
SOLUTIONS ABOUT ORDINARY POINTS

REVIEW MATERIAL
● Power Series (see any Calculus Text)

INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE with constant
coefficients was essentially a problem in algebra. By finding the roots of the auxiliary equation,
we could write a general solution of the DE as a linear combination of the elementary functions
xk, xke�x, xke�x cos �x, and xke�xsin �x, where k is a nonnegative integer. But as was pointed out
in the introduction to Section 4.7, most linear higher-order DEs with variable coefficients cannot
be solved in terms of elementary functions. A usual course of action for equations of this sort is
to assume a solution in the form of infinite series and proceed in a manner similar to the method
of undetermined coefficients (Section 4.4). In this section we consider linear second-order DEs
with variable coefficients that possess solutions in the form of power series.

We begin with a brief review of some of the important facts about power series. For a more
comprehensive treatment of the subject you should consult a calculus text.
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6.1

6.1.1 REVIEW OF POWER SERIES

Recall from calculus that a power series in x � a is an infinite series of the form

Such a series is also said to be a power series centered at a. For example, the power
series is centered at a � �1. In this section we are concerned
mainly with power series in x, in other words, power series such as

that are centered at a � 0. The following list
summarizes some important facts about power series.

• Convergence A power series is convergent at a
specified value of x if its sequence of partial sums {SN(x)} converges—that is,

exists. If the limit does not exist at x,

then the series is said to be divergent.
• Interval of Convergence Every power series has an interval of convergence.

The interval of convergence is the set of all real numbers x for which the series
converges.

• Radius of Convergence Every power series has a radius of convergence R.
If R � 0, then the power series converges for
and diverges for If the series converges only at its center a,
then R � 0. If the series converges for all x, then we write R � 
. Recall that
the absolute-value inequality is equivalent to the simultaneous
inequality a � R � x � a � R. A power series might or might not converge
at the endpoints a � R and a � R of this interval.

• Absolute Convergence Within its interval of convergence a power series
converges absolutely. In other words, if x is a number in the interval of
convergence and is not an endpoint of the interval, then the series of
absolute values converges. See Figure 6.1.1.

• Ratio Test Convergence of a power series can often be determined by the
ratio test. Suppose that cn � 0 for all n and that

lim
n:
 � cn�1(x � a)n�1

cn(x � a)n �� � x � a � lim
n:
 �cn�1

cn
� � L.

�

n�0 � cn(x � a)n �

� x � a � � R

� x � a � � R.
� x � a � � R�


n�0 cn(x � a)n

lim
N : 


SN (x) � lim
N : 


�N
n�0 cn(x � a)n

�

n�0 cn(x � a)n

�

n�1 2n�1xn � x � 2x2 � 4x3 �   

�

n�0 (x � 1)n
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n�0
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FIGURE 6.1.1 Absolute convergence
within the interval of convergence and
divergence outside of this interval



If L � 1, the series converges absolutely; if L � 1, the series diverges;
and if L � 1, the test is inconclusive. For example, for the power series

the ratio test gives

the series converges absolutely for or or
1 � x � 5. This last inequality defines the open interval of convergence.
The series diverges for , that is, for x � 5 or x � 1. At the left
endpoint x � 1 of the open interval of convergence, the series of constants

is convergent by the alternating series test. At the right
endpoint x � 5, the series is the divergent harmonic series. The
interval of convergence of the series is [1, 5), and the radius of convergence
is R � 2.

• A Power Series Defines a Function A power series defines a function
whose domain is the interval of convergence of

the series. If the radius of convergence is R � 0, then f is continuous, differ-
entiable, and integrable on the interval (a � R, a � R). Moreover, f�(x)
and 	f (x)dx can be found by term-by-term differentiation and integration.
Convergence at an endpoint may be either lost by differentiation or
gained through integration. If is a power series in x, then
the first two derivatives are and
Notice that the first term in the first derivative and the first two terms in the
second derivative are zero. We omit these zero terms and write

(1)

These results are important and will be used shortly.
• Identity Property If for all numbers x in the

interval of convergence, then cn � 0 for all n.
• Analytic at a Point A function f is analytic at a point a if it can be

represented by a power series in x � a with a positive or infinite radius
of convergence. In calculus it is seen that functions such as ex, cos x, sin x,
ln(1 � x), and so on can be represented by Taylor series. Recall, for
example, that

�

n�0 cn(x � a)n � 0, R � 0

y� � �



n�1
cnnxn�1    and    y	 � �




n�2
cnn(n � 1)xn�2.

y	 � �

n�0 n(n � 1)xn�2.y� � �


n�0 nxn�1
y � �


n�0 cnxn

f (x) � �

n�0 cn(x � a)n

� 

n�1 (1>n)

�

n�1 ((�1)n>n)

� x � 3 � � 2

� x � 3 � � 21
2 � x � 3 � � 1

lim
n:
 � (x � 3)n�1

2n�1(n � 1)

(x � 3)n

2nn
� � � x � 3 �  lim

n:


n

2(n � 1)
�

1

2
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(2)ex � 1 �
x

1!
�

x2

2!
� . . .,    sin x � x �

x3

3!
�

x5

5!
� . . .,    cos x � 1 �

x2

2!
�

x4

4!
�

x6

6!
� . . .

for These Taylor series centered at 0, called Maclaurin series,
show that ex, sin x, and cos x are analytic at x � 0.

• Arithmetic of Power Series Power series can be combined through the
operations of addition, multiplication, and division. The procedures for
power series are similar to those by which two polynomials are added,
multiplied, and divided—that is, we add coefficients of like powers of x,
use the distributive law and collect like terms, and perform long division.
For example, using the series in (2), we have

� x � � 
.

� x � x2 �
x3

3
�

x5

30
�   .

� (1)x � (1)x2 � ��
1

6
�

1

2�x3 � ��
1

6
�

1

6�x4 � � 1

120
�

1

12
�

1

24�x5 �   

exsin x � �1 � x �
x2

2
�

x3

6
�

x4

24
�   ��x �

x3

6
�

x5

120
�

x7

5040
�   �



EXAMPLE 1 Adding Two Power Series

Write as a single power series whose general
term involves xk.

SOLUTION To add the two series, it is necessary that both summation indices start
with the same number and that the powers of x in each series be “in phase”; that is, if
one series starts with a multiple of, say, x to the first power, then we want the other
series to start with the same power. Note that in the given problem the first series
starts with x0, whereas the second series starts with x1. By writing the first term of the
first series outside the summation notation,

we see that both series on the right-hand side start with the same power of x—namely,
x1. Now to get the same summation index, we are inspired by the exponents of x; we let
k � n � 2 in the first series and at the same time let k � n � 1 in the second series. The
right-hand side becomes

(3)

Remember that the summation index is a “dummy” variable; the fact that k � n � 1
in one case and k � n � 1 in the other should cause no confusion if you keep in
mind that it is the value of the summation index that is important. In both cases
k takes on the same successive values k � 1, 2, 3, . . . when n takes on the values
n � 2, 3, 4, . . . for k � n � 1 and n � 0, 1, 2, . . . for k � n � 1. We are now in a
position to add the series in (3) term by term:

(4)

If you are not convinced of the result in (4), then write out a few terms on both
sides of the equality.

�



n�2
n(n�1)cnxn�2 � �




n�0
cnxn�1 � 2c2 � �




k�1
[(k � 2)(k � 1)ck�2 � ck�1]xk.

same

same

2c2 � � (k � 2)(k � 1)ck�2xk � � ck�1xk.
k�1




k�1




series starts
with x
for n � 3

series starts
with x
for n � 0

� n(n � 1)cnxn�2 � � cnxn�1 � 2  1c2x 0 � � n(n � 1)cnxn�2 � � cnxn�1,
n�2




n�0




n�3




n�0




�

n�2 n(n � 1)cnxn�2 � �


n�0 cnxn�1
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Since the power series for ex and sin x converge for the product
series converges on the same interval. Problems involving multipli-
cation or division of power series can be done with minimal fuss by using a
CAS.

SHIFTING THE SUMMATION INDEX For the remainder of this section, as well
as this chapter, it is important that you become adept at simplifying the sum of two
or more power series, each expressed in summation (sigma) notation, to an
expression with a single As the next example illustrates, combining two or more
summations as a single summation often requires a reindexing—that is, a shift in the
index of summation.

�.

� x � � 
,



6.1.2 POWER SERIES SOLUTIONS

A DEFINITION Suppose the linear second-order differential equation

(5)

is put into standard form

(6)

by dividing by the leading coefficient a2(x). We have the following definition.

DEFINITION 6.1.1 Ordinary and Singular Points

A point x0 is said to be an ordinary point of the differential equation (5) if
both P(x) and Q(x) in the standard form (6) are analytic at x0. A point that is
not an ordinary point is said to be a singular point of the equation.

Every finite value of x is an ordinary point of the differential equation
y	 � (ex)y� � (sin x)y � 0. In particular, x � 0 is an ordinary point because, as we
have already seen in (2), both ex and sin x are analytic at this point. The negation in the
second sentence of Definition 6.1.1 stipulates that if at least one of the functions P(x)
and Q(x) in (6) fails to be analytic at x0, then x0 is a singular point. Note that x � 0 is a
singular point of the differential equation y	 � (ex)y� � (ln x)y � 0 because Q(x) � ln x
is discontinuous at x � 0 and so cannot be represented by a power series in x.

POLYNOMIAL COEFFICIENTS We shall be interested primarily in the case when
(5) has polynomial coefficients. A polynomial is analytic at any value x, and a ratio-
nal function is analytic except at points where its denominator is zero. Thus if a2(x),
a1(x), and a0(x) are polynomials with no common factors, then both rational functions
P(x) � a1(x)�a2(x) and Q(x) � a0(x)�a2(x) are analytic except where a2(x) � 0. It
follows, then, that:

x � x0 is an ordinary point of (5) if a2(x0) � 0 whereas x � x0 is a singular point
of (5) if a2(x0) � 0.

