
In the linear mathematical models for a physical system such as a spring/mass

system or a series electrical circuit, the right-hand member, or input, of the

differential equations

is a driving function and represents either an external force f (t) or an impressed

voltage E(t). In Section 5.1 we considered problems in which the functions f and E

were continuous. However, discontinuous driving functions are not uncommon.

For example, the impressed voltage on a circuit could be piecewise continuous and

periodic such as the “sawtooth” function shown above. Solving the differential

equation of the circuit in this case is difficult using the techniques of Chapter 4.

The Laplace transform studied in this chapter is an invaluable tool that simplifies

the solution of problems such as these.

m
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DEFINITION OF THE LAPLACE TRANSFORM

REVIEW MATERIAL
● Improper integrals with infinite limits of integration
● Partial fraction decomposition

INTRODUCTION In elementary calculus you learned that differentiation and integration are
transforms; this means, roughly speaking, that these operations transform a function into another
function. For example, the function f (x) � x2 is transformed, in turn, into a linear function and
a family of cubic polynomial functions by the operations of differentiation and integration:

and

Moreover, these two transforms possess the linearity property that the transform of a linear
combination of functions is a linear combination of the transforms. For a and b constants

and

provided that each derivative and integral exists. In this section we will examine a special type of
integral transform called the Laplace transform. In addition to possessing the linearity property the
Laplace transform has many other interesting properties that make it very useful in solving linear
initial-value problems.

�[� f (x) � � g(x)] dx � ��f (x) dx � ��g(x) dx

d

dx
 [� f (x) � � g(x)] � � f �(x) � � g�(x)

�x2 dx �
1

3
x3 � c.

d

dx
x2 � 2x

7.1

INTEGRAL TRANSFORM If f (x, y) is a function of two variables, then a definite
integral of f with respect to one of the variables leads to a function of the other vari-
able. For example, by holding y constant, we see that . Similarly, a
definite integral such as transforms a function f of the variable t into
a function F of the variable s. We are particularly interested in an integral transform,
where the interval of integration is the unbounded interval [0, 
). If f (t) is defined for
t � 0, then the improper integral is defined as a limit:

. (1)

If the limit in (1) exists, then we say that the integral exists or is convergent; if the
limit does not exist, the integral does not exist and is divergent. The limit in (1) will,
in general, exist for only certain values of the variable s.

A DEFINITION The function K(s, t) in (1) is called the kernel of the transform.
The choice K(s, t) � e�st as the kernel gives us an especially important integral
transform.

DEFINITION 7.1.1 Laplace Transform

Let f be a function defined for t � 0. Then the integral

(2)

is said to be the Laplace transform of f, provided that the integral converges.

�{ f (t)} � �


0
e�st f (t) dt

�


0
K(s, t) f (t) dt � lim

b : 

�b

0
K(s, t) f (t) dt

�

0 K(s, t) f (t) dt

�b
a K(s, t) f (t) dt

�2
1 2xy2 dx � 3y2
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When the defining integral (2) converges, the result is a function of s. In general
discussion we shall use a lowercase letter to denote the function being transformed
and the corresponding capital letter to denote its Laplace transform—for example,

.

EXAMPLE 1 Applying Definition 7.1.1

Evaluate .

SOLUTION From (2),

provided that s � 0. In other words, when s � 0, the exponent �sb is negative, and
as . The integral diverges for s � 0.

The use of the limit sign becomes somewhat tedious, so we shall adopt the
notation �
0 as a shorthand for writing limb:
 ( ) �b0. For example,

.

At the upper limit, it is understood that we mean as for s � 0.

EXAMPLE 2 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 we have . Integrating by parts
and using s � 0, along with the result from Example 1, we obtain

.

EXAMPLE 3 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 we have

The result follows from the fact that limt : 
 e�(s�3)t � 0 for s � 3 � 0 or
s � �3.

�
1

s � 3
, s � �3.

�
�e�(s�3)t

s � 3 �
0




�{e�3t} � �


0
e�st e�3t dt � �


0
e�(s�3)t dt

�{e�3t}

�{t} �
�te�st

s �


0
�

1

s
�


0
e�st dt �

1

s
�{1} �

1

s �
1

s� �
1

s2

lim
t : 


te�st � 0,
�{t} � �


0 e�st t dt

�{t}

t : 
e�st : 0

�{1} � �


0
e�st (1) dt �

�e�st

s �


0
�

1

s
,    s � 0

b : 
e�sb : 0

� lim
b : 


�e�st

s �0

b
� lim

b : 


�e�sb � 1

s
�

1

s

�{1} � �


0
e�st(1) dt � lim

b : 

�b

0
e�st dt

�{1}

�{ f (t)} � F(s),    �{g(t)} � G(s),    �{y(t)} � Y(s)
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EXAMPLE 4 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 and integration by parts we have

At this point we have an equation with on both sides of the equality.
Solving for that quantity yields the result

.

� IS A LINEAR TRANSFORM For a linear combination of functions we can write

whenever both integrals converge for s � c. Hence it follows that

. (3)

Because of the property given in (3), � is said to be a linear transform. For example,
from Examples 1 and 2

,

and from Examples 3 and 4

.

