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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear
equations. The procedure is based on the idea of performing certain operations on the rows
of the augmented matrix that simplify it to a form from which the solution of the system
can be ascertained by inspection.

Considerations in Solving
Linear Systems

When considering methods for solving systems of linear equations, it is important to
distinguish between large systems that must be solved by computer and small systems
that can be solved by hand. For example, there are many applications that lead to
linear systems in thousands or even millions of unknowns. Large systems require special
techniques to deal with issues of memory size, roundoff errors, solution time, and so
forth. Such techniques are studied in the field of numerical analysis and will only be
touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

Echelon Forms In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z

by reducing the augmented matrix to the form⎡
⎢⎣1 0 0 1

0 1 0 2

0 0 1 3

⎤
⎥⎦

from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.⎡
⎢⎣1 0 0 4

0 1 0 7

0 0 1 −1

⎤
⎥⎦ ,

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

0 1 −2 0 1

0 0 0 1 3

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

[
0 0

0 0

]

The following matrices are in row echelon form but not reduced row echelon form.⎡
⎢⎣1 4 −3 7

0 1 6 2

0 0 1 5

⎤
⎥⎦ ,

⎡
⎢⎣1 1 0

0 1 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣0 1 2 6 0

0 0 1 −1 0

0 0 0 0 1

⎤
⎥⎦
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EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the ∗’s, all matrices of the following types
are in row echelon form:⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥⎥⎥⎥⎥⎦

All matrices of the following types are in reduced row echelon form:

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥⎥⎥⎥⎥⎦

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and
x4 has been reduced by elementary row operations to⎡

⎢⎢⎢⎣
1 0 0 0 3

0 1 0 0 −1

0 0 1 0 0

0 0 0 1 5

⎤
⎥⎥⎥⎦

This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3

x2 = −1

x3 = 0

x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3,−1, 0, 5).

EXAMPLE 4 Linear Systems inThree Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

(a)

⎡
⎢⎣1 0 0 0

0 1 2 0

0 0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 3 −1

0 1 −4 2

0 0 0 0

⎤
⎥⎦ (c)

⎡
⎢⎣1 −5 1 4

0 0 0 0

0 0 0 0

⎤
⎥⎦
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Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the
linear system corresponding to the augmented matrix is

x + 3z = −1

y − 4z = 2

Since x and y correspond to the leading 1’s in the augmented matrix, we call these
the leading variables. The remaining variables (in this case z) are called free variables.
Solving for the leading variables in terms of the free variables gives

x = −1 − 3z

y = 2 + 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t , which then determines values for x and y. Thus, the
solution set can be represented by the parametric equations

x = −1 − 3t, y = 2 + 4t, z = t

By substituting various values for t in these equations we can obtain various solutions
of the system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the
zero rows, in which case the linear system associated with the augmented matrix consists
of the single equation

x − 5y + z = 4 (1)

from which we see that the solution set is a plane in three-dimensional space. Although
(1) is a valid form of the solution set, there are many applications in which it is preferable
to express the solution set in parametric form. We can convert (1) to parametric form

We will usually denote pa-
rameters in a general solution
by the letters r, s, t, . . . , but
any letters that do not con-
flict with the names of the
unknowns can be used. For
systems with more than three
unknowns, subscripted letters
such as t1, t2, t3, . . . are conve-
nient.

by solving for the leading variable x in terms of the free variables y and z to obtain

x = 4 + 5y − z

From this equation we see that the free variables can be assigned arbitrary values, say
y = s and z = t , which then determine the value of x. Thus, the solution set can be
expressed parametrically as

x = 4 + 5s − t, y = s, z = t (2)

Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

DEFINITION1 If a linear system has infinitely many solutions, then a set of parametric
equations from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.
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Elimination Methods We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.⎡

⎢⎣0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1

⎤
⎥⎦

Step 1. Locate the leftmost column that does not consist entirely of zeros.

⎡
⎢⎣

0 0 2 0 7 12
2 4 10 6 12 28
2 4 5 6 5 1

⎤
⎥⎦

Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.⎡

⎢⎣2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1

⎤
⎥⎦ The first and second rows in the preceding

matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.⎡

⎢⎣1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1

⎤
⎥⎦ The first row of the preceding matrix was

multiplied by 1
2 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.⎡

⎢⎣1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29

⎤
⎥⎦ −2 times the first row of the preceding

matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 5 0 17 29

⎤
⎥⎦ The first row in the submatrix was

multiplied by 1
2

                              to introduce a
leading 1.

⎡
⎢⎣

1 2 5 3 6 14

0 0 2 0 7 12

0 0 5 0 17 29

⎤
⎥⎦

Leftmost nonzero column
in the submatrix



1.2 Gaussian Elimination 15

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

⎤
⎥⎦ The top row in the submatrix was

covered, and we returned again to
Step 1.

Leftmost nonzero column
in the new submatrix

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

⎤
⎥⎦ –5 times the first row of the submatrix

was added to the second row of the
submatrix to introduce a zero below
the leading 1.

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6
0 0 0 0 1 2

⎤
⎥⎦ The first (and only) row in the new

submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.⎡

⎢⎣1 2 −5 3 6 14

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ 7

2 times the third row of the preceding
matrix was added to the second row.

⎡
⎢⎣1 2 −5 3 0 2

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ −6 times the third row was added to the

first row.

⎡
⎢⎣1 2 0 3 0 7

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ 5 times the second row was added to the

first row.

The last matrix is in reduced row echelon form.
The procedure (or algorithm) we have just described for reducing a matrix to reduced

row echelon form is called Gauss–Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Historical Note Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work of Gauss cre-
ated a sensation when Ceres reappeared a year later in the constellation Virgo
at almost the precise position that he predicted! The basic idea of the method
was further popularized by the German engineer Wilhelm Jordan in his book
on geodesy (the science of measuring Earth shapes) entitled Handbuch derVer-
messungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
Leemage/Universal Images Group/Getty Images (Jordan)]
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used, then the procedure produces a row echelon form and is called Gaussian elimination.
For example, in the preceding computations a row echelon form was obtained at the end
of Step 5.

EXAMPLE 5 Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 −1

0 0 5 10 0 15 5

2 6 0 8 4 18 6

⎤
⎥⎥⎥⎦

Adding −2 times the first row to the second and fourth rows gives⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 −1 −2 0 −3 −1

0 0 5 10 0 15 5

0 0 4 8 0 18 6

⎤
⎥⎥⎥⎦

Multiplying the second row by −1 and then adding −5 times the new second row to the
third row and −4 times the new second row to the fourth row gives⎡

⎢⎢⎢⎣
1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 0 0

0 0 0 0 0 6 2

⎤
⎥⎥⎥⎦

Interchanging the third and fourth rows and then multiplying the third row of the re-
sulting matrix by 1

6 gives the row echelon form⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ This completes the forward phase since

there are zeros below the leading 1’s.