For example, the only singular points of the equation (x2 � 1)y	 � 2xy� � 6y � 0 are
solutions of x2 � 1 � 0 or x � �1. All other finite values* of x are ordinary points.
Inspection of the Cauchy-Euler equation ax2y	 � bxy� � cy � 0 shows that it has
a singular point at x � 0. Singular points need not be real numbers. The equation
(x2 � 1)y	 � xy� � y � 0 has singular points at the solutions of x2 � 1 � 0—namely,
x � �i. All other values of x, real or complex, are ordinary points.

We state the following theorem about the existence of power series solutions
without proof.

THEOREM 6.1.1 Existence of Power Series Solutions

If x � x0 is an ordinary point of the differential equation (5), we can always find
two linearly independent solutions in the form of a power series centered at x0 ,
that is, . A series solution converges at least on some
interval defined by where R is the distance from x0 to the closest
singular point.

� x � x0 � � R,
y � �


n�0 cn(x � x0)n

y	 � P(x)y� � Q(x)y � 0

a2(x)y	 � a1(x)y� � a0(x)y � 0
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*For our purposes, ordinary points and singular points will always be finite points. It is possible for an
ODE to have, say, a singular point at infinity.



A solution of the form is said to be a solution about the
ordinary point x0. The distance R in Theorem 6.1.1 is the minimum value or the
lower bound for the radius of convergence of series solutions of the differential equa-
tion about x0.

In the next example we use the fact that in the complex plane the distance
between two complex numbers a � bi and c � di is just the distance between the two
points (a, b) and (c, d ).

EXAMPLE 2 Lower Bound for Radius of Convergence

The complex numbers 1 � 2i are singular points of the differential equation
(x2 � 2x � 5)y	 � xy� � y � 0. Because x � 0 is an ordinary point of the equation,
Theorem 6.1.1 guarantees that we can find two power series solutions about 0, that is,
solutions that look like Without actually finding these solutions, we
know that each series must converge at least for because is the
distance in the complex plane from 0 (the point (0, 0)) to either of the numbers 1 � 2i
(the point (1, 2)) or 1 � 2i (the point (1, �2)). However, one of these two solutions is
valid on an interval much larger than in actual fact this solution
is valid on (�
, 
) because it can be shown that one of the two power series solutions
about 0 reduces to a polynomial. Therefore we also say that is the lower bound for
the radius of convergence of series solutions of the differential equation about 0.

If we seek solutions of the given DE about a different ordinary point, say, x � �1,
then each series converges at least for because
the distance from �1 to either 1 � 2i or 1 � 2i is

NOTE In the examples that follow, as well as in Exercises 6.1, we shall, for the
sake of simplicity, find power series solutions only about the ordinary point x � 0. If
it is necessary to find a power series solution of a linear DE about an ordinary point
x0 � 0, we can simply make the change of variable t � x � x0 in the equation (this
translates x � x0 to t � 0), find solutions of the new equation of the form

and then resubstitute t � x � x0.

FINDING A POWER SERIES SOLUTION The actual determination of a power
series solution of a homogeneous linear second-order DE is quite analogous to what
we did in Section 4.4 in finding particular solutions of nonhomogeneous DEs by the
method of undetermined coefficients. Indeed, the power series method of solving a
linear DE with variable coefficients is often described as “the method of undetermined
series coefficients.” In brief, here is the idea: We substitute into the
differential equation, combine series as we did in Example 1, and then equate all coef-
ficients to the right-hand side of the equation to determine the coefficients cn. But
because the right-hand side is zero, the last step requires, by the identity property in the
preceding bulleted list, that all coefficients of x must be equated to zero. No, this does
not mean that all coefficients are zero; this would not make sense—after all, Theorem
6.1.1 guarantees that we can find two solutions. Example 3 illustrates how the single
assumption that leads to two sets of
coefficients, so we have two distinct power series y1(x) and y2(x), both expanded
about the ordinary point x � 0. The general solution of the differential equation is
y � C1y1(x) � C2y2(x); indeed, it can be shown that C1 � c0 and C2 � c1.

EXAMPLE 3 Power Series Solutions

Solve y	 � xy � 0.

SOLUTION Since there are no finite singular points, Theorem 6.1.1 guarantees
two power series solutions centered at 0, convergent for Substituting� x � � 
.

y � �

n�0 cnxn � c0 � c1x � c2x2 �   

y � �

n�0 cnxn

y � �

n�0 cnt n,

R � 18 � 212.
� x � � 212y � �


n�0 cn(x � 1)n

15

�15 � x � 15;

R � 15� x � � 15
y � �


n�0 cnxn.

y � �

n�0 cn(x � x0)n

224 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS



and the second derivative (see (1)) into
the differential equation gives

(7)

In Example 1 we already added the last two series on the right-hand side of the
equality in (7) by shifting the summation index. From the result given in (4),

(8)

At this point we invoke the identity property. Since (8) is identically zero, it is neces-
sary that the coefficient of each power of x be set equal to zero—that is, 2c2 � 0
(it is the coefficient of x0), and

(9)

Now 2c2 � 0 obviously dictates that c2 � 0. But the expression in (9), called a
recurrence relation, determines the ck in such a manner that we can choose a certain
subset of the set of coefficients to be nonzero. Since (k � 1)(k � 2) � 0 for all val-
ues of k, we can solve (9) for ck�2 in terms of ck�1:

(10)

This relation generates consecutive coefficients of the assumed solution one at a time
as we let k take on the successive integers indicated in (10):

and so on. Now substituting the coefficients just obtained into the original
assumption

; c8 is zerok � 9,    c11 � �
c8

10 � 11
� 0

k � 8,    c10 � �
c7

9 � 10
�

1

3 � 4 � 6 � 7 � 9 � 10
c1

k � 7,    c9 � �
c6

8 � 9
�

1

2 � 3 � 5 � 6 � 8 � 9
c0

; c5 is zerok � 6,    c8 � �
c5

7 � 8
� 0

k � 5,    c7 � �
c4

6 � 7
�

1

3 � 4 � 6 � 7
c1

k � 4,    c6 � �
c3

5 � 6
�

1

2 � 3 � 5 � 6
c0

; c2 is zerok � 3,    c5 � �
c2

4 � 5
� 0

k � 2,    c4 � �
c1

3 � 4

k � 1,    c3 � �
c0

2 � 3

ck�2 � �
ck�1

(k � 1)(k � 2)
 ,    k � 1, 2, 3, . . . .

(k � 1)(k � 2)ck�2 � ck�1 � 0,    k � 1, 2, 3, . . . .

y	 � xy � 2c2 � �



k�1
[(k � 1)(k � 2)ck�2 � ck�1]xk � 0.

y	 � xy � �



n�2
cnn(n � 1)xn�2 � x �




n�0
cnxn � �




n�2
cnn(n � 1)xn�2 � �




n�0
cnxn�1.

y	 � �

n�2 n(n � 1)cnxn�2y � �


n�0 cnxn
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y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10x10 � c11x11 �   ,



�
c1

3 � 4 � 6 � 7
x7 � 0 �

c0

2 � 3 � 5 � 6 � 8 � 9
x9 �

c1

3 � 4 � 6 � 7 � 9 � 10
x10 � 0 �   .

y � c0 � c1x � 0 �
c0

2 � 3
x3 �

c1

3 � 4
x4 � 0 �

c0

2 � 3 � 5 � 6
x6
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we get

After grouping the terms containing c0 and the terms containing c1, we obtain
y � c0y1(x) � c1y2(x), where

y2(x) � x �
1

3 � 4
x4 �

1

3 � 4 � 6 � 7
x7 �

1

3 � 4 � 6 � 7 � 9 � 10
x10 �    � x � �




k�1

(�1)k

3 � 4    (3k)(3k � 1)
x3k�1.

y1(x) � 1 �
1

2 � 3
x3 �

1

2 � 3 � 5 � 6
x6 �

1

2 � 3 � 5 � 6 � 8 � 9
x9 �    � 1 � �




k�1

(�1)k

2 � 3    (3k � 1)(3k)
x3k

Because the recursive use of (10) leaves c0 and c1 completely undetermined,
they can be chosen arbitrarily. As was mentioned prior to this example, the linear
combination y � c0y1(x) � c1y2(x) actually represents the general solution of the
differential equation. Although we know from Theorem 6.1.1 that each series solu-
tion converges for this fact can also be verified by the ratio test.

The differential equation in Example 3 is called Airy’s equation and is
encountered in the study of diffraction of light, diffraction of radio waves around the
surface of the Earth, aerodynamics, and the deflection of a uniform thin vertical
column that bends under its own weight. Other common forms of Airy’s equation are
y	 � xy � 0 and y	 � �2xy � 0. See Problem 41 in Exercises 6.3 for an application
of the last equation.

EXAMPLE 4 Power Series Solution

Solve (x2 � 1)y	 � xy� � y � 0.