We state the generalization of some of the preceding examples by means of the
next theorem. From this point on we shall also refrain from stating any restrictions on
s; it is understood that s is sufficiently restricted to guarantee the convergence of the
appropriate Laplace transform.

THEOREM 7.1.1 Transforms of Some Basic Functions

(a)

(b) (c)

(d) (e)

(f) (g) �{cosh kt} �
s

s2 � k2�{sinh kt} �
k

s2 � k2

�{cos kt} �
s

s2 � k2�{sin kt} �
k

s2 � k2

�{eat} �
1

s � a
�{tn} �

n!

sn�1,  n � 1, 2, 3, . . .

�{1} �
1

s

�{4e�3t � 10 sin 2t} � 4�{e �3t} � 10�{sin 2t} �
4

s � 3
�

20

s2 � 4

�{1 � 5t} � �{1} � 5�{t} �
1

s
�

5

s2

�{� f (t) � �g(t)} � ��{ f (t)} � ��{g(t)} � �F(s) � �G(s)

�


0
e�st [� f (t) � �g(t)] dt � � �


0
e�st f (t) dt � � �


0
e�st g(t) dt

�{sin 2t} �
2

s2 � 4
,    s � 0

�{sin 2t}

lim e�st cos 2t � 0, s � 0
t:


Laplace transform of sin 2t

�e�st sin 2t
––––––––––––

s
2
–s

2
–s

�{sin 2t} � �   e�st sin 2t dt �

�{sin 2t}.

�   � �   e�st cos 2t dt



0




0




0

�e�st cos 2t
––––––––––––

s
2
–s�   �2

–s�

2
––
s2�

4
––
s2�

[ �   e�st sin 2t dt]


0




0

� �   e�st cos 2t dt,        s � 0



0

�{sin 2t}
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FIGURE 7.1.3 Three functions of exponential order c � 1

A function such as is not of exponential order, since, as shown in
Figure 7.1.4, its graph grows faster than any positive linear power of e for t � c � 0.

A positive integral power of t is always of exponential order, since, for c � 0,

is equivalent to showing that is finite for n � 1, 2, 3, . . . . The result fol-
lows by n applications of L’Hôpital’s Rule.

limt : 
 tn>ect

� tn � � Mect  or  � tn

ect� � M for t � T

f (t) � et2

THEOREM 7.1.2 Sufficient Conditions for Existence

If f is piecewise continuous on [0, 
) and of exponential order c, then 
exists for s � c.

�{ f (t)}

DEFINITION 7.1.2 Exponential Order

A function f is said to be of exponential order c if there exist constants 
c, M � 0, and T � 0 such that � f (t) � � Mect for all t � T.

If f is an increasing function, then the condition � f (t) � � Mect, t � T, simply
states that the graph of f on the interval (T, 
) does not grow faster than the graph
of the exponential function Mect, where c is a positive constant. See Figure 7.1.2.
The functions f (t) � t, f (t) � e�t, and f (t) � 2 cos t are all of exponential order
c � 1 for t � 0, since we have, respectively,

.

A comparison of the graphs on the interval (0, 
) is given in Figure 7.1.3.

� t � � et, � e�t � � et,    and    � 2 cos t � � 2et

SUFFICIENT CONDITIONS FOR EXISTENCE OF �{f(t)} The integral that
defines the Laplace transform does not have to converge. For example, neither

nor exists. Sufficient conditions guaranteeing the existence of
are that f be piecewise continuous on [0, �) and that f be of exponential order

for t 
 T. Recall that a function f is piecewise continuous on [0, �) if, in any inter-
val 0 � a � t � b, there are at most a finite number of points tk, k � 1, 2, . . . ,
n (tk	1 � tk) at which f has finite discontinuities and is continuous on each open
interval (tk	1, tk). See Figure 7.1.1. The concept of exponential order is defined in
the following manner.

�{ f (t)}
�{et2

}�{1> t}
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PROOF By the additive interval property of definite integrals we can write

.

The integral I1 exists because it can be written as a sum of integrals over intervals
on which e�st f (t) is continuous. Now since f is of exponential order, there exist
constants c, M � 0, T � 0 so that � f (t) � � Mect for t � T. We can then write

for s � c. Since converges, the integral converges 
by the comparison test for improper integrals. This, in turn, implies that I2 exists
for s c. The existence of I1 and I2 implies that exists for 
s c.

EXAMPLE 5 Transform of a Piecewise Continuous Function

Evaluate �{ f (t)} where 

SOLUTION The function f, shown in Figure 7.1.5, is piecewise continuous and of
exponential order for t � 0. Since f is defined in two pieces, �{ f (t)} is expressed as
the sum of two integrals:

We conclude this section with an additional bit of theory related to the types of
functions of s that we will, generally, be working with. The next theorem indicates that
not every arbitrary function of s is a Laplace transform of a piecewise continuous func-
tion of exponential order.

�
2e�3s

s
,    s � 0.