Adding −3 times the third row to the second row and then adding 2 times the second
row of the resulting matrix to the first row yields the reduced row echelon form⎡

⎢⎢⎢⎣
1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ This completes the backward phase since

there are zeros above the leading 1’s.

The corresponding system of equations isNote that in constructing the
linear system in (3) we ignored
the row of zeros in the corre-
sponding augmented matrix.
Why is this justified?

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 1
3

(3)
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Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Finally, we express the general solution of the system parametrically by assigning the
free variables x2, x4, and x5 arbitrary values r, s, and t , respectively. This yields

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Homogeneous Linear
Systems

A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = 0

Every homogeneous system of linear equations is consistent because all such systems
have x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.

• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 (a1, b1 not both zero)

a2x + b2y = 0 (a2, b2 not both zero)

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).

Figure 1.2.1

x

y

Only the trivial solution

x

y

Infinitely many

solutions

a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2y = 0

a2x + b2y = 0

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.



18 Chapter 1 Systems of Linear Equations and Matrices

EXAMPLE 6 A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe first that the coefficients of the unknowns in this system are the same
as those in Example 5; that is, the two systems differ only in the constants on the right
side. The augmented matrix for the given homogeneous system is⎡

⎢⎢⎢⎣
1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 0

0 0 5 10 0 15 0
2 6 0 8 4 18 0

⎤
⎥⎥⎥⎦ (5)

which is the same as the augmented matrix for the system in Example 5, except for zeros
in the last column. Thus, the reduced row echelon form of this matrix will be the same
as that of the augmented matrix in Example 5, except for the last column. However,
a moment’s reflection will make it evident that a column of zeros is not changed by an
elementary row operation, so the reduced row echelon form of (5) is⎡

⎢⎢⎢⎣
1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ (6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 0
(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r , s, and t , respectively,
then we can express the solution set parametrically as

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.

FreeVariables in
Homogeneous Linear

Systems

Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.
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2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous linear
system has any rows of zero, the linear system corresponding to that reduced row
echelon form will either have the same number of equations as the original system
or it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading
variable, the homogeneous system corresponding to the reduced row echelon form of
the augmented matrix must have r leading variables and n − r free variables. Thus, this
system is of the form

xk1 +∑
( ) = 0

xk2 +∑
( ) = 0

. . .
...

xkr
+∑

( ) = 0

(8)

where in each equation the expression
∑

( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

THEOREM 1.2.1 FreeVariableTheorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n − r free variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2 ap-
plies only to homogeneous
systems—a nonhomogeneous
system with more unknowns
than equations need not be
consistent. However, we will
prove later that if a nonho-
mogeneous system with more
unknowns then equations is
consistent, then it has in-
finitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system has m

equations in n unknowns, and if m < n, then it must also be true that r < n (why?).
This being the case, the theorem implies that there is at least one free variable, and this
implies that the system has infinitely many solutions. Thus, we have the following result.

THEOREM 1.2.2 A homogeneous linear system with more unknowns than equations has
infinitely many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.

Gaussian Elimination and
Back-Substitution

For small linear systems that are solved by hand (such as most of those in this text),
Gauss–Jordan elimination (reduction to reduced row echelon form) is a good procedure
to use. However, for large linear systems that require a computer solution, it is generally
more efficient to use Gaussian elimination (reduction to row echelon form) followed by
a technique known as back-substitution to complete the process of solving the system.
The next example illustrates this technique.
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EXAMPLE 7 Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦

To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0

x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:

Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5

x3 = 1 − 2x4 − 3x6

x6 = 1
3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5

x3 = −2x4

x6 = 1
3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r , s, and t , respectively, the
general solution is given by the formulas

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.

EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the un-
knowns x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row
echelon form. Discuss the existence and uniqueness of solutions to the corresponding
linear systems
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(a)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 1

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 0

⎤
⎥⎥⎥⎦ (c)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 1 0

⎤
⎥⎥⎥⎦

Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables
x1, x2, and x3 correspond to leading 1’s and hence are leading variables. The variable x4

is a free variable. With a little algebra, the leading variables can be expressed in terms
of the free variable, and the free variable can be assigned an arbitrary value. Thus, the
system must have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9

we obtain x3 = 9. You should now be able to see that if we continue this process and
substitute the known values of x3 and x4 into the equation corresponding to the second
row, we will obtain a unique numerical value for x2; and if, finally, we substitute the
known values of x4, x3, and x2 into the equation corresponding to the first row, we will
produce a unique numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon
Forms

There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row oper-
ations, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix A have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of A. A
column that contains a pivot position is called a pivot column of A.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A
Simple Proof,” by Thomas Yuster, Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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EXAMPLE 9 Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

A =
⎡
⎢⎣0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1

⎤
⎥⎦

to be ⎡
⎢⎣1 2 −5 3 6 14

0 0 1 0 − 7
2 −6

0 0 0 0 1 2

⎤
⎥⎦

The leading 1’s occur in positions (row 1, column 1), (row 2, column 3), and (row 3,
column 5). These are the pivot positions. The pivot columns are columns 1, 3, and 5.

If A is the augmented ma-
trix for a linear system, then
the pivot columns identify the
leading variables. As an illus-
tration, in Example 5 the pivot
columns are 1, 3, and 6, and
the leading variables arex1, x3,
and x6.

Roundoff Error and
Instability

There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability.
For example, it can be shown that for large linear systems Gauss–Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in
Chapter 9.

Exercise Set 1.2

In Exercises 1–2, determine whether the matrix is in row ech-
elon form, reduced row echelon form, both, or neither.

1. (a)

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 0

0 1 0

0 0 0

⎤
⎥⎦ (c)

⎡
⎢⎣0 1 0

0 0 1

0 0 0

⎤
⎥⎦

(d)

[
1 0 3 1

0 1 2 4

]
(e)

⎡
⎢⎢⎢⎣

1 2 0 3 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦

(f )

⎡
⎢⎣0 0

0 0

0 0

⎤
⎥⎦ (g)

[
1 −7 5 5

0 1 3 2

]

2. (a)

⎡
⎢⎣1 2 0

0 1 0

0 0 0

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 0

0 1 0

0 2 0

⎤
⎥⎦ (c)

⎡
⎢⎣1 3 4

0 0 1

0 0 0

⎤
⎥⎦

(d)

⎡
⎢⎣1 5 −3

0 1 1

0 0 0

⎤
⎥⎦ (e)

⎡
⎢⎣1 2 3

0 0 0

0 0 1

⎤
⎥⎦

(f )

⎡
⎢⎢⎢⎣

1 2 3 4 5

1 0 7 1 3

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦ (g)

[
1 −2 0 1

0 0 1 −2

]

In Exercises 3–4, suppose that the augmented matrix for a lin-
ear system has been reduced by row operations to the given row
echelon form. Solve the system.