SOLUTION As we have already seen on page 223, the given differential equation has
singular points at x � �i, and so a power series solution centered at 0 will converge at
least for � 1, where 1 is the distance in the complex plane from 0 to either i or �i.
The assumption and its first two derivatives (see (1)) lead toy � �


n�0 cnxn
� x �

� x � � 
,

(x 2 � 1) � n(n � 1)cnxn�2 � x � ncnxn�1 � � cnxn

n�2




n�1




n�0




� � n(n � 1)cnxn � � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�2




n�2




n�1




n�0




� 2c2 � c0 � 6c3x � � [k(k � 1)ck � (k � 2)(k � 1)ck�2 � kck � ck]xk

k�2




� 2c2 � c0 � 6c3x � � [(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2]xk � 0.
k�2




� � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�4




n�2




n�2




� 2c2x 0 � c0x 0 � 6c3x � c1x � c1x � � n(n� 1)cnxn

n�2




k�n

k�n�2 k�n k�n



From this identity we conclude that 2c2 � c0 � 0, 6c3 � 0, and

Thus

Substituting k � 2, 3, 4, . . . into the last formula gives

and so on. Therefore

c10 � �
7

10
c8 �

3 � 5 � 7

2 � 4 � 6 � 8 � 10
c0 �

1 � 3 � 5 � 7

255!
c0,

; c7 is zeroc9 � �
6

9
c7 � 0,

c8 � �
5

8
c6 � �

3 � 5

2 � 4 � 6 � 8
c0 � �

1 � 3 � 5

244!
c0

; c5 is zeroc7 � �
4

7
c5 � 0

c6 � �
3

6
c4 �

3

2 � 4 � 6
c0 �

1 � 3

233!
c0

; c3 is zeroc5 � �
2

5
c3 � 0

c4 � �
1

4
c2 � �

1

2 � 4
c0 � �

1

222!
c0

ck�2 �
1 � k

k � 2
ck ,    k � 2, 3, 4, . . . .

c3 � 0

c2 �
1

2
c0

(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2 � 0.
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� c0y1(x) � c1y2(x).

� c0
1 �
1

2
x2 �

1

222!
x4 �

1 � 3

233!
x6 �

1 � 3 � 5

244!
x8 �

1 � 3 � 5 � 7

255!
x10 �   � � c1x

y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10 x10 �   

The solutions are the polynomial y2(x) � x and the power series

EXAMPLE 5 Three-Term Recurrence Relation

If we seek a power series solution for the differential equation

we obtain and the three-term recurrence relation

It follows from these two results that all coefficients cn, for n � 3, are expressed in
terms of both c0 and c1. To simplify life, we can first choose c0 � 0, c1 � 0; this

ck�2 �
ck � ck�1

(k � 1)(k � 2)
,    k � 1, 2, 3, . . . .

c2 � 1
2 c0

y	 � (1 � x)y � 0,

y � �

n�0 cnxn

y1(x) � 1 �
1

2
x2 � �




n�2
(�1)n�11 � 3 � 5    �2n � 3�

2nn!
x2n ,    � x � � 1.



yields coefficients for one solution expressed entirely in terms of c0. Next, if
we choose c0 � 0, c1 � 0, then coefficients for the other solution are expressed
in terms of c1. Using in both cases, the recurrence relation for
k � 1, 2, 3, . . . gives

c2 � 1
2 c0
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c5 �
c3 � c2

4 � 5
�

c0

4 � 5 

1

6
�

1

2� �
c0

30

c4 �
c2 � c1

3 � 4
�

c0

2 � 3 � 4
�

c0

24

c3 �
c1 � c0

2 � 3
�

c0

2 � 3
�

c0

6

c2 �
1

2
c0

c0 � 0, c1 � 0

c5 �
c3 � c2

4 � 5
�

c1

4 � 5 � 6
�

c1

120

c4 �
c2 � c1

3 � 4
�

c1

3 � 4
�

c1

12

c3 �
c1 � c0

2 � 3
�

c1

2 � 3
�

c1

6

c2 �
1

2
c0 � 0

c0 � 0, c1 � 0

and so on. Finally, we see that the general solution of the equation is
y � c0y1(x) � c1y2(x), where

and

Each series converges for all finite values of x.

NONPOLYNOMIAL COEFFICIENTS The next example illustrates how to find a
power series solution about the ordinary point x0 � 0 of a differential equation when
its coefficients are not polynomials. In this example we see an application of the
multiplication of two power series.

EXAMPLE 6 DE with Nonpolynomial Coefficients

Solve y	 � (cos x)y � 0.

SOLUTION We see that x � 0 is an ordinary point of the equation because, as we
have already seen, cos x is analytic at that point. Using the Maclaurin series for cos x
given in (2), along with the usual assumption and the results in (1),
we find

y � �

n�0 cnxn

y2(x) � x �
1

6
x3 �

1

12
x4 �

1

120
x5 �   .

y1(x) � 1 �
1

2
x2 �

1

6
x3 �

1

24
x4 �

1

30
x5 �   

� 2c2 � c0 � (6c3 � c1)x � �12c4 � c2 �
1

2
c0�x2 � �20c5 � c3 �

1

2
c1�x3 �    � 0.

� 2c2 � 6c3x � 12c4x2 � 20c5x3 �    � �1 �
x2

2!
�

x4

4!
�   �(c0 � c1x � c2x2 � c3x3 �   )

y	 � (cos x)y � �



n�2
n(n � 1)cnxn�2 � �1 �

x2

2!
�

x4

4!
�

x6

6!
�   ��




n�0
cnxn

It follows that

2c2 � c0 � 0,    6c3 � c1 � 0,    12c4 � c2 �
1

2
c0 � 0,    20c5 � c3 �

1

2
c1 � 0,



and so on. This gives By group-
ing terms, we arrive at the general solution y � c0y1(x) � c1y 2(x), where

Because the differential equation has no finite singular points, both power series con-
verge for

SOLUTION CURVES The approximate graph of a power series solution
can be obtained in several ways. We can always resort to graphing

the terms in the sequence of partial sums of the series—in other words, the graphs of
the polynomials For large values of N, SN (x) should give us an
indication of the behavior of y(x) near the ordinary point x � 0. We can also obtain
an approximate or numerical solution curve by using a solver as we did in Section
4.9. For example, if you carefully scrutinize the series solutions of Airy’s equation in
Example 3, you should see that y1(x) and y2(x) are, in turn, the solutions of the initial-
value problems

(11)

The specified initial conditions “pick out” the solutions y1(x) and y2(x) from
y � c0y1(x) � c1y2(x), since it should be apparent from our basic series assumption

that y(0) � c0 and y�(0) � c1. Now if your numerical solver requires
a system of equations, the substitution y� � u in y	 � xy � 0 gives y	 � u� � �xy,
and so a system of two first-order equations equivalent to Airy’s equation is

(12)

Initial conditions for the system in (12) are the two sets of initial conditions in (11)
rewritten as y(0) � 1, u(0) � 0, and y(0) � 0, u(0) � 1. The graphs of y1(x)
and y2(x) shown in Figure 6.1.2 were obtained with the aid of a numerical solver.
The fact that the numerical solution curves appear to be oscillatory is consistent
with the fact that Airy’s equation appeared in Section 5.1 (page 186) in the form
mx	 � ktx � 0 as a model of a spring whose “spring constant” K(t) � kt increases
with time.

REMARKS

(i) In the problems that follow, do not expect to be able to write a solution in
terms of summation notation in each case. Even though we can generate as
many terms as desired in a series solution either through the use
of a recurrence relation or, as in Example 6, by multiplication, it might not be
possible to deduce any general term for the coefficients cn. We might have to
settle, as we did in Examples 5 and 6, for just writing out the first few terms of
the series.

(ii) A point x0 is an ordinary point of a nonhomogeneous linear second-order
DE y	 � P(x)y� � Q(x)y � f (x) if P(x), Q(x), and f (x) are analytic at x0.
Moreover, Theorem 6.1.1 extends to such DEs; in other words, we can
find power series solutions of nonhomogeneous
linear DEs in the same manner as in Examples 3–6. See Problem 36 in
Exercises 6.1.

y � �

n�0 cn (x � x0)n

y � �

n�0 cnxn

u� � �xy.

y� � u

y � �

n�0 cnxn

y	 � xy � 0,  y(0) � 0, y�(0) � 1.

y	 � xy � 0,  y(0) � 1, y�(0) � 0,

SN (x) � �N
n�0 cnxn.

y(x) � �

n�0 cnxn

� x � � 
.

y1(x) � 1 �
1

2
x2 �

1

12
x4 �       and    y2(x) � x �

1

6
x3 �

1

30
x5 �   .

c5 � 1
30 c1, . . . .c4 � 1

12 c0,c3 � �1
6 c1,c2 � �1

2 c0,
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FIGURE 6.1.2 Numerical solution
curves for Airy’s DE



230 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXERCISES 6.1 Answers to selected odd-numbered problems begin on page ANS-8.

6.1.1 REVIEW OF POWER SERIES

In Problems 1–4 find the radius of convergence and interval
of convergence for the given power series.

1. 2.

3. 4.

In Problems 5 and 6 the given function is analytic at x � 0.
Find the first four terms of a power series in x. Perform the
multiplication by hand or use a CAS, as instructed.

5. 6.

In Problems 7 and 8 the given function is analytic at x � 0.
Find the first four terms of a power series in x. Perform the
long division by hand or use a CAS, as instructed. Give the
open interval of convergence.

7. 8.

In Problems 9 and 10 rewrite the given power series so that
its general term involves xk.

9. 10.

In Problems 11 and 12 rewrite the given expression as a sin-
gle power series whose general term involves xk.

11.

12.

In Problems 13 and 14 verify by direct substitution that the
given power series is a particular solution of the indicated
differential equation.

13.

14.

6.1.2 POWER SERIES SOLUTIONS

In Problems 15 and 16 without actually solving the given
differential equation, find a lower bound for the radius of
convergence of power series solutions about the ordinary
point x � 0. About the ordinary point x � 1.