� 0 �
2e�st

�s �


3

�{ f (t)} � �


0
e�st f (t) dt � �3

0
e�st (0) dt � �


3
e�st (2) dt

f (t) � �0,  0 � t � 3

2,  t � 3.

�
�{ f (t)} � �


0 e�st f (t) dt�

�

T � e�st f (t) � dt�


T Me�(s�c)t dt

� I2 � � �


T
�e�st f (t) � dt � M �


T
e�stect dt � M �


T
e�(s�c)t dt � M

e�(s�c)T

s � c

�{ f(t)} � �T

0
e�st f(t) dt � �


T
e�st f(t) dt � I1 � I2

t

y

3

2

FIGURE 7.1.5 Piecewise continuous
function

THEOREM 7.1.3 Behavior of F(s) as 

If f is piecewise continuous on (0, 
) and of exponential order and
F(s) � �{ f (t)}, then lim

s:

F(s) � 0.

s : 


PROOF Since f is of exponential order, there exist constants g, M1 � 0, and T � 0
so that � f (t) � � M1egt for t � T. Also, since f is piecewise continuous for 0 � t � T, it
is necessarily bounded on the interval; that is, � f (t) � � M2 � M2e0t. If M denotes the
maximum of the set {M1, M2} and c denotes the maximum of {0, g}, then

for s � c. As , we have , and so F(s) � �{ f (t)} : 0.� F(s) � : 0s : 


� F(s) � � �


0
e�st� f (t) � dt � M �


0
e�stect dt � M �


0
e�(s�c)t dt �

M

s � c
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EXERCISES 7.1 Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1–18 use Definition 7.1.1 to find �{ f (t)}.

1.

2.

3.

4.

5.

6.

7.

f (t) � �0,

cos t,

0 � t � �>2
t � �>2

f (t) � �sin t,

0,

0 � t � �

t � �

f (t) � �2t � 1,

0,

0 � t � 1

t � 1

f (t) � � t,

1,

0 � t � 1

t � 1

f (t) � �4,

0,

0 � t � 2

t � 2

f (t) � ��1,

1,

0 � t � 1

t � 1

9.

FIGURE 7.1.7 Graph for Problem 8

FIGURE 7.1.8 Graph for Problem 9

FIGURE 7.1.9 Graph for Problem 10

t

f(t)
(2, 2)

1

1

FIGURE 7.1.6 Graph for Problem 7

t

f(t)
(2, 2)

1

1

t

f(t)

1

1

f(t)

a

c

b t

8.

10.

11. f (t) � et�7 12. f (t) � e�2t�5

13. f (t) � te4t 14. f (t) � t2e�2t

15. f (t) � e�t sin t 16. f (t) � et cos t

17. f (t) � t cos t 18. f (t) � t sin t

In Problems 19–36 use Theorem 7.1.1 to find �{ f (t)}.

19. f (t) � 2t4 20. f (t) � t5

21. f (t) � 4t � 10 22. f (t) � 7t � 3

23. f (t) � t2 � 6t � 3 24. f (t) � �4t2 � 16t � 9

25. f (t) � (t � 1)3 26. f (t) � (2t � 1)3

27. f (t) � 1 � e4t 28. f (t) � t2 � e�9t � 5

29. f (t) � (1 � e2t)2 30. f (t) � (et � e�t)2

31. f (t) � 4t2 � 5 sin 3t 32. f (t) � cos 5t � sin 2t

33. f (t) � sinh kt 34. f (t) � cosh kt

35. f (t) � et sinh t 36. f (t) � e�t cosh t

In Problems 37–40 find �{ f (t)} by first using a trigono-
metric identity.

37. f (t) � sin 2t cos 2t 38. f (t) � cos2t

39. f (t) � sin(4t � 5) 40.

41. One definition of the gamma function is given by the
improper integral �(�) � �


0 t��1e�t dt, � � 0.

f (t) � 10 cos�t �
�

6�

REMARKS

(i) Throughout this chapter we shall be concerned primarily with functions
that are both piecewise continuous and of exponential order. We note, however,
that these two conditions are sufficient but not necessary for the existence of a
Laplace transform. The function f (t) � t�1/2 is not piecewise continuous on
the interval [0, 
), but its Laplace transform exists. See Problem 42 in
Exercises 7.1.

(ii) As a consequence of Theorem 7.1.3 we can say that functions of s such as
F1(s) � 1 and F2(s) � s�(s � 1) are not the Laplace transforms of piecewise 
continuous functions of exponential order, since F1(s) 0 and F2(s) 0 as

. But you should not conclude from this that F1(s) and F2(s) are not Laplace
transforms. There are other kinds of functions.
s : 


:/:/
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(a) Show that �(a � 1) � a�(a).

(b) Show that .

42. Use the fact that and Problem 41 to find the
Laplace transform of

(a) f (t) � t�1/2 (b) f (t) � t1/2 (c) f (t) � t3/2.

Discussion Problems

43. Make up a function F(t) that is of exponential order but
where f (t) � F�(t) is not of exponential order. Make up
a function f that is not of exponential order but whose
Laplace transform exists.

