shown that Ax = b. Use this fact to exhibit b as a specific linear 

combination of the columns of A. 

 

11 0 2 1 0 0
2
10 1 1 1 0 1
2

0 0 0 0 1 3 2

 
 
 
 − 
 − − 
  

5 31 0 1 1 0
17 17

4 10 1 1 1 0
17 17

7 110 0 0 0 1
17 17

 
 
 

− − 
 − −
  
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2. Let  
2 5 4 3

, ,
3 1 1 5

A u and v
−     

= = =     −     
. Verify A(u + v) =  Au +Av. 

 

3. Solve the equation Ax = b, with 
2 4 6 2
0 1 3 , 5
3 5 7 3

A b
−   

   = =   
   − − −   

. 

 

4. Let 
5 3 5
3 1 1
6 2 8

u and A
−   
   = − =   
   − − −   

. Is u belongs to the plane in R3 spanned by the 

columns of A? Why or why not? 

 

5. Let 
8 4 3 5
2 0 1 1 .
3 1 2 0

u and A
   
   = = −   
      

 Is u in the subset of R3 spanned by the columns of 

A? Why or why not? 

 

6. Let 1

2

3 1
.

6 2
b

A and b
b

−   
= =   −   

 Show that the equation Ax = b is not consistent for all 

possible b, and describe the set of all b for which Ax = b is consistent. 

 

7. How many rows of 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− − 
 − =
 − −
 − 

 contain pivot positions? 

 

In exercises 8 to 13 , explain how your calculations justify your answer, and mention an 

appropriate theorem.  

8. Do the columns of the matrix 
1 3 4
3 2 6
5 1 8

A
− 

 = − 
 − − 

 span R3? 
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9. Do the columns of the matrix 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− − 
 − =
 − −
 − 

 span R4? 

 

10. Do the columns of the matrix 
0 0 2
0 5 1
4 6 3

A
 
 = − 
 − 

 span R3? 

 

11. Do the columns of the matrix 
3 5
1 1
2 8

A
 
 =  
 − − 

span R3? 

 

12. Let 1 2 3

1 0 1
0 1 0

, , .
1 0 0

0 1 1

v v v

     
     
     = = =
     −
     − −     

 Does {v1, v2, v3}span R4? 

 

13. Let 1 2 3

1 1 3
0 , 3 , 2 .

1 7 2
v v v

−     
     = = = −     
     − −     

 Does { v1, v2, v3} span R3? 

 

14. It can be shown that 
4 1 2 1 4
2 0 8 4 18

3 5 6 2 5

−     
     − =     
     −     

. Use this fact(and no row operations) 

to find scalars c1, c2, c3 such that 1 2 3

4 4 1 2
18 2 0 8
5 3 5 6

c c c
       
       = − + +       
       −       

. 
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15. Let 
3 1 1
8 , 3 , 1 .
4 1 3

u v and w
     
     = = =     
          

 It can be shown that 2u – 5v – w = 0. Use this 

fact(and no row operations) to solve the equation 1

2

3 1 1
8 3 1 .
4 1 3

x
x

   
    =           

  

 

Determine if the columns of the matrix span R4. 

 

16.

7 2 5 8
5 3 4 9

6 10 2 7
7 9 2 15

− 
 − − − 
 −
 − 

    17. 

12 7 11 9 5
9 4 8 7 3
6 11 7 3 9

4 6 10 5 12

− − 
 − − − 
 − − −
 − − 
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Lecture 7 
                                                                                                                                                            

Solution Sets of Linear Systems 

Solution Set 

A solution of a linear system is an assignment of values to the variables x1, x2,... , xn such 
that each of the equations in the linear system is satisfied. The set of all possible solutions 
is called the Solution Set 

Homogeneous Linear System 

A system of linear equations is said to be homogeneous if it can be written in the form 
Ax = 0, where A is an m n×  matrix and 0 is the zero vector in Rm.  
 
Trivial Solution 
A homogeneous system Ax = 0 always has at least one solution, namely, x = 0 (the zero 
vector in Rn). This zero solution is usually called the trivial solution of the homogeneous 
system.  
 