3. (a)

⎡
⎢⎣1 −3 4 7

0 1 2 2

0 0 1 5

⎤
⎥⎦

(b)

⎡
⎢⎣1 0 8 −5 6

0 1 4 −9 3

0 0 1 1 2

⎤
⎥⎦

(c)

⎡
⎢⎢⎢⎣

1 7 −2 0 −8 −3

0 0 1 1 6 5

0 0 0 1 3 9

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

(d)

⎡
⎢⎣1 −3 7 1

0 1 4 0

0 0 0 1

⎤
⎥⎦
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4. (a)

⎡
⎢⎣1 0 0 −3

0 1 0 0

0 0 1 7

⎤
⎥⎦

(b)

⎡
⎢⎣1 0 0 −7 8

0 1 0 3 2

0 0 1 1 −5

⎤
⎥⎦

(c)

⎡
⎢⎢⎢⎣

1 −6 0 0 3 −2

0 0 1 0 4 7

0 0 0 1 5 8

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

(d)

⎡
⎢⎣1 −3 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎦

In Exercises 5–8, solve the linear system by Gaussian elimi-
nation.

5. x1 + x2 + 2x3 = 8

−x1 − 2x2 + 3x3 = 1

3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0

−2x1 + 5x2 + 2x3 = 1

8x1 + x2 + 4x3 = −1

7. x − y + 2z − w = −1

2x + y − 2z − 2w = −2

−x + 2y − 4z + w = 1

3x − 3w = −3

8. − 2b + 3c = 1

3a + 6b − 3c = −2

6a + 6b + 3c = 5

In Exercises 9–12, solve the linear system by Gauss–Jordan
elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous sys-
tem has nontrivial solutions by inspection (without pencil and
paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0

7x1 + x2 − 8x3 + 9x4 = 0

2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0

x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any
method.

15. 2x1 + x2 + 3x3 = 0

x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0

−x + 2y − 3z = 0

x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0

5x1 − x2 + x3 − x4 = 0

18. v + 3w − 2x = 0

2u + v − 4w + 3x = 0

2u + 3v + 2w − x = 0

−4u − 3v + 5w − 4x = 0

19. 2x + 2y + 4z = 0

w − y − 3z = 0

2w + 3x + y + z = 0

−2w + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0

x1 + 4x2 + 2x3 = 0

− 2x2 − 2x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0

x1 − 2x2 − x3 + x4 = 0

21. 2I1 − I2 + 3I3 + 4I4 = 9

I1 − 2I3 + 7I4 = 11

3I1 − 3I2 + I3 + 5I4 = 8

2I1 + I2 + 4I3 + 4I4 = 10

22. Z3 + Z4 + Z5 = 0

−Z1 − Z2 + 2Z3 − 3Z4 + Z5 = 0

Z1 + Z2 − 2Z3 − Z5 = 0

2Z1 + 2Z2 − Z3 + Z5 = 0

In each part of Exercises 23–24, the augmented matrix for a
linear system is given in which the asterisk represents an unspec-
ified real number. Determine whether the system is consistent,
and if so whether the solution is unique. Answer “inconclusive” if
there is not enough information to make a decision.

23. (a)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗

⎤
⎦ (b)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 0 0

⎤
⎦

(c)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 0 1

⎤
⎦ (d)

⎡
⎣1 ∗ ∗ ∗

0 0 ∗ 0
0 0 1 ∗

⎤
⎦

24. (a)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 1

⎤
⎦ (b)

⎡
⎣1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗

⎤
⎦

(c)

⎡
⎣1 0 0 0

1 0 0 1
1 ∗ ∗ ∗

⎤
⎦ (d)

⎡
⎣1 ∗ ∗ ∗

1 0 0 1
1 0 0 1

⎤
⎦

In Exercises 25–26, determine the values of a for which the
system has no solutions, exactly one solution, or infinitely many
solutions.

25. x + 2y − 3z = 4

3x − y + 5z = 2

4x + y + (a2 − 14)z = a + 2
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26. x + 2y + z = 2

2x − 2y + 3z = 1

x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c

satisfy for the linear system to be consistent?

27. x + 3y − z = a

x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a

−x − 2y + z = b

3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b,
and c are constants.

29. 2x + y = a

3x + 6y = b

30. x1 + x2 + x3 = a

2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of[
1 3

2 7

]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce ⎡
⎢⎣2 1 3

0 −2 −29

3 4 5

⎤
⎥⎦

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π , and 0 ≤ γ ≤ 2π .

sin α + 2 cos β + 3 tan γ = 0

2 sin α + 5 cos β + 3 tan γ = 0

− sin α − 5 cos β + 5 tan γ = 0

[Hint: Begin by making the substitutions x = sin α,
y = cos β, and z = tan γ .]

34. Solve the following system of nonlinear equations for the un-
known angles α, β, and γ , where 0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π ,
and 0 ≤ γ < π .

2 sin α − cos β + 3 tan γ = 3

4 sin α + 2 cos β − 2 tan γ = 2

6 sin α − 3 cos β + tan γ = 9

35. Solve the following system of nonlinear equations for x, y,

and z.

x2 + y2 + z2 = 6

x2 − y2 + 2z2 = 2

2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions X = x2, Y = y2,

Z = z2.]

36. Solve the following system for x, y, and z.

1

x
+ 2

y
− 4

z
= 1

2

x
+ 3

y
+ 8

z
= 0

− 1

x
+ 9

y
+ 10

z
= 5

37. Find the coefficients a, b, c, and d so that the curve shown
in the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx + d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11) (4, –14)

Figure Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx + cy + d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

Figure Ex-38

39. If the linear system

a1x + b1y + c1z = 0

a2x − b2y + c2z = 0

a3x + b3y − c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x + b1y + c1z = 3

a2x − b2y + c2z = 7

a3x + b3y − c3z = 11

40. (a) If A is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

(b) If B is a matrix with three rows and six columns, then
what is the maximum possible number of parameters in
the general solution of the linear system with augmented
matrix B?