15. (x2 � 25)y	 � 2xy� � y � 0

16. (x2 � 2x � 10)y	 � xy� � 4y � 0

y ��



n�0

(�1)n

22n(n!)2x2n, xy	 � y� � xy � 0

y ��



n�1

(�1)n�1

n
xn, (x � 1)y	 � y� � 0

�



n�2
n(n � 1)cnxn � 2 �




n�2
n(n � 1)cnxn�2 � 3 �




n�1
ncnxn

�



n�1
2ncnxn�1 ��




n�0
6cnxn�1

�



n�3
(2n � 1)cnxn�3�




n�1
ncnxn�2

1 � x

2 � x

1

cos x

e�x cos xsin x cos x

�



k�0
k!(x � 1)k�




k�1

(�1)k

10k (x � 5)k

�



n�0

(100)n

n!
(x � 7)n�




n�1

2n

n
xn

In Problems 17–28 find two power series solutions of the
given differential equation about the ordinary point x � 0.

17. y	 � xy � 0 18. y	 � x2y � 0

19. y	 � 2xy� � y � 0 20. y	 � xy� � 2y � 0

21. y	 � x2y� � xy � 0 22. y	 � 2xy� � 2y � 0

23. (x � 1)y	 � y� � 0 24. (x � 2)y 	 � xy� � y � 0

25. y	 � (x � 1)y� � y � 0

26. (x2 � 1)y	 � 6y � 0

27. (x2 � 2)y	 � 3xy� � y � 0

28. (x2 � 1)y	 � xy� � y � 0

In Problems 29–32 use the power series method to solve the
given initial-value problem.

29. (x � 1)y	 � xy� � y � 0, y(0) � �2, y�(0) � 6

30. (x � 1)y	 � (2 � x)y� � y � 0, y(0) � 2, y�(0) � �1

31. y	 � 2xy� � 8y � 0, y(0) � 3, y�(0) � 0

32. (x2 � 1)y	 � 2xy� � 0, y(0) � 0, y�(0) � 1

In Problems 33 and 34 use the procedure in Example 6 to
find two power series solutions of the given differential
equation about the ordinary point x � 0.

33. y	 � (sin x)y � 0 34. y	 � exy� � y � 0

Discussion Problems

35. Without actually solving the differential equation
(cos x)y	 � y� � 5y � 0, find a lower bound for the
radius of convergence of power series solutions about
x � 0. About x � 1.

36. How can the method described in this section be used to
find a power series solution of the nonhomogeneous
equation y	 � xy � 1 about the ordinary point x � 0?
Of y	 � 4xy� � 4y � ex? Carry out your ideas by
solving both DEs.

37. Is x � 0 an ordinary or a singular point of the differen-
tial equation xy	 � (sin x)y � 0? Defend your answer
with sound mathematics.

38. For purposes of this problem, ignore the graphs given in
Figure 6.1.2. If Airy’s DE is written as y	 � �xy, what
can we say about the shape of a solution curve if x � 0
and y � 0? If x � 0 and y � 0?

Computer Lab Assignments

39. (a) Find two power series solutions for y	 � xy� � y � 0
and express the solutions y1(x) and y2(x) in terms of
summation notation.



(b) Use a CAS to graph the partial sums SN (x) for
y1(x). Use N � 2, 3, 5, 6, 8, 10. Repeat using the
partial sums SN (x) for y2(x).

(c) Compare the graphs obtained in part (b) with
the curve obtained by using a numerical solver. Use
the initial-conditions y1(0) � 1, y�1(0) � 0, and
y2(0) � 0, y�2(0) � 1.

(d) Reexamine the solution y1(x) in part (a). Express
this series as an elementary function. Then use (5)
of Section 4.2 to find a second solution of the equa-
tion. Verify that this second solution is the same as
the power series solution y2(x).
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40. (a) Find one more nonzero term for each of the solu-
tions y1(x) and y2(x) in Example 6.

(b) Find a series solution y(x) of the initial-value
problem y	 � (cos x)y � 0, y(0) � 1, y�(0) � 1.

(c) Use a CAS to graph the partial sums SN (x) for the
solution y(x) in part (b). Use N � 2, 3, 4, 5, 6, 7.

(d) Compare the graphs obtained in part (c) with the
curve obtained using a numerical solver for the
initial-value problem in part (b).

6.2 SOLUTIONS ABOUT SINGULAR POINTS

REVIEW MATERIAL
● Section 4.2 (especially (5) of that section)

INTRODUCTION The two differential equations

y	 � xy � 0 and xy	 � y � 0

are similar only in that they are both examples of simple linear second-order DEs with variable
coefficients. That is all they have in common. Since x � 0 is an ordinary point of y	 � xy � 0, we
saw in Section 6.1 that there was no problem in finding two distinct power series solutions centered
at that point. In contrast, because x � 0 is a singular point of xy	 � y � 0, finding two infinite
series—notice that we did not say power series—solutions of the equation about that point becomes
a more difficult task.

The solution method that is discussed in this section does not always yield two infinite series
solutions. When only one solution is found, we can use the formula given in (5) of Section 4.2 to find
a second solution.

A DEFINITION A singular point x0 of a linear differential equation

(1)

is further classified as either regular or irregular. The classification again depends on
the functions P and Q in the standard form

(2)

DEFINITION 6.2.1 Regular and Irregular Singular Points

A singular point x0 is said to be a regular singular point of the differential
equation (1) if the functions p(x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x)
are both analytic at x0. A singular point that is not regular is said to be an
irregular singular point of the equation.

The second sentence in Definition 6.2.1 indicates that if one or both of the func-
tions p (x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) fail to be analytic at x0, then
x0 is an irregular singular point.

y	 � P(x)y� � Q(x)y � 0.

a2(x)y	 � a1(x)y� � a0(x)y � 0



6.3.1 BESSEL’S EQUATION

THE SOLUTION Because x � 0 is a regular singular point of Bessel’s equation,
we know that there exists at least one solution of the form 
Substituting the last expression into (1) gives

y � �

n�0 cnxn�r.
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SPECIAL FUNCTIONS

REVIEW MATERIAL
● Sections 6.1 and 6.2

INTRODUCTION The two differential equations

(1)

(2)

occur in advanced studies in applied mathematics, physics, and engineering. They are called Bessel’s
equation of order � and Legendre’s equation of order n, respectively. When we solve (1) we shall
assume that � � 0, whereas in (2) we shall consider only the case when n is a nonnegative integer.

  (1 � x2)y	 � 2xy� � n(n � 1)y � 0

x2y	 � xy� � (x2 � & 2)y � 0

6.3

(3)   � c0(r2 � & 2)xr � xr �



n�1
cn[(n � r)2 � & 2]xn � xr �




n�0
cnxn�2.

   � c0(r2 � r � r � & 2)xr � xr �



n�1
cn[(n � r)(n � r � 1) � (n � r) � &2]xn � xr �




n�0
cnxn�2

x2y	 � xy� � (x2 � & 2)y � �



n�0
cn(n � r)(n � r � 1)xn�r � �




n�0
cn(n � r)xn�r � �




n�0
cnxn�r�2 � & 2 �




n�0
cnxn�r

From (3) we see that the indicial equation is r2 � �2 � 0, so the indicial roots are
r1 � � and r2 � ��. When r1 � �, (3) becomes

Therefore by the usual argument we can write (1 � 2�)c1 � 0 and

or (4)

The choice c1 � 0 in (4) implies that so for k � 0, 2, 4, . . .
we find, after letting k � 2 � 2n, n � 1, 2, 3, . . . , that

(5)c2n � �
c2n�2

22n(n � &)
.

c3 � c5 � c7 �    � 0,

ck�2 �
�ck

(k � 2)(k � 2 � 2&)
,    k � 0, 1, 2, . . . .

 (k � 2)(k � 2 � 2&)ck�2 � ck � 0

xn � cnn(n � 2n)xn � xn � cnxn�2

n�1




n�0




� xn [(1 � 2n)c1x � � [(k � 2)(k � 2 � 2n)ck�2 � ck]xk�2] � 0.
k�0




� xn [(1 � 2n)c1x � � cnn(n � 2n)xn � � cnxn�2]
n�2




n�0




k � n � 2 k � n



Thus

(6)

It is standard practice to choose c0 to be a specific value, namely,

where �(1 � �) is the gamma function. See Appendix I. Since this latter function
possesses the convenient property �(1 � �) � ��(�), we can reduce the indicated
product in the denominator of (6) to one term. For example,

Hence we can write (6) as

for n � 0, 1, 2, . . . .

BESSEL FUNCTIONS OF THE FIRST KIND Using the coefficients c2n just
obtained and r � �, a series solution of (1) is This solution is usu-
ally denoted by J�(x):

(7)

If � � 0, the series converges at least on the interval [0, 
). Also, for the second
exponent r2 � �� we obtain, in exactly the same manner,

(8)

The functions J�(x) and J��(x) are called Bessel functions of the first kind of order �
and ��, respectively. Depending on the value of �, (8) may contain negative powers
of x and hence converges on (0, 
).*

Now some care must be taken in writing the general solution of (1). When � � 0,
it is apparent that (7) and (8) are the same. If � � 0 and r1 � r2 � � � (��) � 2�
is not a positive integer, it follows from Case I of Section 6.2 that J�(x) and J��(x) are
linearly independent solutions of (1) on (0, 
), and so the general solution on the
interval is y � c1J�(x) � c2J��(x). But we also know from Case II of Section 6.2 that
when r1 � r2 � 2� is a positive integer, a second series solution of (1) may exist. In this
second case we distinguish two possibilities. When � � m � positive integer, J�m(x)
defined by (8) and Jm(x) are not linearly independent solutions. It can be shown that J�m

is a constant multiple of Jm (see Property (i) on page 245). In addition, r1 � r2 � 2�
can be a positive integer when � is half an odd positive integer. It can be shown in this

J�&(x) � �



n�0

(�1)n

n!�(1 � & � n) �
x

2�
2n�&

.

 J&(x) � �



n�0

(�1)n

n!�(1 � & � n) �
x

2�
2n�&

.

y � �

n�0 c2n x2n�&.

c2n �
(�1)n

22n�& n!(1 � &)(2 � &)    (n � &)�(1 � &)
�

(�1)n

22n�& n!�(1 � & � n)

�(1 � & � 2) � (2 � &)�(2 � &) � (2 � &)(1 � &)�(1 � &).