Nontrivial solution 
A solution of a linear system other than trivial is called its nontrivial solution.  
i.e the solution of a homogenous equation Ax = 0 such that x ≠  0 is called nontrivial 
solution, that is, a nonzero vector x that satisfies Ax = 0.  
 

Existence and Uniqueness Theorem 
 
The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation 
has at least one free variable. 
Example 1 Find the solution set of the following system 
 
   1 2 33 5 4 0x x x+ − =  

1 2 33 2 4 0x x x+ − =  

1 2 36 8 0x x x+ − =  
 
Solution 
 

Let
3 5 4
3 2 4
6 1 8

A
− 

 = − 
 − 

,     
1

2

3

x
X x

x

 
 =  
  

   ,  
0
0
0

b
 
 =  
  

 

The augmented matrix is 
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3 5 4 0
3 2 4 0
6 1 8 0

− 
 − 
 − 

 

 
 For solution set, row reduce to reduced echelon form 

 

1 2 1 3

2 3

3 5 4 0
0 3 0 0 1 , 2
0 9 0 0

3 5 4 0
0 3 0 0 3
0 0 0 0

R R R R

R R

− 
 − − + − + 
 − 

− 
 − − + 
  





 

1 2 2 1

2

1 3

2

41 0 0
3

0 1 0 0 1/ 3 , 1/ 3 ,5 / 3

0 0 0 0

41 0 0
3

0 1 0 0 ( 1)

0 0 0 0

4 0
3

0
0 0

R R R R

R

x x

x

 − 
 
 − + 
 
 
  
 − 
 
  − 
 
 
  

− =

=
=





 
 
It is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions (one for each 
choice of x3). From above equations we have, 

                                1 3 2
4 , 0,
3

x x x= =  with x3 free.  

As a vector, the general solution of Ax = 0 is given by: 
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3
1

2 3 3

3 3

4 4 4
3 3 3
0 0 , 0

1 1

xx
x x x x v where v

x x

     
      
      = = = = =      
             
     

 

 
This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means 
that v generate or spans the whole general solution).The trivial solution is obtained by 
choosing x3 = 0. 
Geometric Interpretation 
 
 Geometrically, the solution set is a line through 0 in R3, as given in the Figure below: 
 
 

           x3 
              v 

 
 
 

                                           x2 
 
 
                                x3 
    
 
Note: A nontrivial solution x can have some zero entries so long as not all of its entries 
are zero. 
 
Example 2 
         Solve the following system 
 

1 2 310 3 2 0x x x− − =        (1) 
 
Solution   
 Solving for the basic variable x1 in terms of the free variables, 
 dividing eq. 1 by 10 and solve for x 
               
   x1 = 0.3x2 + 0.2x3  where  x2 and x3 free variables. 
 
As a vector, the general solution is: 

1 2 3 2 3

2 2 2

3 3 3

0.3 0.2 0.3 0.2
0

0

x x x x x
x x x x

x x x

+       
       = = = +       
              
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2 3

0.3 0.2
1 0
0 1

x x
   
   = +   
      

      (2) 

 
    

          u v 
 
This calculation shows that every solution of (1) is a linear combination of the vector u, v 
shown in (2). That is, the solution set is Span {u, v} 
.  
Geometric Interpretation 
 
Since neither u nor v is a scalar multiple of the other, so these are not parallel, the 
solution set is a plane through the origin, see the Figure below: 
 
                                                      x3 

     x3 
      

 
                                                      

   
 

        x2 
                                            
                                                x1            
    
Note: 
         Above examples illustrate the fact that the solution set of a homogeneous equation 

0Ax = can be expressed explicitly as Span {v1, v2,  … , vp} for suitable vectors  
v1, v2,   ... , vp(because solution sets can be written in the form of linear combination of 
these vectors). If the only solution is the zero-vector then the solution set is Span {0}.  
 