(c) If C is a matrix with five rows and three columns, then
what is the minimum possible number of rows of zeros in
any row echelon form of C?
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41. Describe all possible reduced row echelon forms of

(a)

⎡
⎢⎣a b c

d e f

g h i

⎤
⎥⎦ (b)

⎡
⎢⎢⎢⎣

a b c d

e f g h

i j k l

m n p q

⎤
⎥⎥⎥⎦

42. Consider the system of equations

ax + by = 0

cx + dy = 0

ex + fy = 0

Discuss the relative positions of the lines ax + by = 0,
cx + dy = 0, and ex + fy = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. (a) Prove that if ad − bc �= 0, then the reduced row echelon
form of [

a b

c d

]
is

[
1 0

0 1

]

(b) Use the result in part (a) to prove that if ad − bc �= 0, then
the linear system

ax + by = k

cx + dy = l

has exactly one solution.

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in
row echelon form.

(b) If an elementary row operation is applied to a matrix that is
in row echelon form, the resulting matrix will still be in row
echelon form.

(c) Every matrix has a unique row echelon form.

(d) A homogeneous linear system in n unknowns whose corre-
sponding augmented matrix has a reduced row echelon form
with r leading 1’s has n − r free variables.

(e) All leading 1’s in a matrix in row echelon form must occur in
different columns.

(f ) If every column of a matrix in row echelon form has a leading
1, then all entries that are not leading 1’s are zero.

(g) If a homogeneous linear system of n equations in n unknowns
has a corresponding augmented matrix with a reduced row
echelon form containing n leading 1’s, then the linear system
has only the trivial solution.

(h) If the reduced row echelon form of the augmented matrix for
a linear system has a row of zeros, then the system must have
infinitely many solutions.

(i) If a linear system has more unknowns than equations, then it
must have infinitely many solutions.

Working withTechnology

T1. Find the reduced row echelon form of the augmented matrix
for the linear system:

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1

7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent and,
if so, find its solution.

T2. Find values of the constants A, B, C, and D that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x

(x2 + 2x + 2)(x2 − 1)
= Ax + B

x2 + 2x + 2
+ C

x − 1
+ D

x + 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this as a
problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices for
linear systems. In this section we will begin to study matrices as objects in their own right
by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and
Terminology

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, to
abbreviate systems of linear equations. However, rectangular arrays of numbers occur
in other contexts as well. For example, the following rectangular array with three rows
and seven columns might describe the number of hours that a student spent studying
three subjects during a certain week:
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2
0
4

3
3
1

2
1
3

4
4
1

1
3
0

4
2
0

2
2
2

Mon.

Math
History
Language

Tues. Wed. Thurs. Fri. Sat. Sun.

If we suppress the headings, then we are left with the following rectangular array of
numbers with three rows and seven columns, called a “matrix”:

⎡
⎢⎣2 3 2 4 1 4 2

0 3 1 4 3 2 2

4 1 3 1 0 0 2

⎤
⎥⎦

More generally, we make the following definition.

DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the entries in the matrix.

EXAMPLE 1 Examples of Matrices

Some examples of matrices are
Matrix brackets are often
omitted from 1 × 1 matri-
ces, making it impossible to
tell, for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from the
context.

⎡
⎣ 1 2

3 0
−1 4

⎤
⎦, [2 1 0 − 3],

⎡
⎢⎣e π −√

2

0 1
2 1

0 0 0

⎤
⎥⎦,

[
1

3

]
, [4]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 × 2). In a size description,
the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes 1 × 4, 3 × 3, 2 × 1, and
1 × 1, respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
is called a column vector (or a column matrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

A =
[

2 1 7

3 4 2

]
or C =

[
a b c

d e f

]
When discussing matrices, it is common to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.

The entry that occurs in row i and column j of a matrix A will be denoted by aij .
Thus a general 3 × 4 matrix might be written as
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A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦

and a general m × n matrix as

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ (1)

When a compact notation is desired, the preceding matrix can be written as
A matrix with n rows and n

columns is said to be a square
matrix of order n.

[aij ]m×n or [aij ]
the first notation being used when it is important in the discussion to know the size,
and the second when the size need not be emphasized. Usually, we will match the letter
denoting a matrix with the letter denoting its entries; thus, for a matrix B we would
generally use bij for the entry in row i and column j , and for a matrix C we would use
the notation cij .

The entry in row i and column j of a matrix A is also commonly denoted by the
symbol (A)ij . Thus, for matrix (1) above, we have

(A)ij = aij

and for the matrix

A =
[

2 −3

7 0

]
we have (A)11 = 2, (A)12 = −3, (A)21 = 7, and (A)22 = 0.

Row and column vectors are of special importance, and it is common practice to
denote them by boldface lowercase letters rather than capital letters. For such matrices,
double subscripting of the entries is unnecessary. Thus a general 1 × n row vector a and
a general m × 1 column vector b would be written as

a = [a1 a2 · · · an] and b =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

A matrix A with n rows and n columns is called a square matrix of order n, and the
shaded entries a11, a22, . . . , ann in (2) are said to be on the main diagonal of A.

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦ (2)

Operations on Matrices So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of ma-
trices” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

DEFINITION 2 Two matrices are defined to be equal if they have the same size and
their corresponding entries are equal.
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EXAMPLE 2 Equality of Matrices

Consider the matrices
The equality of two matrices

A = [aij ] and B = [bij ]
of the same size can be ex-
pressed either by writing

(A)ij = (B)ij

or by writing

aij = bij

where it is understood that the
equalities hold for all values of
i and j .

A =
[

2 1

3 x

]
, B =

[
2 1

3 5

]
, C =

[
2 1 0

3 4 0

]
If x = 5, then A = B, but for all other values of x the matrices A and B are not equal,
since not all of their corresponding entries are equal. There is no value of x for which
A = C since A and C have different sizes.

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A − B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if A = [aij ] and B = [bij ] have the same size, then

(A + B)ij = (A)ij + (B)ij = aij + bij and (A − B)ij = (A)ij − (B)ij = aij − bij

EXAMPLE 3 Addition and Subtraction

Consider the matrices

A =
⎡
⎢⎣ 2 1 0 3
−1 0 2 4

4 −2 7 0

⎤
⎥⎦, B =

⎡
⎢⎣−4 3 5 1

2 2 0 −1
3 2 −4 5

⎤
⎥⎦, C =

[
1 1
2 2

]

Then

A + B =
⎡
⎢⎣−2 4 5 4

1 2 2 3
7 0 3 5

⎤
⎥⎦ and A − B =

⎡
⎢⎣ 6 −2 −5 2
−3 −2 2 5

1 −4 11 −5

⎤
⎥⎦

The expressions A + C, B + C, A − C, and B − C are undefined.