�(1 � & � 1) � (1 � &)�(1 � &)

c0 �
1

2&�(1 � &)
,

c2n �
(�1)nc0

22nn!(1 � &)(2 � &)    (n � &)
,    n � 1, 2, 3, . . . .






c6 � �
c4

22 � 3(3 � &)
� �

c0

26 � 1 �  2 � 3(1 � &)(2 � &)(3 � &)

c4 � �
c2

22 � 2(2 � &)
�

c0

24 � 1 � 2(1 � &)(2 � &)

c2 � �
c0

22 � 1 � (1 � &)
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*When we replace x by |x |, the series given in (7) and (8) converge for 0 � |x | � 
.



latter event that J�(x) and J��(x) are linearly independent. In other words, the general
solution of (1) on (0, 
) is

(9)

The graphs of y � J0(x) and y � J1(x) are given in Figure 6.3.1.

EXAMPLE 1 Bessel’s Equation of Order 

By identifying we can see from (9) that the general solution of the

equation on (0, 
) is

BESSEL FUNCTIONS OF THE SECOND KIND If � � integer, the function
defined by the linear combination

(10)

and the function J�(x) are linearly independent solutions of (1). Thus another form of
the general solution of (1) is y � c1J� (x) � c2Y�(x), provided that � � integer. As

m an integer, (10) has the indeterminate form 0�0. However, it can be shown
by L’Hôpital’s Rule that exists. Moreover, the function

and Jm(x) are linearly independent solutions of x2y	 � xy� � (x2 � m2)y � 0. Hence
for any value of � the general solution of (1) on (0, 
) can be written as

(11)

Y� (x) is called the Bessel function of the second kind of order �. Figure 6.3.2 shows
the graphs of Y0(x) and Y1(x).

EXAMPLE 2 Bessel’s Equation of Order 3

By identifying �2 � 9 and � � 3, we see from (11) that the general solution of the
equation x2y	 � xy� � (x2 � 9)y � 0 on (0, 
) is y � c1J3(x) � c2Y3(x).

DES SOLVABLE IN TERMS OF BESSEL FUNCTIONS Sometimes it is possible
to transform a differential equation into equation (1) by means of a change of vari-
able. We can then express the solution of the original equation in terms of Bessel
functions. For example, if we let t � �x, � � 0, in

(12)

then by the Chain Rule,

Accordingly, (12) becomes

dy

dx
�

dy

dt

dt

dx
� �

dy

dt
    and    

d 2y

dx2 �
d

dt �
dy

dx�
dt

dx
� �2 d 2y

dt2 .

x2y	 � xy� � (a2x2 � & 2)y � 0,

y � c1J&(x) � c2Y&(x).

Ym(x) � lim
& :m

Y&(x)

 lim& :m Y&(x)
& : m,

Y& (x) �
cos &�J&(x) � J�&(x)

 sin &�

y � c1J1/2(x) � c2J�1/2(x).x2y	 � xy� � (x2 � 1
4)y � 0

& 2 � 1
4 and & � 1

2,

1
2

y � c1J&(x) � c2J�&(x),    & � integer.
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FIGURE 6.3.1 Bessel functions of
the first kind for n � 0, 1, 2, 3, 4
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FIGURE 6.3.2 Bessel functions of
the second kind for n � 0, 1, 2, 3, 4

� t

��
2

�2 d 2y

dt 2 � � t

���
dy

dt
� (t2 � & 2)y � 0    or    t2 d 2y

dt2 � t 
dy

dt
� (t2 � & 2)y � 0.

The last equation is Bessel’s equation of order � with solution y � c1J�(t) � c2Y�(t). By
resubstituting t � �x in the last expression, we find that the general solution of (12) is

(13)y � c1J&(�x) � c2Y&(�x).



Equation (12), called the parametric Bessel equation of order �, and its general
solution (13) are very important in the study of certain boundary-value problems
involving partial differential equations that are expressed in cylindrical coordinates.

Another equation that bears a resemblance to (1) is the modified Bessel equa-
tion of order �,

(14)

This DE can be solved in the manner just illustrated for (12). This time if we let
t � ix, where i2 � �1, then (14) becomes

Because solutions of the last DE are J�(t) and Y�(t), complex-valued solutions of (14)
are J�(ix) and Y�(ix). A real-valued solution, called the modified Bessel function of
the first kind of order �, is defined in terms of J�(ix):

(15)

See Problem 21 in Exercises 6.3. Analogous to (10), the modified Bessel function of
the second kind of order � � integer is defined to be

(16)

and for integer � � n,

Because I� and K� are linearly independent on the interval (0, 
) for any value of v,
the general solution of (14) is

(17)

Yet another equation, important because many DEs fit into its form by appro-
priate choices of the parameters, is

(18)

Although we shall not supply the details, the general solution of (18),

(19)

can be found by means of a change in both the independent and the dependent

variables: If p is not an integer, then Yp in (19) can be

replaced by J�p.

EXAMPLE 3 Using (18)

Find the general solution of xy	 � 3y� � 9y � 0 on (0, 
).

SOLUTION By writing the given DE as

we can make the following identifications with (18):

The first and third equations imply that a � �1 and With these values the
second and fourth equations are satisfied by taking b � 6 and p � 2. From (19)

c � 1
2.

1 � 2a � 3,    b2c2 � 9,    2c � 2 � �1,    and    a2 � p2c2 � 0.

y	 �
3

x
y� �

9

x
y � 0,

z � bxc, y(x) � �z

b�
a/c

w(z).

y � xa
c1Jp(bxc) � c2Yp(bxc)�,

y	 �
1 � 2a

x
y� � �b2c2x2c�2 �

a2 � p2c2

x2 �y � 0,    p � 0.

y � c1I&(x) � c2K& (x).

Kn(x) � lim
& :n

K&(x).

K&(x) �
�

2

I�& (x) � I& (x)

sin &�
,

I&(x) � i�& J& (ix).

t2 d 2y

dt2 � t
dy

dt
� (t2 � & 2)y � 0.

x2y	 � xy� � (x2 � & 2)y � 0.
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we find that the general solution of the given DE on the interval (0, 
) is

EXAMPLE 4 The Aging Spring Revisited

Recall that in Section 5.1 we saw that one mathematical model for the free undamped
motion of a mass on an aging spring is given by mx	 � ke�� tx � 0, � � 0. We are
now in a position to find the general solution of the equation. It is left as a problem  

to show that the change of variables transforms the differential 
equation of the aging spring into

The last equation is recognized as (1) with � � 0 and where the symbols x
and s play the roles of y and x, respectively. The general solution of the new
equation is x � c1J0(s) � c2Y0(s). If we resubstitute s, then the general solution of
mx	 � ke��tx � 0 is seen to be

See Problems 33 and 39 in Exercises 6.3.

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was mx	 � ktx � 0. By dividing through by m, we see that 

the equation is Airy’s equation y	 � �2xy � 0. See Example 3 in

Section 6.1. The general solution of Airy’s differential equation can also be written
in terms of Bessel functions. See Problems 34, 35, and 40 in Exercises 6.3.

PROPERTIES We list below a few of the more useful properties of Bessel
functions of order m, m � 0, 1, 2, . . .:

(i) (ii)

(iii) (iv)

Note that Property (ii) indicates that Jm(x) is an even function if m is an even
integer and an odd function if m is an odd integer. The graphs of Y0(x) and Y1(x) in
Figure 6.3.2 illustrate Property (iv), namely, Ym(x) is unbounded at the origin. This
last fact is not obvious from (10). The solutions of the Bessel equation of order 0 can
be obtained by using the solutions y1(x) in (21) and y2(x) in (22) of Section 6.2. It can
be shown that (21) of Section 6.2 is y1(x) � J0(x), whereas (22) of that section is

The Bessel function of the second kind of order 0, Y0(x), is then defined to be the

linear combination for x � 0. That is,

where � � 0.57721566 . . . is Euler’s constant. Because of the presence of the
logarithmic term, it is apparent that Y0(x) is discontinuous at x � 0.

Y0(x) �
2

�
J0(x)
� �  ln

x

2� �
2

� �



k�1

(�1)k

(k!)2 �1 �
1

2
�    �

1

k��
x

2�
2k

,

Y0(x) �
2

�
 (� � ln 2)y1(x) �

2

�
y2(x)

y2(x) � J0(x)ln x � �



k�1

(�1)k

(k!)2 �1 �
1

2
�    �

1

k��
x

2�
2k

.

 lim
x:0�

Ym (x) � �
.Jm(0) � �0,

1,

m � 0

m � 0,

Jm(� x) � (�1)mJm(x),J�m(x) � (�1)mJm(x),

x	 �
k

m
tx � 0

x(t) � c1J0�2

� B
k

m
e��t / 2� � c2Y0�2

� B
k

m
e��t / 2�.

s2 d 2x

ds2 � s
dx

ds
� s2x � 0.

s �
2

� B
k

m
e��t / 2

y � x�1[c1J2(6x1/2) � c2Y2(6x1/2)].
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NUMERICAL VALUES The first five nonnegative zeros of J0(x), J1(x), Y0(x), and
Y1(x) are given in Table 6.1. Some additional function values of these four functions
are given in Table 6.2.
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TABLE 6.2 Numerical Values of J0, J1, Y0, and Y1

x J0(x) J1(x) Y0(x) Y1(x)

0 1.0000 0.0000 — —
1 0.7652 0.4401 0.0883 �0.7812
2 0.2239 0.5767 0.5104 �0.1070
3 �0.2601 0.3391 0.3769 0.3247
4 �0.3971 �0.0660 �0.0169 0.3979
5 �0.1776 �0.3276 �0.3085 0.1479
6 0.1506 �0.2767 �0.2882 �0.1750
7 0.3001 �0.0047 �0.0259 �0.3027
8 0.1717 0.2346 0.2235 �0.1581
9 �0.0903 0.2453 0.2499 0.1043

10 �0.2459 0.0435 0.0557 0.2490
11 �0.1712 �0.1768 �0.1688 0.1637
12 0.0477 �0.2234 �0.2252 �0.0571
13 0.2069 �0.0703 �0.0782 �0.2101
14 0.1711 0.1334 0.1272 �0.1666
15 �0.0142 0.2051 0.2055 0.0211

TABLE 6.1 Zeros of J0, J1, Y0, and Y1

J0(x) J1(x) Y0(x) Y1(x)

2.4048 0.0000 0.8936 2.1971
5.5201 3.8317 3.9577 5.4297
8.6537 7.0156 7.0861 8.5960

11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974

DIFFERENTIAL RECURRENCE RELATION Recurrence formulas that relate
Bessel functions of different orders are important in theory and in applications. In the
next example we derive a differential recurrence relation.