Example 3 (For Practice) Find the solution set of the following homogenous system: 

                                                
1 2 3

1 2 3

2 3

3 0
4 9 2 0

3 6 0

x x x
x x x

x x

+ + =
− − + =

− − =

 

Solution: 
 

Let   
1 3 1
4 9 2
0 3 6

A
 
 = − − 
 − − 

 ,    
1

2

3

x
X x

x

 
 =  
  

,       
0
0
0

b
 
 =  
  

 

 
The augmented matrix is:  
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1 2

2 3

2 2 1

1 3

2 3

1 3 1 0
4 9 2 0
0 3 6 0

1 3 1 0
 ~ 0 3 6 0 4 ,

0 3 6 0

1 3 1 0
0 3 6 0
0 0 0 0

1 0 5 0
10 1 2 0 , ( 3)
2

0 0 0 0

5 0
2 0

0 0

R R

R R

R R R

SO
x x

x x

 
 − − 
 − − 
 
  + 
 − − 

 
  + 
  

− 
  − + 
  

− =
+ =

=





 

From above results, it is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions 
(one for each choice of x3).  
From above equations we have, 
                            1 3 2 35 , 2 ,x x x x= = −  with  x3 a free variable.  
As a vector, the general solution of Ax = 0 is given by 
                 

                
1 3

2 3 3 3

3 3

5 5 5
2 2 , 2

1 1

x x
x x x x x v where v

x x

       
       = = − = − = = −       
              

 

 
Parametric Vector Form of the solution 
 
Whenever a solution set is described explicitly with vectors, we say that the solution is in 
parametric vector form 
 
The equation  

x = su + tv (s, t in R) 
is called a parametric vector equation of the plane. It is written in this form to 
emphasize that the parameters vary over all real numbers.  
 
Similarly, the equation   x = x3v (with x3 free), or x = tv (with t in R), is a parametric 
vector equation of a line. 
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Solutions of Non-homogeneous Systems 
 
When a non-homogeneous linear system has many solutions, the general solution can be 
written in parametric vector form as one vector plus an arbitrary linear combination of 
vectors that satisfy the corresponding homogeneous system. 
To clear this concept consider the following examples, 
 
 
Example: 5 Describe all solutions of Ax = b, where 
 

3 5 4 7
3 2 4 1

6 1 8 4
A and b

−   
   = − − = −   
   − −   

 

 
Solution    
Row operations on [A  b] produce 

1 2 1 3

2 3 2

2 1 1

1 3

2

3 5 4 7
3 2 4 1

6 1 8 4

3 5 4 7
0 3 0 6 , 2
0 9 0 18

3 5 4 7
10 1 0 2 3 ,
3

0 0 0 0

41 0 1
3

10 1 0 2 5 ,
3

0 0 0 0

4 1
3

2
0 0

R R R R

R R R

R R R

x x

OR x

− 
 − − − 
 − − 

− 
  + − + 
 − − 

− 
  + 
  
 − − 
 
  − + 
 
 
  

− = −

=
=







 

Thus 1 3 2
41 , 2,
3

x x x= − + =  and x3 is free.  

As a vector, the general solution of Ax = b has the form 
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3 3
1

2 3

3 3 3

4 4 41 1 13 3 3
2 2 0 2 0

0 0 1

x xx
x x x

x x x

     − +     − −     
          = = = + = +          
                    
     

 

  
               p           v  
 
The equation x = p + x3v, or, writing t as a general parameter, 
 

x = p + tv  (t in R)       (3) 
 
Note 
We know that the solution set of this question when Ax = 0 (example 1) has the 
parametric vector equation 
 
    x = tv (t in R)      (4) 
 
With the same v that appears in equation (3) in above example. 
Thus the solutions of Ax = b are obtained by adding the vector p to the solutions of  
Ax = 0. The vector p itself is just one particular solution of Ax = b (corresponding to t = 0 
in (3)). 
 
The following theorem gives the precise statement. 
 
Theorem 
 
Suppose the equation Ax = b is consistent for some given b, and let p be a solution. 
Then the solution set of Ax = b is the set of all vectors of the form  
w = p + vh, where vh is any solution of the homogeneous equation Ax = 0. 
 