DEFINITION 4 If A is any matrix and c is any scalar, then the product cA is the matrix
obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be
a scalar multiple of A.

In matrix notation, if A = [aij ], then

(cA)ij = c(A)ij = caij

EXAMPLE 4 Scalar Multiples

For the matrices

A =
[

2 3 4
1 3 1

]
, B =

[
0 2 7

−1 3 −5

]
, C =

[
9 −6 3
3 0 12

]
we have

2A =
[

4 6 8
2 6 2

]
, (−1)B =

[
0 −2 −7
1 −3 5

]
, 1

3C =
[

3 −2 1
1 0 4

]
It is common practice to denote (−1)B by −B.
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Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries
and subtracted by subtracting corresponding entries, it would seem natural to define
multiplication of matrices by multiplying corresponding entries. However, it turns out
that such a definition would not be very useful for most problems. Experience has led
mathematicians to the following more useful definition of matrix multiplication.

DEFINITION 5 If A is an m × r matrix and B is an r × n matrix, then the product
AB is the m × n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.

EXAMPLE 5 Multiplying Matrices

Consider the matrices

A =
[

1 2 4

2 6 0

]
, B =

⎡
⎢⎣4 1 4 3

0 −1 3 1

2 7 5 2

⎤
⎥⎦

Since A is a 2 × 3 matrix and B is a 3 × 4 matrix, the product AB is a 2 × 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.

[
1 2 4
2 6 0

]⎡⎢⎣
4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ =

⎡
⎢⎣

26

⎤
⎥⎦

(2 · 4) + (6 · 3) + (0 · 5) = 26

The entry in row 1 and column 4 of AB is computed as follows:

[
1 2 4
2 6 0

]⎡⎢⎣
4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ =

⎡
⎢⎣ 13

⎤
⎥⎦

(1 · 3) + (2 · 1) + (4 · 2) = 13

The computations for the remaining entries are

(1 · 4) + (2 · 0) + (4 · 2) = 12
(1 · 1) − (2 · 1) + (4 · 7) = 27
(1 · 4) + (2 · 3) + (4 · 5) = 30
(2 · 4) + (6 · 0) + (0 · 2) = 8
(2 · 1) − (6 · 1) + (0 · 7) = −4
(2 · 3) + (6 · 1) + (0 · 2) = 12

AB =
[

12 27 30 13
8 −4 26 12

]

The definition of matrix multiplication requires that the number of columns of the
first factor A be the same as the number of rows of the second factor B in order to form
the product AB. If this condition is not satisfied, the product is undefined. A convenient
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way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.

A
m × r

Inside

Outside

B
r × n =

AB
m × n

(3)

EXAMPLE 6 DeterminingWhether a Product Is Defined

Suppose that A, B, and C are matrices with the following sizes:

A B C

3 × 4 4 × 7 7 × 3

Then by (3), AB is defined and is a 3 × 7 matrix; BC is defined and is a 4 × 3 matrix; and
CA is defined and is a 7 × 4 matrix. The products AC, CB, and BA are all undefined.

In general, if A = [aij ] is an m × r matrix and B = [bij ] is an r × n matrix, then, as
illustrated by the shading in the following display,

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn

⎤
⎥⎥⎥⎦ (4)

the entry (AB)ij in row i and column j of AB is given by

(AB)ij = ai1b1j + ai2b2j + ai3b3j + · · · + airbrj (5)

Formula (5) is called the row-column rule for matrix multiplication.

Partitioned Matrices A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are
three possible partitions of a general 3 × 4 matrix A—the first is a partition of A into

Gotthold Eisenstein
(1823–1852)

Historical Note The concept of matrix multiplica-
tion is due to the German mathematician Gotthold
Eisenstein, who introduced the idea around 1844 to
simplify the process of making substitutions in lin-
ear systems. The idea was then expanded on and
formalized by Cayley in his Memoir on the Theory
of Matrices that was published in 1858. Eisenstein
was a pupil of Gauss, who ranked him as the equal
of Isaac Newton and Archimedes. However, Eisen-
stein, suffering from bad health his entire life, died
at age 30, so his potential was never realized.
[Image: http://www-history.mcs.st-andrews.ac.uk/

Biographies/Eisenstein.html]



1.3 Matrices and Matrix Operations 31

four submatrices A11, A12, A21, and A22; the second is a partition of A into its row vectors
r1, r2, and r3; and the third is a partition of A into its column vectors c1, c2, c3, and c4:

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ =

[
A11 A12

A21 A22

]

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ =

⎡
⎢⎣r1

r2

r3

⎤
⎥⎦

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ = [c1 c2 c3 c4]

Matrix Multiplication by
Columns and by Rows

Partitioning has many uses, one of which is for finding particular rows or columns of a
matrix product AB without computing the entire product. Specifically, the following for-
mulas, whose proofs are left as exercises, show how individual column vectors of AB can
be obtained by partitioning B into column vectors and how individual row vectors of
AB can be obtained by partitioning A into row vectors.

AB = A[b1 b2 · · · bn] = [Ab1 Ab2 · · · Abn] (6)

(AB computed column by column)

AB =

⎡
⎢⎢⎢⎣

a1

a2
...

am

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣

a1B

a2B
...

amB

⎤
⎥⎥⎥⎦ (7)

(AB computed row by row)

In words, these formulas state that
We now have three methods
for computing a product of
two matrices, entry by entry
using Definition 5, column
by column using Formula (8),
and row by row using For-
mula (9). We will call these the
entry method , the row method ,
and the column method , re-
spectively.

j th column vector of AB = A[j th column vector of B] (8)

ith row vector of AB = [ith row vector of A]B (9)

EXAMPLE 7 Example 5 Revisited

If A and B are the matrices in Example 5, then from (8) the second column vector of
AB can be obtained by the computation

[
1 2 4

2 6 0

]⎡⎢⎣ 1

−1

7

⎤
⎥⎦ =

[
27

−4

]

�

Second column
of B

�

Second column
of AB
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and from (9) the first row vector of AB can be obtained by the computation

1 2 4

⎡
⎢⎣

4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ = 12 27 30 13

First row of A First row of AB

[ ][ ]

Matrix Products as Linear
Combinations

The following definition provides yet another way of thinking about matrix multipli-
cation.