44. Suppose that for s c1 and that
for s c2. When does 

45. Figure 7.1.4 suggests, but does not prove, that the func-
tion is not of exponential order. How doesf (t) � et 2

�{f1(t) � f2(t)} � F1(s) � F2(s)?

��{ f2(t)} � F2(s)
��{ f1(t)} � F1(s)

�(1
2) � 1�

�{t�} �
�(� � 1)

s��1 , � � �1

the observation that for and t
sufficiently large, show that for any c?

46. Use part (c) of Theorem 7.1.1 to show that

�{e(a�ib)t} � , where a and b are real

and i2 � �1. Show how Euler’s formula (page 134) can
then be used to deduce the results

.

47. Under what conditions is a linear function
f (x) � mx � b, m � 0, a linear transform?

48. The proof of part (b) of Theorem 7.1.1 requires
the use of mathematical induction. Show that if
�{tn�1} � (n � 1)!�sn is assumed to be true, then
�{tn} � n!�sn�1 follows.

�{eat sin bt} �
b

(s � a)2 � b2

�{eat cos bt} �
s � a

(s � a)2 � b2

s � a � ib

(s � a)2 � b2

et 2
� Mect

M � 0t2 � ln M � ct,

INVERSE TRANSFORMS AND TRANSFORMS

OF DERIVATIVES

REVIEW MATERIAL
● Partial fraction decomposition
● See the Student Resource and Solutions Manual

INTRODUCTION In this section we take a few small steps into an investigation of how
the Laplace transform can be used to solve certain types of equations for an unknown function.
We begin the discussion with the concept of the inverse Laplace transform or, more precisely,
the inverse of a Laplace transform F(s). After some important preliminary background material
on the Laplace transform of derivatives f �(t), f ��(t), . . . , we then illustrate how both the Laplace
transform and the inverse Laplace transform come into play in solving some simple ordinary
differential equations.

7.2

Transform Inverse Transform

e�3t � � �1� 1

s � 3��{e�3t} �
1

s � 3

t � � �1�1

s2��{t} �
1

s2

1 � � �1�1

s��{1} �
1

s

7.2.1 INVERSE TRANSFORMS

THE INVERSE PROBLEM If F(s) represents the Laplace transform of a function
f (t), that is, , we then say f (t) is the inverse Laplace transform of
F(s) and write . For example, from Examples 1, 2, and 3 of
Section 7.1 we have, respectively,

f(t) � � �1{F(s)}
�{ f(t)} � F(s)
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We shall see shortly that in the application of the Laplace transform to equa-
tions we are not able to determine an unknown function f (t) directly; rather, we are
able to solve for the Laplace transform F(s) of f (t); but from that knowledge
we ascertain f by computing . The idea is simply this: Suppose

is a Laplace transform; find a function f (t) such that 

We shall show how to solve this last problem in Example 2.
For future reference the analogue of Theorem 7.1.1 for the inverse transform is

presented as our next theorem.

�{f(t)} � F(s).F(s) �
�2s � 6

s2 � 4

f (t) � � �1{F(s)}

THEOREM 7.2.1 Some Inverse Transforms

(a)

(b) (c)

(d) (e)

(f) (g) cosh kt � � �1� s

s2 � k2�sinh kt � � �1� k

s2 � k2�

cos kt � � �1� s

s2 � k2�sin kt � � �1� k

s2 � k2�

eat � � �1� 1

s � a�tn � � �1� n!

sn�1�,  n � 1, 2, 3, . . .

1 � � �1�1

s�

In evaluating inverse transforms, it often happens that a function of s under con-
sideration does not match exactly the form of a Laplace transform F(s) given in a
table. It may be necessary to “fix up” the function of s by multiplying and dividing
by an appropriate constant.

EXAMPLE 1 Applying Theorem 7.2.1

Evaluate (a) (b) .

SOLUTION (a) To match the form given in part (b) of Theorem 7.2.1, we identify
n � 1 � 5 or n � 4 and then multiply and divide by 4!:

.

(b) To match the form given in part (d) of Theorem 7.2.1, we identify k2 � 7, so
. We fix up the expression by multiplying and dividing by :

.

� �1 IS A LINEAR TRANSFORM The inverse Laplace transform is also a linear
transform; that is, for constants a and b

, (1)

where F and G are the transforms of some functions f and g. Like (2) of Section 7.1,
(1) extends to any finite linear combination of Laplace transforms.

� �1{�F(s) � �G(s)} � �� �1{F(s)} � �� �1{G(s)}

� �1� 1

s2 � 7� �
1

17
� �1� 17

s2 � 7� �
1

17
 sin17t

17k � 17

� �1�1

s5� �
1

4!
� �1�4!

s5� �
1

24
t4

� �1� 1

s2 � 7�� �1�1

s5�
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EXAMPLE 2 Termwise Division and Linearity

Evaluate .

SOLUTION We first rewrite the given function of s as two expressions by means of
termwise division and then use (1):

� �1��2s � 6

s2 � 4 �

(2)

termwise
division

parts (e) and (d)
of Theorem 7.2.1 with k � 2

linearity and fixing
up constants

�2s � 6
–––––––––
s2 � 4

6
–
2

��1{ } � ��1{
� �2 cos 2t � 3 sin 2t.