EXAMPLE 5 Derivation Using the Series Definition

Derive the formula 

SOLUTION It follows from (7) that

xJ�& (x) � &J&(x) � xJ&�1(x).

The result in Example 5 can be written in an alternative form. Dividing
by x gives

J�& (x) �
&

x
J&(x) � �J&�1(x).

xJ�& (x) � &J& (x) � �xJ&�1(x)

xJv(x) � �  (  )2n�v
�

n�0




k � n � 1

(�1)n(2n � �)
–––––––––––––––
n! (1 � v � n)

x
–
2

L

� �J�(x) � x �  (  )2n���1

n�1


 (�1)n

–––––––––––––––––––––
(n � 1)! (1 � � � n)

x
–
2

L

� � �  (  )2n�v

n�0


 (�1)n

–––––––––––––––
n! (1 � � � n)

x
–
2

L � 2 �  (  )2n�v

n�0


 (�1)nn
–––––––––––––––
n! (1 � � � n)

x
–
2

L

� �J�(x) � x � � �J�(x) � xJ��1(x).  (  )2k���1

k�0


 (�1)k

–––––––––––––––
k! (2 � � � k)

x
–
2

L



This last expression is recognized as a linear first-order differential equation in J�(x).
Multiplying both sides of the equality by the integrating factor x�� then yields

(20)

It can be shown in a similar manner that

(21)

See Problem 27 in Exercises 6.3. The differential recurrence relations (20) and (21)
are also valid for the Bessel function of the second kind Y� (x). Observe that when
� � 0, it follows from (20) that

(22)

An application of these results is given in Problem 39 of Exercises 6.3.

SPHERICAL BESSEL FUNCTIONS When the order � is half an odd integer, that
is, the Bessel functions of the first kind J� (x) can be expressed in
terms of the elementary functions sin x, cos x, and powers of x. Such Bessel functions
are called spherical Bessel functions. Let’s consider the case when From (7),

In view of the property �(1 � �) � ��(�) and the fact that the values

of for n � 0, n � 1, n � 2, and n � 3 are, respectively,

In general,

Hence

Since the infinite series in the last line is the Maclaurin series for sin x, we have
shown that

(23)

It is left as an exercise to show that

(24)

See Problems 31 and 32 in Exercises 6.3.

J�1/2(x) � B
2

�x
cos x.

J1/2(x) � B
2

�x
sin x.

J1/2(x) ��



n�0

(�1)n

n!
(2n � 1)!

22n�1n!
1�

�x

2�
2n�1/2

� B
2

�x �



n�0

(�1)n

(2n � 1)!
x2n�1.

��1 �
1

2
� n� �

(2n � 1)!

22n�1n!
1� .

�( 9
2) � �(1 � 7

2) � 7
2 �( 7

2) �
7 � 5

26 � 2!
1� �

7 � 6 � 5!

26 � 6 � 2!
1� �

7!

273!
1�.

�( 7
2) � �(1 � 5

2) � 5
2 �( 5

2) �
5 � 3

23 1� �
5 � 4 � 3 � 2 � 1

234 � 2
1� �

5!

252!
1�

�( 5
2) � �(1 � 3

2) � 3
2 �( 3

2) �
3

22 1�

�(3
2) � �(1 � 1

2) � 1
2 �( 1

2) � 1
2 1�

�(1 � 1
2 � n)

�(1
2) � 1�

J1/2(x) � �



n�0

(�1)n

n!�(1 � 1
2 � n) �

x

2�
2n�1/2

.

& � 1
2.

�1
2, �3

2, �5
2, . . . ,

J�0(x) � �J1(x)    and    Y �0(x) � �Y1(x).

d

dx
[x&J&(x)] � x&J& �1(x).

d

dx
[x�&J&(x)] � �x�&J&�1(x).
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6.3.2 LEGENDRE’S EQUATION

THE SOLUTION Since x � 0 is an ordinary point of Legendre’s equation (2), we
substitute the series shift summation indices, and combine series to gety � �


k�0 ckxk ,
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� �



j�2
 [( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj]x j � 0

 (1 � x2)y 	 � 2xy� � n(n � 1)y � [n(n � 1)c0 � 2c2] � [(n � 1)(n � 2)c1 � 6c3]x

which implies that

or

(25)

If we let j take on the values 2, 3, 4, . . . , the recurrence relation (25) yields

and so on. Thus for at least we obtain two linearly independent power series
solutions:

(26)

Notice that if n is an even integer, the first series terminates, whereas y2(x) is an
infinite series. For example, if n � 4, then

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is,
when n is a nonnegative integer, we obtain an nth-degree polynomial solution of
Legendre’s equation.

y1(x) � c0
1 �
4 � 5

2!
x2 �

2 � 4 � 5 � 7

4!
x4� � c0
1 � 10x2 �

35

3
x4�.

�
(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
x7 �   �.

y2(x) � c1
x �
(n � 1)(n � 2)

3!
x3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
x5

�
(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
x6 �   �

y1(x) � c0
1 �
n(n � 1)

2!
x2 �

(n � 2)n(n � 1)(n � 3)

4!
x4

� x � � 1

c7 � �
(n � 5)(n � 6)

7 � 6
c5 � �

(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
c1

c6 � �
(n � 4)(n � 5)

6 � 5
c4 � �

(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
c0

c5 � �
(n � 3)(n � 4)

5 � 4
c3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
c1

c4 � �
(n � 2)(n � 3)

4 � 3
c2 �

(n � 2)n(n � 1)(n � 3)

4!
c0

cj�2 � �
(n � j)(n � j � 1)

( j � 2)( j � 1)
cj ,    j � 2, 3, 4, . . . .

c3 � �
(n � 1)(n � 2)

3!
c1

c2 � �
n(n � 1)

2!
c0

 ( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj � 0

 (n � 1)(n � 2)c1 � 6c3 � 0

n(n � 1)c0 � 2c2 � 0



Because we know that a constant multiple of a solution of Legendre’s equation
is also a solution, it is traditional to choose specific values for c0 or c1, depending on
whether n is an even or odd positive integer, respectively. For n � 0 we choose
c0 � 1, and for n � 2, 4, 6, . . .

whereas for n � 1 we choose c1 � 1, and for n � 3, 5, 7, . . .

For example, when n � 4, we have

LEGENDRE POLYNOMIALS These specific nth-degree polynomial solutions are
called Legendre polynomials and are denoted by Pn(x). From the series for y1(x)
and y2(x) and from the above choices of c0 and c1 we find that the first several
Legendre polynomials are

(27)

Remember, P0(x), P1(x), P2(x), P3(x), . . . are, in turn, particular solutions of the
differential equations

(28)

The graphs, on the interval [�1, 1], of the six Legendre polynomials in (27) are
given in Figure 6.3.3.

PROPERTIES You are encouraged to verify the following properties using the
Legendre polynomials in (27).

(i)

(ii) (iii)

(iv) (v)

Property (i) indicates, as is apparent in Figure 6.3.3, that Pn(x) is an even or odd
function according to whether n is even or odd.

RECURRENCE RELATION Recurrence relations that relate Legendre polynomi-
als of different degrees are also important in some aspects of their applications. We
state, without proof, the three-term recurrence relation

(29)

which is valid for k � 1, 2, 3, . . . . In (27) we listed the first six Legendre polynomials.
If, say, we wish to find P6(x), we can use (29) with k � 5. This relation expresses P6(x)
in terms of the known P4(x) and P5(x). See Problem 45 in Exercises 6.3.

(k � 1)Pk�1(x) � (2k � 1)xPk(x) � kPk�1(x) � 0,

P�n(0) � 0,  n evenPn(0) � 0,  n odd

Pn(�1) � (�1)nPn(1) � 1

Pn(�x) � (�1)nPn(x)










n � 0:

n � 1:

n � 2:

n � 3:

  (1 � x2)y 	 � 2xy� � 0,

 (1 � x2)y 	 � 2xy� � 2y � 0,

 (1 � x2)y 	 � 2xy� � 6y � 0,

 (1 � x2)y 	 � 2xy� � 12y � 0,

P0(x) � 1,           P1(x) � x,

P2(x) �
1

2
 (3x2 � 1),      P3(x) �

1

2
 (5x3 � 3x),

P4(x) �
1

8
 (35x4 � 30x2 � 3),    P5(x) �

1

8
 (63x5 � 70x3 � 15x).

y1(x) � (�1)4/2 1 � 3

2 � 4 
1 � 10x2 �
35

3
x4� �

1

8
 (35x4 � 30x2 � 3).

c1 � (�1)(n�1) /2 1 � 3    n

2 � 4    (n � 1)
.

c0 � (�1)n /2 1 � 3    (n � 1)

2 � 4    n
,
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FIGURE 6.3.3 Legendre polynomials
for n � 0, 1, 2, 3, 4, 5



Another formula, although not a recurrence relation, can generate the Legendre
polynomials by differentiation. Rodrigues’ formula for these polynomials is

(30)

See Problem 48 in Exercises 6.3.