Definition 6 is applicable, in
particular, to row and column
vectors. Thus, for example, a
linear combination of column
vectors x1, x2, . . . , xr of the
same size is an expression of
the form

c1x1 + c2x2 + · · · + crxr

DEFINITION 6 If A1, A2, . . . , Ar are matrices of the same size, and if c1, c2, . . . , cr

are scalars, then an expression of the form

c1A1 + c2A2 + · · · + crAr

is called a linear combination of A1, A2, . . . , Ar with coefficients c1, c2, . . . , cr .

To see how matrix products can be viewed as linear combinations, let A be an m × n

matrix and x an n × 1 column vector, say

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ and x =

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦

Then

Ax =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

...
...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦= x1

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦+ x2

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦+ · · · + xn

⎡
⎢⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎥⎦

(10)
This proves the following theorem.

THEOREM 1.3.1 If A is an m × n matrix, and if x is an n × 1 column vector, then the
productAx can be expressed as a linear combination of the column vectors ofA in which
the coefficients are the entries of x.

EXAMPLE 8 Matrix Products as Linear Combinations

The matrix product ⎡
⎢⎣−1 3 2

1 2 −3

2 1 −2

⎤
⎥⎦
⎡
⎢⎣ 2

−1

3

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦

can be written as the following linear combination of column vectors:

2

⎡
⎢⎣−1

1

2

⎤
⎥⎦− 1

⎡
⎢⎣3

2

1

⎤
⎥⎦+ 3

⎡
⎢⎣ 2

−3

−2

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦
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EXAMPLE 9 Columns of a ProductAB as Linear Combinations

We showed in Example 5 that

AB =
[

1 2 4

2 6 0

]⎡⎢⎣4 1 4 3

0 −1 3 1

2 7 5 2

⎤
⎥⎦ =

[
12 27 30 13

8 −4 26 12

]

It follows from Formula (6) and Theorem 1.3.1 that the j th column vector of AB can be
expressed as a linear combination of the column vectors of A in which the coefficients
in the linear combination are the entries from the j th column of B. The computations
are as follows: [

12

8

]
= 4

[
1

2

]
+ 0

[
2

6

]
+ 2

[
4

0

]
[

27

−4

]
=

[
1

2

]
−

[
2

6

]
+ 7

[
4

0

]
[

30

26

]
= 4

[
1

2

]
+ 3

[
2

6

]
+ 5

[
4

0

]
[

13

12

]
= 3

[
1

2

]
+

[
2

6

]
+ 2

[
4

0

]

Column-Row Expansion Partitioning provides yet another way to view matrix multiplication. Specifically, sup-
pose that an m × r matrix A is partitioned into its r column vectors c1, c2, . . . , cr (each
of size m × 1) and an r × n matrix B is partitioned into its r row vectors r1, r2, . . . , rr

(each of size 1 × n). Each term in the sum

c1r1 + c2r2 + · · · + crrr

has size m × n so the sum itself is an m × n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the
right side of Formula (5), from which it follows that

AB = c1r1 + c2r2 + · · · + crrr (11)

We call (11) the column-row expansion of AB.

EXAMPLE 10 Column-Row Expansion

Find the column-row expansion of the product

AB =
[

1 3

2 −1

][
2 0 4

−3 5 1

]
(12)

Solution The column vectors of A and the row vectors of B are, respectively,

c1 =
[

1

2

]
, c2 =

[
3

−1

]
; r1 = [

2 0 4
]
, r2 = [−3 5 1

]
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Thus, it follows from (11) that the column-row expansion of AB is

AB =
[

1

2

] [
2 0 4

]+
[

3

−1

] [−3 5 1
]

=
[

2 0 4

4 0 8

]
+
[
−9 15 3

3 −5 −1

] (13)

As a check, we leave it for you to confirm that the product in (12) and the sum in (13)
The main use of the column-
row expansion is for develop-
ing theoretical results rather
than for numerical computa-
tions.

both yield

AB =
[
−7 15 7

7 −5 7

]

Matrix Form of a Linear
System

Matrix multiplication has an important application to systems of linear equations. Con-
sider a system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Since two matrices are equal if and only if their corresponding entries are equal, we can
replace the m equations in this system by the single matrix equation⎡

⎢⎢⎢⎣
a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

...
...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

The m × 1 matrix on the left side of this equation can be written as a product to give⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

If we designate these matrices by A, x, and b, respectively, then we can replace the original
system of m equations in n unknowns by the single matrix equation

Ax = b

The matrix A in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus

The vertical partition line in
the augmented matrix [A | b]
is optional, but is a useful way
of visually separating the coef-
ficient matrix A from the col-
umn vector b.

the augmented matrix is

[A | b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...

am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦

Transpose of a Matrix We conclude this section by defining two matrix operations that have no analogs in the
arithmetic of real numbers.
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DEFINITION 7 If A is any m × n matrix, then the transpose of A, denoted by AT , is
defined to be the n × m matrix that results by interchanging the rows and columns
of A; that is, the first column of AT is the first row of A, the second column of AT is
the second row of A, and so forth.

EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦, B =

⎡
⎢⎣2 3

1 4

5 6

⎤
⎥⎦, C = [1 3 5], D = [4]

AT =

⎡
⎢⎢⎢⎣

a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34

⎤
⎥⎥⎥⎦, BT =

[
2 1 5

3 4 6

]
, CT =

⎡
⎢⎣1

3

5

⎤
⎥⎦, DT = [4]

Observe that not only are the columns of AT the rows of A, but the rows of AT are
the columns of A. Thus the entry in row i and column j of AT is the entry in row j and
column i of A; that is,

(AT )ij = (A)ji (14)

Note the reversal of the subscripts.
In the special case where A is a square matrix, the transpose of A can be obtained

by interchanging entries that are symmetrically positioned about the main diagonal. In
(15) we see that AT can also be obtained by “reflecting” A about its main diagonal.

A =

⎡
⎢⎣

1 2 4
3 7 0
5 8 6

⎤
⎥⎦

⎡
⎢⎣

1 2 4
3 7 0
5 8 6

⎤
⎥⎦ AT

⎡
⎢⎣

1 3 5
2 7 8
4 0 6

⎤
⎥⎦

Interchange entries that are
symmetrically positioned
about the main diagonal.

(15)

James Sylvester
(1814–1897)

Arthur Cayley
(1821–1895)

Historical Note The term matrix was first used by the English mathematician
James Sylvester, who defined the term in 1850 to be an “oblong arrangement
of terms.” Sylvester communicated his work on matrices to a fellow English
mathematician and lawyer named Arthur Cayley, who then introduced some of
the basic operations on matrices in a book entitled Memoir on the Theory of
Matrices that was published in 1858. As a matter of interest, Sylvester, who was
Jewish, did not get his college degree because he refused to sign a required
oath to the Church of England. He was appointed to a chair at the University of
Virginia in the United States but resigned after swatting a student with a stick
because he was reading a newspaper in class. Sylvester, thinking he had killed
the student, fled back to England on the first available ship. Fortunately, the
student was not dead, just in shock!