} � �2��1{ ��1{} �
�2s

–––––––
s2 � 4

6
–––––––
s2 � 4 }2

–––––––
s2 � 4

s
–––––––
s2 � 4

�

PARTIAL FRACTIONS Partial fractions play an important role in finding inverse
Laplace transforms. The decomposition of a rational expression into component frac-
tions can be done quickly by means of a single command on most computer algebra
systems. Indeed, some CASs have packages that implement Laplace transform and
inverse Laplace transform commands. But for those of you without access to such
software, we will review in this and subsequent sections some of the basic algebra in
the important cases in which the denominator of a Laplace transform F(s) contains
distinct linear factors, repeated linear factors, and quadratic polynomials with no real
factors. Although we shall examine each of these cases as this chapter develops, it
still might be a good idea for you to consult either a calculus text or a current precal-
culus text for a more comprehensive review of this theory.

The following example illustrates partial fraction decomposition in the case
when the denominator of F(s) is factorable into distinct linear factors.

EXAMPLE 3 Partial Fractions: Distinct Linear Factors

Evaluate .

SOLUTION There exist unique real constants A, B, and C so that

Since the denominators are identical, the numerators are identical:

. (3)

By comparing coefficients of powers of s on both sides of the equality, we know that
(3) is equivalent to a system of three equations in the three unknowns A, B, and C.
However, there is a shortcut for determining these unknowns. If we set s � 1, s � 2,
and s � �4 in (3), we obtain, respectively,

,

and so , , and . Hence the partial fraction decomposition is

, (4)
s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
� �

16>5
s � 1

�
25>6
s � 2

�
1>30

s � 4

C � 1
30B � 25

6A � �16
5

16 � A(�1)(5),  25 � B(1)(6),  and  1 � C(�5)(�6)

s2 � 6s � 9 � A(s � 2)(s � 4) � B(s � 1)(s � 4) � C(s � 1)(s � 2)

�
A(s � 2)(s � 4) � B(s � 1)(s � 4) � C(s � 1)(s � 2)

(s � 1)(s � 2)(s � 4)
.

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
�

A

s � 1
�

B

s � 2
�

C

s � 4

� �1� s2 � 6s � 9

(s � 1)(s � 2)(s � 4)�



7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ● 265

and thus, from the linearity of ��1 and part (c) of Theorem 7.2.1,

� �1� s2 � 6s � 9

(s � 1)(s � 2)(s � 4)� � �
16

5
� �1� 1

s � 1� �
25

6
� �1� 1

s � 2� �
1

30
� �1� 1

s � 4�

. (5)

7.2.2 TRANSFORMS OF DERIVATIVES

TRANSFORM A DERIVATIVE As was pointed out in the introduction to this
chapter, our immediate goal is to use the Laplace transform to solve differential
equations. To that end we need to evaluate quantities such as and

. For example, if f � is continuous for t � 0, then integration by parts
gives

or (6)

Here we have assumed that as . Similarly, with the aid of (6),

or (7)

In like manner it can be shown that

(8)

The recursive nature of the Laplace transform of the derivatives of a function f should
be apparent from the results in (6), (7), and (8). The next theorem gives the Laplace
transform of the nth derivative of f. The proof is omitted.

�{ f �(t)} � s3F(s) � s2f (0) � sf�(0) � f 	(0).

�{ f 	(t)} � s2F(s) � sf (0) � f�(0).

; from (6)� s[sF(s) � f (0)] � f �(0)

� �f�(0) � s�{ f�(t)}

�{ f 	(t)} � �


0
e�st f 	(t) dt � e�st f �(t) �


0
� s �


0
e�st f �(t) dt

t : 
e�st f(t) : 0

�{ f�(t)} � sF(s) � f (0).

� �f (0) � s�{ f (t)}

�{ f�(t)} � �


0
e�st f �(t) dt � e�st f (t) �0




� s �


0
e�st f (t) dt

�{d2y>dt2}
�{dy>dt}

� �
16

5
et �

25

6
e2t �

1

30
e�4t

THEOREM 7.2.2 Transform of a Derivative

If f, f �, . . . , f (n�1) are continuous on [0, 
) and are of exponential order and if
f (n)(t) is piecewise continuous on [0, 
), then

where .F(s) � �{ f(t)}

�{ f (n)(t)} � snF(s) � sn�1f(0) � sn�2f �(0) �    � f (n�1)(0),

SOLVING LINEAR ODEs It is apparent from the general result given in
Theorem 7.2.2 that depends on and the n � 1 derivatives
of y(t) evaluated at This property makes the Laplace transform ideally suited
for solving linear initial-value problems in which the differential equation has con-
stant coefficients. Such a differential equation is simply a linear combination of terms
y, y�, y	, . . . , y(n):

y(0) � y0, y�(0) � y1, . . . , y(n�1)(0) � yn�1,

an

dny

dtn � an�1
dn�1y

dtn�1 �    � a0y � g(t),

t � 0.
Y(s) � �{y(t)}�{dny>dtn}
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where the ai, i � 0, 1, . . . , n and y0, y1, . . . , yn�1 are constants. By the linearity prop-
erty the Laplace transform of this linear combination is a linear combination of
Laplace transforms:

(9)

From Theorem 7.2.2, (9) becomes

,
(10)

where � G(s). In other words, the Laplace transform of
a linear differential equation with constant coefficients becomes an algebraic equa-
tion in Y(s). If we solve the general transformed equation (10) for the symbol Y(s), we
first obtain P(s)Y(s) � Q(s) � G(s) and then write

, (11)

where is a polynomial in s of degree
less than or equal to consisting of the various products of the coefficients
ai, . . . , n and the prescribed initial conditions y0, y1, . . . , yn�1, and G(s) is
the Laplace transform of g(t).* Typically, we put the two terms in (11) over the least
common denominator and then decompose the expression into two or more
partial fractions. Finally, the solution y(t) of the original initial-value problem is

, where the inverse transform is done term by term.
The procedure is summarized in the following diagram.

The next example illustrates the foregoing method of solving DEs, as well as
partial fraction decomposition in the case when the denominator of Y(s) contains a
quadratic polynomial with no real factors.

Apply Laplace Transform
Find unknown y(t)
that satisfies DE
and initial conditions

Transformed DE
becomes an algebraic

equation in Y(s)

Solve transformed
equation for Y(s)

Solution y(t)
of original IVP

Apply Inverse Transform −1

y(t) � � �1{Y(s)}

i � 1,
n � 1

P(s) � ansn � an�1sn�1 �    � a0, Q(s)

Y(s) �
Q(s)

P(s)
�

G(s)

P(s)

�{y(t)} � Y(s) and �{g(t)}

 � an�1[sn�1Y(s) � sn�2y(0) �    � y(n�2)(0)] �    � a0Y(s) � G(s)

an [snY(s) � sn�1y(0) �    � y(n�1)(0)]

an��dny

dtn� � an�1��d n�1y

dtn�1� �    � a0 �{y} � �{g(t)}.

*The polynomial P(s) is the same as the nth-degree auxiliary polynomial in (12) in Section 4.3 with the
usual symbol m replaced by s.

EXAMPLE 4 Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

.

SOLUTION We first take the transform of each member of the differential 
equation:

. (12)��dy

dt� � 3�{y} � 13�{sin 2t}

dy

dt
� 3y � 13 sin 2t,  y(0) � 6
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From (6), , and from part (d) of Theorem 7.1.1,
, so (12) is the same as

.

Solving the last equation for Y(s), we get

. (13)

Since the quadratic polynomial s2 � 4 does not factor using real numbers, its
assumed numerator in the partial fraction decomposition is a linear polynomial in s:

.

Putting the right-hand side of the equality over a common denominator and equating
numerators gives 6s2 � 50 � A(s2 � 4) � (Bs � C)(s � 3). Setting s � �3 then
immediately yields A � 8. Since the denominator has no more real zeros, we equate
the coefficients of s2 and s: 6 � A � B and 0 � 3B � C. Using the value of A in the
first equation gives B � �2, and then using this last value in the second equation gives
C � 6. Thus

.

We are not quite finished because the last rational expression still has to be written as
two fractions. This was done by termwise division in Example 2. From (2) of that
example,

.

It follows from parts (c), (d), and (e) of Theorem 7.2.1 that the solution of the initial-
value problem is y(t) � 8e�3t � 2 cos 2t � 3 sin 2t.

y(t) � 8� �1� 1

s � 3� � 2� �1� s

s2 � 4� � 3� �1� 2

s2 � 4�

Y(s) �
6s2 � 50

(s � 3)(s2 � 4)
�

8

s � 3
�

�2s � 6

s2 � 4

6s2 � 50

(s � 3)(s2 � 4)
�

A

s � 3
�

Bs � C

s2 � 4

Y(s) �
6

s � 3
�

26

(s � 3)(s2 � 4)
�

6s2 � 50

(s � 3)(s2 � 4)

sY(s) � 6 � 3Y(s) �
26

s2 � 4
  or  (s � 3)Y(s) � 6 �

26

s2 � 4

�{sin 2t} � 2>(s2 � 4)
�{dy>dt} � sY(s) � y(0) � sY(s) � 6

EXAMPLE 5 Solving a Second-Order IVP

Solve y	 � 3y� � 2y � e�4t, y(0) � 1, y�(0) � 5.

