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Exponential Distribution  
Let ‘X’ be a positive continuous random variable with interval (0,∞) is said to be 

Exponential distribution, having its p.d.f 
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It is only one parameter . 

If 
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 then it is also exponential distribution  

 xexf )(  

If  =1 then it follow standard exponential distribution 
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This is also known as negative exponential distribution or single parameter exponential 

distribution. 

Properties 

i) Exponential distribution is a continuous distribution. 

ii) The total area under the curve is unity. 

iii) The range of the distribution is 0 to ∞. 

iv) It has one parameter . 

v) The mean of the exponential distribution is E(x) . 

vi) The variance of the exponential distribution is  
2Var(x)  . 

vii) The m.g.f of the exponential distribution is   1
1m.g.f


  . 

Prove that total area under the curve is unity 
Proof: Let by definition: 
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As we know that gamma function is 
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Comparing (A) & (B) and we get 

a = 1  & b =   

11aba                                                    Put in (A) 
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Area             Hence Prove 
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Find mean & variance 

Solution: Let by definition: 
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As we know that gamma function is 
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Comparing (A) & (B) and we get 

a = 2  & b =   

22aba  

Put in (A) 
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As we know that gamma function is 
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Comparing (A) & (B) and we get  

a = 3  & b =   

33aba      Put in (A) 
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Find rth moments about origin. By use it finds mean & variance 

Solution: Let by definition 

 r

r E x    

( )r

r x f x dx     

0

1 x
r

r x e dx



    









0

111
dxex b

x
r

r


          (A) 

As we know that gamma function is 
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Comparing (A) & (B) and we get 

a = r+1  & b =   

11  ra rba      Put in (A) 
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Use rth moments to find mean & variance 
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Put r = 1 in eq (C) 
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Now, put r = 2 in eq.(C) 
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Find m.g.f of exponential distribution. Also find mean & variance by using m.g.f 

Solution: Let by definition 
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As we know that gamma function is 
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Comparing (A) & (B) and we get 
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a = 1 & b =   1
1


 t   

  1
11


 tba a      Put in (A) 
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 ttx    Required  m.g.f. 

Use it to find mean & variance 
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Again differentiate eq(c) w.r.t to ‘t’ 
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Find cummulent generating function 

Solution: Let by definition 
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As we know general expression of cummulent  
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By comparing (A) & (B) and we get 
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Moment Ratio 
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As 32  so the distribution is leptokurtic. 

 

Find mode of exponential distribution 

Solution: Let by definition 

If following two conditions are satisfied then mode exists. 
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  Taking log on both sides 
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Differentiate w.r.t to ‘x’  
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It means that mode of exponential distribution does not exist. 

State & prove Memory less property of Exponential Distribution 

Statement:  

If ‘x’ follows the negative exponential distribution with p.d.f 
 xexf )(   x0  

then by definition 
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Let ‘x’ be continuous random variable having the p.d.f 
 xexf )(   its c.d.f is 
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2nd Method 

 

Suppose A be the event such that (x>a) & B is another event such that x>(a+b). i.e B is a 

subset of A. Then we consider  
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Because B is a subset of A, replacing A = x>a & B = x> a+b we get 

)(

)()(

axP

baxP

ax

bax
P

















   

 

Then c.d.f of Negative Exp.Distribution 
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Then by compliment we know that 
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Hence, Memory less property is proved. 
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