[Images: © Bettmann/CORBIS (Sylvester );
Photo Researchers/Getty Images (Cayley )]
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Trace of a Matrix DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is defined
to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A is not a square matrix.

EXAMPLE 12 Trace

The following are examples of matrices and their traces.

A =
⎡
⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦, B =

⎡
⎢⎢⎢⎣
−1 2 7 0

3 5 −8 4

1 2 7 −3

4 −2 1 0

⎤
⎥⎥⎥⎦

tr(A) = a11 + a22 + a33 tr(B) = −1 + 5 + 7 + 0 = 11

In the exercises you will have some practice working with the transpose and trace
operations.

Exercise Set 1.3

In Exercises 1–2, suppose that A, B, C, D, and E are matrices
with the following sizes:

A B C D E

(4 × 5) (4 × 5) (5 × 2) (4 × 2) (5 × 4)

In each part, determine whether the given matrix expression is
defined. For those that are defined, give the size of the resulting
matrix.

1. (a) BA (b) ABT (c) AC + D

(d) E(AC) (e) A − 3ET (f ) E(5B + A)

2. (a) CDT (b) DC (c) BC − 3D

(d) DT (BE) (e) BTD + ED (f ) BAT + D

In Exercises 3–6, use the following matrices to compute the
indicated expression if it is defined.

A =
⎡
⎢⎣ 3 0

−1 2

1 1

⎤
⎥⎦, B =

[
4 −1

0 2

]
, C =

[
1 4 2

3 1 5

]
,

D =
⎡
⎢⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎥⎦, E =

⎡
⎢⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎥⎦

3. (a) D + E (b) D − E (c) 5A

(d) −7C (e) 2B − C (f ) 4E − 2D

(g) −3(D + 2E) (h) A − A (i) tr(D)

( j) tr(D − 3E) (k) 4 tr(7B) (l) tr(A)

4. (a) 2AT + C (b) DT − ET (c) (D − E)T

(d) BT + 5CT (e) 1
2 C

T − 1
4 A (f ) B − BT

(g) 2ET − 3DT (h) (2ET − 3DT )T (i) (CD)E

( j) C(BA) (k) tr(DET ) (l) tr(BC)

5. (a) AB (b) BA (c) (3E)D

(d) (AB)C (e) A(BC) (f ) CCT

(g) (DA)T (h) (CTB)AT (i) tr(DDT )

( j) tr(4ET − D) (k) tr(CTAT + 2ET ) (l) tr((ECT )TA)

6. (a) (2DT − E)A (b) (4B)C + 2B

(c) (−AC)T + 5DT (d) (BAT − 2C)T

(e) BT(CCT − ATA) (f ) DTET − (ED)T

In Exercises 7–8, use the following matrices and either the row
method or the column method, as appropriate, to find the indi-
cated row or column.

A =
⎡
⎢⎣3 −2 7

6 5 4

0 4 9

⎤
⎥⎦ and B =

⎡
⎢⎣6 −2 4

0 1 3

7 7 5

⎤
⎥⎦

7. (a) the first row of AB (b) the third row of AB

(c) the second column of AB (d) the first column of BA

(e) the third row of AA (f ) the third column of AA
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8. (a) the first column of AB (b) the third column of BB

(c) the second row of BB (d) the first column of AA

(e) the third column of AB (f ) the first row of BA

In Exercises 9–10, use matrices A and B from Exercises 7–8.

9. (a) Express each column vector of AA as a linear combination
of the column vectors of A.

(b) Express each column vector of BB as a linear combination
of the column vectors of B.

10. (a) Express each column vector of AB as a linear combination
of the column vectors of A.

(b) Express each column vector of BA as a linear combination
of the column vectors of B.

In each part of Exercises 11–12, find matrices A, x, and b that
express the given linear system as a single matrix equation Ax = b,
and write out this matrix equation.

11. (a) 2x1 − 3x2 + 5x3 = 7
9x1 − x2 + x3 = −1
x1 + 5x2 + 4x3 = 0

(b) 4x1 − 3x3 + x4 = 1
5x1 + x2 − 8x4 = 3
2x1 − 5x2 + 9x3 − x4 = 0

3x2 − x3 + 7x4 = 2

12. (a) x1 − 2x2 + 3x3 = −3
2x1 + x2 = 0

− 3x2 + 4x3 = 1
x1 + x3 = 5

(b) 3x1 + 3x2 + 3x3 = −3
−x1 − 5x2 − 2x3 = 3

− 4x2 + x3 = 0

In each part of Exercises 13–14, express the matrix equation
as a system of linear equations.

13. (a)

⎡
⎢⎣ 5 6 −7

−1 −2 3

0 4 −1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣2

0

3

⎤
⎥⎦

(b)

⎡
⎢⎣1 1 1

2 3 0

5 −3 −6

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣ 2

2

−9

⎤
⎥⎦

14. (a)

⎡
⎢⎣ 3 −1 2

4 3 7

−2 1 5

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 2

−1

4

⎤
⎥⎦

(b)

⎡
⎢⎢⎢⎣

3 −2 0 1

5 0 2 −2

3 1 4 7

−2 5 1 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w

x

y

z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

In Exercises 15–16, find all values of k, if any, that satisfy the
equation.

15.
[
k 1 1

]⎡⎢⎣1 1 0

1 0 2

0 2 −3

⎤
⎥⎦
⎡
⎢⎣k

1

1

⎤
⎥⎦ = 0

16.
[
2 2 k

]⎡⎢⎣1 2 0

2 0 3

0 3 1

⎤
⎥⎦
⎡
⎢⎣2

2

k

⎤
⎥⎦ = 0

In Exercises 17–20, use the column-row expansion of AB to
express this product as a sum of matrices.

17. A =
[

4 −3

2 −1

]
, B =

[
0 1 2

−2 3 1

]

18. A =
[

0 −2

4 −3

]
, B =

[
1 4 1

−3 0 2

]

19. A =
[

1 2 3

4 5 6

]
, B =

⎡
⎢⎣

1 2

3 4

5 6

⎤
⎥⎦

20. A =
[

0 4 2

1 −2 5

]
, B =

⎡
⎢⎣

2 −1

4 0

1 −1

⎤
⎥⎦

21. For the linear system in Example 5 of Section 1.2, express the
general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical
entries. [Suggestion: Rewrite the general solution as a single
column vector, then write that column vector as a sum of col-
umn vectors each of which contains at most one parameter,
and then factor out the parameters.]