SOLUTION Proceeding as in Example 4, we transform the DE. We take the sum of
the transforms of each term, use (6) and (7), use the given initial conditions, use (c) of
Theorem 7.2.1, and then solve for Y(s):

. (14)

The details of the partial fraction decomposition of Y(s) have already been carried out
in Example 3. In view of the results in (4) and (5) we have the solution of the initial-
value problem

.y(t) � � �1{Y(s)} � �
16

5
et �

25

6
e2t �

1

30
e�4t

Y(s) �
s � 2

s2 � 3s � 2
�

1

(s2 � 3s � 2)(s � 4)
�

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)

 (s2 � 3s � 2)Y(s) � s � 2 �
1

s � 4

s2Y(s) � sy(0) � y�(0) � 3[sY(s) � y(0)] � 2Y(s) �
1

s � 4

��d 2y

dt 2� � 3��dy

dt� � 2�{y} � �{e�4t}
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Examples 4 and 5 illustrate the basic procedure for using the Laplace transform
to solve a linear initial-value problem, but these examples may appear to demonstrate
a method that is not much better than the approach to such problems outlined in
Sections 2.3 and 4.3–4.6. Don’t draw any negative conclusions from only two
examples. Yes, there is a lot of algebra inherent in the use of the Laplace transform,
but observe that we do not have to use variation of parameters or worry about the
cases and algebra in the method of undetermined coefficients. Moreover, since
the method incorporates the prescribed initial conditions directly into the solution,
there is no need for the separate operation of applying the initial conditions to the
general solution of the DE to find specific
constants in a particular solution of the IVP.

The Laplace transform has many operational properties. In the sections that fol-
low we will examine some of these properties and see how they enable us to solve
problems of greater complexity.

y � c1y1 � c2y2 �    � cn yn � yp

s2 � 6s � 9
––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

1–––
30

�
s��4

 � � C.and

s2 � 6s � 9
––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

25–––
6

�
s�2

 � � B

REMARKS

(i) The inverse Laplace transform of a function F(s) may not be unique; in other
words, it is possible that and yet f1 � f2. For our purposes
this is not anything to be concerned about. If f1 and f2 are piecewise continuous
on [0, 
) and of exponential order, then f1 and f2 are essentially the same. See
Problem 44 in Exercises 7.2. However, if f1 and f2 are continuous on [0, 
) and

, then f1 � f2 on the interval.

(ii) This remark is for those of you who will be required to do partial fraction
decompositions by hand. There is another way of determining the coefficients
in a partial fraction decomposition in the special case when is
a rational function of s and the denominator of F is a product of distinct linear
factors. Let us illustrate by reexamining Example 3. Suppose we multiply both
sides of the assumed decomposition

(15)

by, say, s � 1, simplify, and then set s � 1. Since the coefficients of B and C on
the right-hand side of the equality are zero, we get

.

Written another way,

,

where we have shaded, or covered up, the factor that canceled when the left-
hand side was multiplied by s � 1. Now to obtain B and C, we simply evaluate
the left-hand side of (15) while covering up, in turn, s � 2 and s � 4:

s2 � 6s � 9

(s � 1) (s � 2)(s � 4) �
s�1

� �
16

5
� A

s2 � 6s � 9

(s � 2)(s � 4) �
s�1

� A    or    A � �
16

5

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
�

A

s � 1
�

B

s � 2
�

C

s � 4

�{ f(t)} � F(s)

�{ f1(t)} � �{ f2(t)}

�{ f1(t)} � �{ f2(t)}
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The desired decomposition (15) is given in (4). This special technique for
determining coefficients is naturally known as the cover-up method.

(iii) In this remark we continue our introduction to the terminology of
dynamical systems. Because of (9) and (10) the Laplace trans-
form is well adapted to linear dynamical systems. The polynomial

in (11) is the total coefficient of Y(s) in
(10) and is simply the left-hand side of the DE with the derivatives dky�dtk

replaced by powers sk, k � 0, 1, . . . , n. It is usual practice to call the recipro-
cal of P(s)—namely, W(s) � 1�P(s)—the transfer function of the system
and write (11) as

. (16)

In this manner we have separated, in an additive sense, the effects on the response
that are due to the initial conditions (that is, W(s)Q(s)) from those due to the
input function g (that is, W(s)G(s)). See (13) and (14). Hence the response y(t) of
the system is a superposition of two responses:

.

If the input is g(t) � 0, then the solution of the problem is
. This solution is called the zero-input response of the

system. On the other hand, the function is the output due
to the input g(t). Now if the initial state of the system is the zero state (all the
initial conditions are zero), then Q(s) � 0, and so the only solution of the initial-
value problem is y1(t). The latter solution is called the zero-state response of the
system. Both y0(t) and y1(t) are particular solutions: y0(t) is a solution of the IVP
consisting of the associated homogeneous equation with the given initial condi-
tions, and y1(t) is a solution of the IVP consisting of the nonhomogeneous equa-
tion with zero initial conditions. In Example 5 we see from (14) that the transfer
function is W(s) � 1�(s2 � 3s � 2), the zero-input response is

,

and the zero-state response is

.

Verify that the sum of y0(t) and y1(t) is the solution y(t) in Example 5 and that
y0(0) � 1, , whereas y1(0) � 0, .y�1(0) � 0y�0(0) � 5

y1(t) � � �1� 1

(s � 1)(s � 2)(s � 4)� � �
1

5
et �

1

6
e2t �

1

30
e�4t

y0(t) � � �1� s � 2

(s � 1)(s � 2)� � �3et � 4e2t

y1(t) � � �1{W(s)G(s)}
y0(t) � � �1{W(s)Q(s)}

y(t) � � �1{W(s)Q(s)} � � �1{W(s)G(s)} � y0(t) � y1(t)

Y(s) � W(s)Q(s) � W(s)G(s)

P(s) � ansn � an�1sn�1 �    � a0

EXERCISES 7.2 Answers to selected odd-numbered problems begin on page ANS-10.