Example 6: (For practice) 
 

                                                
1 2 3

1 2 3

2 3

3 1
4 9 2 1

3 6 3

x x x
x x x

x x

+ + =
− − + = −

− − = −

 

Solution 
 

Let   
1 3 1
4 9 2
0 3 6

A
 
 = − − 
 − − 

 ,    
1

2

3

x
X x

x

 
 =  
  

,       
1
1
3

b
 
 = − 
 − 

 

 
The augmented matrix is  
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1 2

2 3

2

2 1

1 3

2 3

1 3 1 1
4 9 2 1
0 3 6 3

1 3 1 1
0 3 6 3 4 ,
0 3 6 3

1 3 1 1
0 3 6 3
0 0 0 0

1 3 1 1
10 1 2 1
3

0 0 0 0

1 0 5 2
0 1 2 1 ( 3)
0 0 0 0

5 2
2 1

0 0

R R

R R

R

R R

SO
x x

x x

 
 − − − 
 − − − 
 
  + 
 − − − 
 
  + 
  
 
 
 
  

− − 
  − + 
  

− = −
+ =

=







  

Thus 1 3 2 32 5 , 1 2 ,x x x x= − + = −  and x3 is free.  
As a vector, the general solution of Ax = b has the form 

 
1 3 3

2 3 3

3 3 3

2 5 2 5 2 5
1 2 1 2 1 2

0 0 1

x x x
x x x x

x x x

− + − −           
           = = − = + − = + −           
                      

 

  
                 

        p             v  
 
So we can write solution set in parametric vector form as 
                   3x p x v= +  
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Exercise 
 
Determine if the system has a nontrivial solution. Try to use as few row operations as 
possible. 
 
1. x1 – 5x2 + 9x3 = 0     2.  3x1 + 6x2 – 4x3 – x4 = 0      
   -x1 + 4x2 – 3x3 = 0        -5x1          + 8x3 + 3x4 = 0      
   2x1 – 8x2 + 9x3 = 0            8x1 – x2            + 7x4 = 0  
 
3. 5x1 – x2 + 3x3 = 0 
    4x1 – 3x2 + 7x3 = 0 
 
Write the solution set of the given homogeneous system in parametric vector form. 
 
4. x1 – 3x2 – 2x3 = 0     5. x1 + 2x2 – 7x3 = 0      
                x2 – x3 = 0      -2x1 – 3x2 + 9x3 = 0      
  -2x1 + 3x2 + 7x3 = 0               –2x2 + 10x3 = 0 
 
In exercises 6-8, describe all solutions of Ax = 0   in parametric vector form where A is 
row equivalent to the matrix shown. 
 

6. 

1 5 0 2 0 4
0 0 0 1 0 3
0 0 0 0 1 5
0 0 0 0 0 0

− − 
 − 
 
 
 

    7. 

1 6 0 8 1 2
0 0 1 3 4 6
0 0 0 0 0 1
0 0 0 0 0 0

− − 
 − 
 
 
 

 

 
8. [ ]1 5 0 4−  

Steps of Writing a Solution Set (of a Consistent System) 
in a Parametric Vector Form 

 
Step 1:  
           Row reduces the augmented matrix to reduced echelon form. 
Step 2:  
           Express each basic variable in terms of any free variables appearing in an 
           equation. 
Step 3: 
           Write a typical solution x as a vector whose entries depend on the free variables 
            if any. 
Step 4:  
           Decompose x into a linear combination of vectors (with numeric entries) using 
           the free variables as parameters. 
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9. Describe the solution set in R3 of x1 – 4x2 + 3x3 = 0, compare it with the solution set 
of x1 – 4x2 + 3x3 = 7. 
 
10. Find the parametric equation of the line through a parallel to b.                 

3 1
,

8 5
a b

−   
= =   −   

 

 
11. Find a parametric equation of the line M through p and q. 

1 0
,

4 7
p q

−   
= =   
   

 

 

12. Given
5 10
8 16

7 14
A

 
 = − − 
  

, find one nontrivial solution of Ax = 0 by inspection. 

 

13. Given
1 3
2 6
3 9

A
 
 =  
  

, find one nontrivial solution of Ax = 0 by inspection. 

 
 
 
 