22. Follow the directions of Exercise 21 for the linear system in
Example 6 of Section 1.2.

In Exercises 23–24, solve the matrix equation for a, b, c,
and d.

23.
[

a 3

−1 a + b

]
=
[

4 d − 2c

d + 2c −2

]

24.
[

a − b b + a

3d + c 2d − c

]
=
[

8 1

7 6

]

25. (a) Show that if A has a row of zeros and B is any matrix for
which AB is defined, then AB also has a row of zeros.

(b) Find a similar result involving a column of zeros.

26. In each part, find a 6 × 6 matrix [aij ] that satisfies the stated
condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

(a) aij = 0 if i �= j (b) aij = 0 if i > j

(c) aij = 0 if i < j (d) aij = 0 if |i − j | > 1
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In Exercises 27–28, how many 3 × 3 matrices A can you find
for which the equation is satisfied for all choices of x, y, and z?

27. A

⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣x + y

x − y

0

⎤
⎥⎦ 28. A

⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣xy

0

0

⎤
⎥⎦

29. A matrix B is said to be a square root of a matrix A if BB = A.

(a) Find two square roots of A =
[

2 2

2 2

]
.

(b) How many different square roots can you find of

A =
[

5 0

0 9

]
?

(c) Do you think that every 2 × 2 matrix has at least one
square root? Explain your reasoning.

30. Let 0 denote a 2 × 2 matrix, each of whose entries is zero.

(a) Is there a 2 × 2 matrix A such that A �= 0 and AA = 0 ?
Justify your answer.

(b) Is there a 2 × 2 matrix A such that A �= 0 and AA = A?
Justify your answer.

31. Establish Formula (11) by using Formula (5) to show that

(AB)ij = (c1r1 + c2r2 + · · · + crrr )ij

32. Find a 4 × 4 matrix A = [aij ] whose entries satisfy the stated
condition.

(a) aij = i + j (b) aij = ij−1

(c) aij =
{

1 if |i − j | > 1

−1 if |i − j | ≤ 1

33. Suppose that type I items cost $1 each, type II items cost $2
each, and type III items cost $3 each. Also, suppose that the
accompanying table describes the number of items of each
type purchased during the first four months of the year.

Table Ex-33

Type I Type II Type III

Jan. 3 4 3

Feb. 5 6 0

Mar. 2 9 4

Apr. 1 1 7

What information is represented by the following product?

⎡
⎢⎢⎢⎣

3 4 3

5 6 0

2 9 4

1 1 7

⎤
⎥⎥⎥⎦
⎡
⎢⎣1

2

3

⎤
⎥⎦

34. The accompanying table shows a record of May and June unit
sales for a clothing store. Let M denote the 4 × 3 matrix of
May sales and J the 4 × 3 matrix of June sales.

(a) What does the matrix M + J represent?

(b) What does the matrix M − J represent?

(c) Find a column vector x for which Mx provides a list of the
number of shirts, jeans, suits, and raincoats sold in May.

(d) Find a row vector y for which yM provides a list of the
number of small, medium, and large items sold in May.

(e) Using the matrices x and y that you found in parts (c) and
(d), what does yMx represent?

Table Ex-34
May Sales

Small Medium Large

Shirts 45 60 75

Jeans 30 30 40

Suits 12 65 45

Raincoats 15 40 35

June Sales

Small Medium Large

Shirts 30 33 40

Jeans 21 23 25

Suits 9 12 11

Raincoats 8 10 9

Working with Proofs

35. Prove: If A and B are n × n matrices, then

tr(A + B) = tr(A) + tr(B)

36. (a) Prove: If AB and BA are both defined, then AB and BA

are square matrices.

(b) Prove: If A is an m × n matrix and A(BA) is defined, then
B is an n × m matrix.

True-False Exercises

TF. In parts (a)–(o) determine whether the statement is true or
false, and justify your answer.

(a) The matrix

[
1 2 3
4 5 6

]
has no main diagonal.

(b) An m × n matrix has m column vectors and n row vectors.

(c) If A and B are 2 × 2 matrices, then AB = BA.

(d) The ith row vector of a matrix product AB can be computed
by multiplying A by the ith row vector of B.
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(e) For every matrix A, it is true that (AT )T = A.

(f ) If A and B are square matrices of the same order, then

tr(AB) = tr(A)tr(B)

(g) If A and B are square matrices of the same order, then

(AB)T = ATBT

(h) For every square matrix A, it is true that tr(AT ) = tr(A).

(i) If A is a 6 × 4 matrix and B is an m × n matrix such that BTAT

is a 2 × 6 matrix, then m = 4 and n = 2.

( j) If A is an n × n matrix and c is a scalar, then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that
A − C = B − C, then A = B.

(l) If A, B, and C are square matrices of the same order such that
AC = BC, then A = B.

(m) If AB + BA is defined, then A and B are square matrices of
the same size.

(n) If B has a column of zeros, then so does AB if this product is
defined.

(o) If B has a column of zeros, then so does BA if this product is
defined.

Working withTechnology

T1. (a) Compute the product AB of the matrices in Example 5,
and compare your answer to that in the text.

(b) Use your technology utility to extract the columns of A

and the rows of B, and then calculate the product AB by
a column-row expansion.

T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type II items at $2.15 each, and Type III items at $3.95 each. Sup-
pose also that the accompanying table describes the purchases of
those items (in thousands of units) for the first quarter of the year.
Write down a matrix product, the computation of which produces
a matrix that lists the manufacturer’s expenditure in each month
of the first quarter. Compute that product.

Type I Type II Type III

Jan. 3.1 4.2 3.5

Feb. 5.1 6.8 0

Mar. 2.2 9.5 4.0

Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties of Matrices
In this section we will discuss some of the algebraic properties of matrix operations. We will
see that many of the basic rules of arithmetic for real numbers hold for matrices, but we will
also see that some do not.

Properties of Matrix
Addition and Scalar

Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.

(a) A + B = B + A [Commutative law for matrix addition]

(b) A + (B + C) = (A + B) + C [Associative law for matrix addition]

(c) A(BC) = (AB)C [Associative law for matrix multiplication]

(d ) A(B + C) = AB + AC [Left distributive law]

(e) (B + C)A = BA + CA [Right distributive law]

( f ) A(B − C) = AB − AC

(g) (B − C)A = BA − CA

(h) a(B + C) = aB + aC

(i ) a(B − C) = aB − aC

( j ) (a + b)C = aC + bC

(k) (a − b)C = aC − bC

(l ) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)