REMARKS

(i) Although we have assumed that the parameter n in Legendre’s differential
equation (1 � x2)y	 � 2xy� � n(n � 1)y � 0, represented a nonnegative inte-
ger, in a more general setting n can represent any real number. Any solution of
Legendre’s equation is called a Legendre function. If n is not a nonnegative
integer, then both Legendre functions y1(x) and y2(x) given in (26) are infinite
series convergent on the open interval (�1, 1) and divergent (unbounded) at
x � �1. If n is a nonnegative integer, then as we have just seen one of the
Legendre functions in (26) is a polynomial and the other is an infinite series
convergent for �1 � x � 1. You should be aware of the fact that Legendre’s
equation possesses solutions that are bounded on the closed interval [�1, 1]
only in the case when n � 0, 1, 2, . . . . More to the point, the only Legendre
functions that are bounded on the closed interval [�1, 1] are the Legendre poly-
nomials Pn(x) or constant multiples of these polynomials. See Problem 47 in
Exercises 6.3 and Problem 24 in Chapter 6 in Review.

(ii) In the Remarks at the end of Section 2.3 we mentioned the branch of math-
ematics called special functions. Perhaps a better appellation for this field of
applied mathematics might be named functions, since many of the functions
studied bear proper names: Bessel functions, Legendre functions, Airy func-
tions, Chebyshev polynomials, Gauss’s hypergeometric function, Hermite
polynomials, Jacobi polynomials, Laguerre polynomials, Mathieu functions,
Weber functions, and so on. Historically, special functions were the by-product
of necessity; someone needed a solution of a very specialized differential
equation that arose from an attempt to solve a physical problem.

Pn(x) �
1

2nn!

dn

dxn  (x2 � 1)n,    n � 0, 1, 2, . . . .
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EXERCISES 6.3 Answers to selected odd-numbered problems begin on page ANS-10.

6.3.1 BESSEL’S EQUATION

In Problems 1–6 use (1) to find the general solution of the
given differential equation on (0, 
).

1.

2. x2y	 � xy� � (x2 � 1)y � 0

3. 4x2y	 � 4xy� � (4x2 � 25)y � 0

4. 16x2y	 � 16xy� � (16x2 � 1)y � 0

5. xy	 � y� � xy � 0

6.
d

dx
 [xy�] � �x �

4

x�y � 0

x2y	 � xy� � �x2 � 1
9�y � 0

In Problems 7–10 use (12) to find the general solution of the
given differential equation on (0, 
).

7. x2y	 � xy� � (9x2 � 4)y � 0

8.

9.

10. x2y	 � xy� � (2x2 � 64)y � 0

In Problems 11 and 12 use the indicated change of variable
to find the general solution of the given differential equation
on (0, 
).

11. x2y	 � 2xy� � �2x2y � 0; y � x�1/2v(x)

12. x2y	 � (�2x2 � & 2 � 1
4)y � 0;  y � 1x v(x)

x2y	 � xy� � �25x2 � 4
9�y � 0

x2y	 � xy� � �36x2 � 1
4�y � 0
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In Problems 13–20 use (18) to find the general solution of
the given differential equation on (0, 
).

13. xy	 � 2y� � 4y � 0 14. xy	 � 3y� � xy � 0

15. xy	 � y� � xy � 0 16. xy	 � 5y� � xy � 0

17. x2y	 � (x2 � 2)y � 0

18. 4x2y	 � (16x2 � 1)y � 0

19. xy	 � 3y� � x3y � 0

20. 9x2y	 � 9xy� � (x6 � 36)y � 0

21. Use the series in (7) to verify that I� (x) � i�� J� (ix) is a
real function.

22. Assume that b in equation (18) can be pure imaginary, that
is, b � �i, � � 0, i2 � �1. Use this assumption to express
the general solution of the given differential equation in
terms the modified Bessel functions In and Kn.

(a) y	 � x2y � 0 (b) xy	 � y� � 7x3y � 0

In Problems 23–26 first use (18) to express the general solu-
tion of the given differential equation in terms of Bessel func-
tions. Then use (23) and (24) to express the general solution in
terms of elementary functions.

23. y	 � y � 0

24. x2y	 � 4xy� � (x2 � 2)y � 0

25. 16x2y	 � 32xy� � (x4 � 12)y � 0

26. 4x2y	 � 4xy� � (16x2 � 3)y � 0

27. (a) Proceed as in Example 5 to show that

xJ��(x) � ��J�(x) � xJ��1(x).

[Hint: Write 2n � � � 2(n � �) � �.]

(b) Use the result in part (a) to derive (21).

28. Use the formula obtained in Example 5 along with
part (a) of Problem 27 to derive the recurrence relation

2�J� (x) � xJ��1(x) � xJ��1(x).

In Problems 29 and 30 use (20) or (21) to obtain the given
result.

29. 30. J�0 (x) � J�1(x) � �J1(x)

31. Proceed as on page 247 to derive the elementary form of
J�1/2(x) given in (24).

32. (a) Use the recurrence relation in Problem 28 along
with (23) and (24) to express J3/2(x), J�3/2(x), and
J5/2(x) in terms of sin x, cos x, and powers of x.

(b) Use a graphing utility to graph J1/2(x), J�1/2(x),
J3/2(x), J�3/2(x), and J5/2(x).

�x

0
rJ0(r)dr � xJ1(x)

33. Use the change of variables to show

that the differential equation of the aging spring 
mx	 � ke�� tx � 0, � � 0, becomes

34. Show that is a solution of Airy’s

differential equation y	 � �2xy � 0, x � 0, whenever
w is a solution of Bessel’s equation of order that
is, t � 0. [Hint: After
differentiating, substituting, and simplifying, then let

]
35. (a) Use the result of Problem 34 to express the general

solution of Airy’s differential equation for x � 0 in
terms of Bessel functions.

(b) Verify the results in part (a) using (18).

36. Use the Table 6.1 to find the first three positive eigenval-
ues and corresponding eigenfunctions of the boundary-
value problem

[Hint: By identifying 	 � �2, the DE is the parametric
Bessel equation of order zero.]

37. (a) Use (18) to show that the general solution of the
differential equation xy	 � 	y � 0 on the interval
(0, 
) is

(b) Verify by direct substitution that 
is a particular solution of the DE in the case 	 � 1.

Computer Lab Assignments

38. Use a CAS to graph the modified Bessel functions I0(x),
I1(x), I2(x) and K0(x), K1(x), K2(x). Compare these
graphs with those shown in Figures 6.3.1 and 6.3.2.
What major difference is apparent between Bessel func-
tions and the modified Bessel functions?

39. (a) Use the general solution given in Example 4 to
solve the IVP

Also use and along
with Table 6.1 or a CAS to evaluate coefficients.

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � 
.

Y�0(x) � �Y1(x)J�0(x) � �J1(x)

4x	 � e�0.1tx � 0,  x(0) � 1,  x�(0) � �1
2.

y � 1xJ1(21x)

y � c11xJ1(21�x) � c21xY1(21�x).

y(x), y�(x) bounded as x : 0�, y(2) � 0.

xy	 � y� � �xy � 0,

t � 2
3 �x3 /2.

t2w 	 � tw� � (t2 � 1
9)w � 0,

1
3,

y � x1 /2w(2
3 �x3 /2)

s2 d 2x

ds2 � s
dx

ds
� s2x � 0.

s �
2

� B
k

m
e�� t / 2
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40. (a) Use the general solution obtained in Problem 35 to
solve the IVP

Use a CAS to evaluate coefficients.

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � 200.

41. Column Bending Under Its Own Weight A uniform
thin column of length L, positioned vertically with one
end embedded in the ground, will deflect, or bend away,
from the vertical under the influence of its own weight
when its length or height exceeds a certain critical value.
It can be shown that the angular deflection �(x) of the
column from the vertical at a point P(x) is a solution of
the boundary-value problem:

where E is Young’s modulus, I is the cross-sectional
moment of inertia, � is the constant linear density, and x
is the distance along the column measured from its base.
See Figure 6.3.4. The column will bend only for those
values of L for which the boundary-value problem has a
nontrivial solution.

(a) Restate the boundary-value problem by making the
change of variables t � L � x. Then use the results
of a problem earlier in this exercise set to express
the general solution of the differential equation in
terms of Bessel functions.

(b) Use the general solution found in part (a) to find a
solution of the BVP and an equation which defines
the critical length L, that is, the smallest value of
L for which the column will start to bend.

(c) With the aid of a CAS, find the critical length L
of a solid steel rod of radius r � 0.05 in., 
�g � 0.28 A lb/in., E � 2.6 � 107 lb/in.2, A � �r2,
and I � 1

4 �r4.

EI
d 2�

dx2 � $g(L � x)� � 0,  �(0) � 0, ��(L) � 0,

4x	 � tx � 0,  x(0.1) � 1,  x�(0.1) � �1
2.

column of uniform cross section and hinged at both
ends, the deflection y(x) is a solution of the BVP:

(a) If the bending stiffness factor EI is proportional
to x, then EI(x) � kx, where k is a constant of
proportionality. If EI(L) � kL � M is the maxi-
mum stiffness factor, then k � M�L and so 
EI(x) � Mx�L. Use the information in Problem 37
to find a solution of

if it is known that is not zero at x � 0.

(b) Use Table 6.1 to find the Euler load P1 for the
column.

(c) Use a CAS to graph the first buckling mode y1(x)
corresponding to the Euler load P1. For simplicity
assume that c1 � 1 and L � 1.