7.2.1 INVERSE TRANSFORMS

In Problems 1–30 use appropriate algebra and Theorem 7.2.1
to find the given inverse Laplace transform.

1. 2.

3. 4.

5. 6. � �1�(s � 2)2

s3 �� �1�(s � 1)3

s4 �

� �1��2

s
�

1

s3�
2

�� �1�1

s2 �
48

s5�

� �1�1

s4�� �1�1

s3�

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. � �1� s � 1

s2 � 2�� �1�2s � 6

s2 � 9�

� �1� 1

4s2 � 1�� �1� 4s

4s2 � 1�

� �1� 10s

s2 � 16�� �1� 5

s2 � 49�

� �1� 1

5s � 2�� �1� 1

4s � 1�

� �1�4

s
�

6

s5 �
1

s � 8�� �1�1

s2 �
1

s
�

1

s � 2�
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17. 18.

19. 20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

7.2.2 TRANSFORMS OF DERIVATIVES

In Problems 31–40 use the Laplace transform to solve the
given initial-value problem.

31.

32.

33. y� � 6y � e4t, y(0) � 2

34. y� � y � 2 cos 5t, y(0) � 0

35. y	 � 5y� � 4y � 0, y(0) � 1, y�(0) � 0

36. y	 � 4y� � 6e3t � 3e�t, y(0) � 1, y�(0) � �1

37.

38. y	 � 9y � et, y(0) � 0, y�(0) � 0

y	 � y � 22 sin22t,  y(0) � 10,  y�(0) � 0

2
dy

dt
� y � 0,  y(0) � �3

dy

dt
� y � 1,  y (0) � 0

� �1� 6s � 3

s4 � 5s2 � 4�� �1� 1

(s2 � 1)(s2 � 4)�

� �1� 1

s4 � 9�� �1� 2s � 4

(s2 � s)(s2 � 1)�

� �1� s

(s � 2)(s2 � 4)�� �1� 1

s3 � 5s�

� �1� s2 � 1

s(s � 1)(s � 1)(s � 2)�

� �1� s

(s � 2)(s � 3)(s � 6)�

� �1� s � 3

�s � 13 ��s � 13 ��

� �1� 0.9s

(s � 0.1)(s � 0.2)�

� �1� 1

s2 � s � 20�� �1� s

s2 � 2s � 3�

� �1� s � 1

s2 � 4s�� �1� 1

s2 � 3s� 39. 2y� � 3y	 � 3y� � 2y � e�t, y(0) � 0, y�(0) � 0,
y	(0) � 1

40. y� � 2y	 � y� � 2y � sin 3t, y(0) � 0, y�(0) � 0,
y	(0) � 1

The inverse forms of the results in Problem 46 in
Exercises 7.1 are

In Problems 41 and 42 use the Laplace transform and these
inverses to solve the given initial-value problem.

41. y� � y � e�3t cos 2t, y(0) � 0

42. y	 � 2y� � 5y � 0, y(0) � 1, y�(0) � 3

Discussion Problems

43. (a) With a slight change in notation the transform in (6)
is the same as

With f (t) � teat, discuss how this result in conjunc-
tion with (c) of Theorem 7.1.1 can be used to evalu-
ate .

(b) Proceed as in part (a), but this time discuss how to
use (7) with f (t) � t sin kt in conjunction with (d)
and (e) of Theorem 7.1.1 to evaluate .

44. Make up two functions f1 and f2 that have the same
Laplace transform. Do not think profound thoughts.

45. Reread Remark (iii) on page 269. Find the zero-input
and the zero-state response for the IVP in Problem 36.

46. Suppose f (t) is a function for which f �(t) is piecewise
continuous and of exponential order c. Use results in
this section and Section 7.1 to justify

,

where F(s) � �{ f (t)}. Verify this result with
f (t) � cos kt.

f (0) � lim
s: 


sF(s)

�{t sin kt}

�{teat}

�{ f �(t)} � s�{ f (t)} � f (0).

� �1� b

(s � a)2 � b2� � eat  sin bt.

� �1� s � a

(s � a)2 � b2� � eat cos bt

OPERATIONAL PROPERTIES I

REVIEW MATERIAL
● Keep practicing partial fraction decomposition
● Completion of the square

INTRODUCTION It is not convenient to use Definition 7.1.1 each time we wish to find the Laplace
transform of a function f (t). For example, the integration by parts involved in evaluating, say,

is formidable, to say the least. In this section and the next we present several labor-
saving operational properties of the Laplace transform that enable us to build up a more extensive list of
transforms (see the table in Appendix III) without having to resort to the basic definition and integration.

�{ett2 sin 3t}

7.3