43. Pendulum of Varying Length For the simple pendu-
lum described on page 209 of Section 5.3, suppose that
the rod holding the mass m at one end is replaced by a
flexible wire or string and that the wire is strung over a
pulley at the point of support O in Figure 5.3.3. In this
manner, while it is in motion in a vertical plane, the
mass m can be raised or lowered. In other words, the
length l(t) of the pendulum varies with time. Under
the same assumptions leading to equation (6) in Section
5.3, it can be shown* that the differential equation for
the displacement angle � is now

(a) If l increases at constant rate v and if l(0) � l0,
show that a linearization of the foregoing DE is

(31)

(b) Make the change of variables x � (l0 � vt)�v and
show that (31) becomes

(c) Use part (b) and (18) to express the general solution
of equation (31) in terms of Bessel functions.

(d) Use the general solution obtained in part (c) to solve
the initial-value problem consisting of equation (31)
and the initial conditions �(0) � �0, ��(0) � 0.
[Hints: To simplify calculations, use a further

change of variable u �
2

v
1g(l0 � vt) � 2B

g

v
x1/ 2.

d 2�

dx 2 �
2

x

d�

dx
�

g

vx
� � 0.

(l0 � vt)�	 � 2v�� � g� � 0.

l�	 � 2l��� � g sin � � 0.

1xY1(21�x)

M
x

L

d 2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0

EI
d 2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

*See Mathematical Methods in Physical Sciences, Mary Boas, John Wiley
& Sons, Inc., 1966. Also see the article by Borelli, Coleman, and Hobson
in Mathematics Magazine, vol. 58, no. 2, March 1985.

x = 0

x

θ

P(x)

ground

FIGURE 6.3.4 Beam in Problem 41

42. Buckling of a Thin Vertical Column In Example 3
of Section 5.2 we saw that when a constant vertical
compressive force, or load, P was applied to a thin
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Also, recall that (20) holds for both J1(u) and Y1(u).
Finally, the identity

will be helpful.]

(e) Use a CAS to graph the solution �(t) of the
IVP in part (d) when l0 � 1 ft, �0 � radian,
and Experiment with the graph using
different time intervals such as [0, 10], [0, 30],
and so on.

(f) What do the graphs indicate about the displacement
angle �(t) as the length l of the wire increases with
time?

6.3.2 LEGENDRE’S EQUATION

44. (a) Use the explicit solutions y1(x) and y2(x) of
Legendre’s equation given in (26) and the appropri-
ate choice of c0 and c1 to find the Legendre polyno-
mials P6(x) and P7(x).

(b) Write the differential equations for which P6(x)
and P7(x) are particular solutions.

45. Use the recurrence relation (29) and P0(x) � 1, P1(x) � x,
to generate the next six Legendre polynomials.

46. Show that the differential equation

sin �
d 2y

d� 2 � cos �
dy

d�
� n(n � 1)(sin �)y � 0

v � 1
60 ft/s.

1
10

�
2

�u
J1(u)Y2(u) � J2(u)Y1(u) �

can be transformed into Legendre’s equation by means
of the substitution x � cos �.

47. Find the first three positive values of 	 for which the
problem

has nontrivial solutions.

Computer Lab Assignments

48. For purposes of this problem ignore the list of Legendre
polynomials given on page 249 and the graphs given
in Figure 6.3.3. Use Rodrigues’ formula (30) to gener-
ate the Legendre polynomials P1(x), P2(x), . . . , P7(x).
Use a CAS to carry out the differentiations and
simplifications.

49. Use a CAS to graph P1(x), P2(x), . . . , P7(x) on the
interval [�1, 1].

50. Use a root-finding application to find the zeros of
P1(x), P2(x), . . . , P7 (x). If the Legendre polynomials
are built-in functions of your CAS, find zeros of
Legendre polynomials of higher degree. Form a con-
jecture about the location of the zeros of any Legendre
polynomial Pn(x), and then investigate to see whether it
is true.

y(0) � 0,  y(x), y�(x) bounded on [�1,1]

(1 � x2)y	 � 2xy� � �y � 0,

CHAPTER 6 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1 and 2 answer true or false without referring
back to the text.

1. The general solution of x2y	 � xy� � (x2 � 1)y � 0 is
y � c1J1(x) � c2J�1(x).

2. Because x � 0 is an irregular singular point of
x3y	 � xy� � y � 0, the DE possesses no solution that
is analytic at x � 0.

3. Both power series solutions of y	 � ln(x � 1)y� � y � 0
centered at the ordinary point x � 0 are guaranteed
to converge for all x in which one of the following
intervals?

(a) (�
, 
) (b) (�1, 
)

(c) (d) [�1, 1]

4. x � 0 is an ordinary point of a certain linear differential
equation. After the assumed solution isy � �


n�0 cnxn

[�1
2,

1
2]

substituted into the DE, the following algebraic system
is obtained by equating the coefficients of x0, x1, x2,
and x3 to zero:

Bearing in mind that c0 and c1 are arbitrary, write down
the first five terms of two power series solutions of the
differential equation.

5. Suppose the power series is known
to converge at �2 and diverge at 13. Discuss whether
the series converges at �7, 0, 7, 10, and 11. Possible
answers are does, does not, might.

�

k�0 ck(x � 4)k

 20c5 � 8c4 � c3 � 2
3 c2 � 0.

 12c4 � 6c3 � c2 � 1
3 c1 � 0

 6c3 � 4c2 � c1 � 0

 2c2 � 2c1 � c0 � 0
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6. Use the Maclaurin series for sin x and cos x along with
long division to find the first three nonzero terms of a

power series in x for the function

In Problems 7 and 8 construct a linear second-order differen-
tial equation that has the given properties.

7. A regular singular point at x � 1 and an irregular
singular point at x � 0

8. Regular singular points at x � 1 and at x � �3

In Problems 9–14 use an appropriate infinite series method
about x � 0 to find two solutions of the given differential
equation.

9. 2xy	 � y� � y � 0 10. y	 � xy� � y � 0

11. (x � 1)y	 � 3y � 0 12. y 	 � x2y� � x y � 0

13. xy	 � (x � 2)y� � 2y � 0 14. (cos x)y	 � y � 0

In Problems 15 and 16 solve the given initial-value problem.

15. y	 � xy� � 2y � 0, y(0) � 3, y�(0) � �2

16. (x � 2)y	 � 3y � 0, y(0) � 0, y�(0) � 1

17. Without actually solving the differential equation
(1 � 2 sin x)y	 � xy � 0, find a lower bound for the
radius of convergence of power series solutions about
the ordinary point x � 0.

18. Even though x � 0 is an ordinary point of the differen-
tial equation, explain why it is not a good idea to try to
find a solution of the IVP

of the form Using power series, find a
better way to solve the problem.

In Problems 19 and 20 investigate whether x � 0 is an ordi-
nary point, singular point, or irregular singular point of
the given differential equation. [Hint: Recall the Maclaurin
series for cos x and ex.]

19. xy	 � (1 � cos x)y� � x2y � 0

20. (ex � 1 � x)y	 � xy � 0

21. Note that x � 0 is an ordinary point of the differential
equation y	 � x2y� � 2xy � 5 � 2x � 10x3. Use the
assumption to find the general solution
y � yc � yp that consists of three power series centered
at x � 0.

22. The first-order differential equation dy�dx � x2 � y2

cannot be solved in terms of elementary functions.
However, a solution can be expressed in terms of Bessel
functions.

(a) Show that the substitution leads to the

equation u	 � x2u � 0.

y � �
1

u

du

dx

y � �

n�0 cnxn

y � �

n�0 cnxn.

y	 � xy� � y � 0,  y(1) � �6,  y�(1) � 3

f (x) �
sin x

cos x
.

(b) Use (18) in Section 6.3 to find the general solution
of u	 � x2u � 0.

(c) Use (20) and (21) in Section 6.3 in the forms

and

as an aid to show that a one-parameter family of
solutions of dy�dx � x2 � y2 is given by

23. (a) Use (23) and (24) of Section 6.3 to show that

(b) Use (15) of Section 6.3 to show that

(c) Use part (b) to show that

24. (a) From (27) and (28) of Section 6.3 we know
that when n � 0, Legendre’s differential equation
(1 � x2)y	 � 2xy� � 0 has the polynomial solu-
tion y � P0(x) � 1. Use (5) of Section 4.2 to show
that a second Legendre function satisfying the DE
for �1 � x � 1 is

(b) We also know from (27) and (28) of Section 6.3
that when n � 1, Legendre’s differential equation
(1 � x2)y	 � 2xy� � 2y � 0 possesses the polyno-
mial solution y � P1(x) � x. Use (5) of Section 4.2
to show that a second Legendre function satisfying
the DE for �1 � x � 1 is

(c) Use a graphing utility to graph the logarithmic
Legendre functions given in parts (a) and (b).

25. (a) Use binomial series to formally show that

(b) Use the result obtained in part (a) to show that
Pn(1) � 1 and Pn(�1) � (�1)n. See Properties (ii)
and (iii) on page 249.

(1 � 2xt � t2)�1/2 � �



n�0
Pn(x)tn.

y �
x

2
 ln�1 � x

1 � x� � 1.

y �
1

2
 ln�1 � x

1 � x�.

K1/2(x) � B
�

2x
e�x.

I1/2(x) � B
2

�x
sinh x    and    I�1/2(x) � B

2

�x
 cosh x.

Y1/2(x) � �B
2

�x
 cos x.

y � x
J3 /4( 1

2 x2) � cJ�3 /4( 1
2 x2)

cJ1/4( 1
2 x2) � J�1/4( 1

2 x2).

J�& (x) � �
&

x
J& (x) � J&�1(x)

J�& (x) �
&

x
J& (x) � J&�1(x)


