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LINEAR MODELS: BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Problems 37–40 in Exercises 4.3
● Problems 37–40 in Exercises 4.4

INTRODUCTION The preceding section was devoted to systems in which a second-order math-
ematical model was accompanied by initial conditions—that is, side conditions that are specified on
the unknown function and its first derivative at a single point. But often the mathematical descrip-
tion of a physical system demands that we solve a homogeneous linear differential equation subject
to boundary conditions—that is, conditions specified on the unknown function, or on one of its
derivatives, or even on a linear combination of the unknown function and one of its derivatives at
two (or more) different points.

5.2

DEFLECTION OF A BEAM Many structures are constructed by using girders or
beams, and these beams deflect or distort under their own weight or under the influence
of some external force. As we shall now see, this deflection y(x) is governed by a rela-
tively simple linear fourth-order differential equation.

To begin, let us assume that a beam of length L is homogeneous and has uniform
cross sections along its length. In the absence of any load on the beam (including its
weight), a curve joining the centroids of all its cross sections is a straight line called
the axis of symmetry. See Figure 5.2.1(a). If a load is applied to the beam in a verti-
cal plane containing the axis of symmetry, the beam, as shown in Figure 5.2.1(b),
undergoes a distortion, and the curve connecting the centroids of all cross sections is
called the deflection curve or elastic curve. The deflection curve approximates the
shape of the beam. Now suppose that the x-axis coincides with the axis of symmetry
and that the deflection y(x), measured from this axis, is positive if downward. In the
theory of elasticity it is shown that the bending moment M(x) at a point x along the
beam is related to the load per unit length w(x) by the equation

. (1)

In addition, the bending moment M(x) is proportional to the curvature k of the elas-
tic curve

, (2)

where E and I are constants; E is Young’s modulus of elasticity of the material of the
beam, and I is the moment of inertia of a cross section of the beam (about an axis
known as the neutral axis). The product EI is called the flexural rigidity of the beam.

Now, from calculus, curvature is given by k � y	�[1 � (y�)2]3/2. When the
deflection y(x) is small, the slope y�  0, and so [1 � (y�)2]3/2  1. If we let k y	,
equation (2) becomes M � EI y	. The second derivative of this last expression is

. (3)

Using the given result in (1) to replace d2M�dx2 in (3), we see that the deflection y(x)
satisfies the fourth-order differential equation

. (4)EI
d 4y

dx4 � w(x)

d 2M

dx2 � EI
d 2

dx2 y	 � EI
d 4y

dx4

M(x) � EI�

d2M

dx2 � w(x)

axis of symmetry
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FIGURE 5.2.1 Deflection of a
homogeneous beam



Boundary conditions associated with equation (4) depend on how the ends of the
beam are supported. A cantilever beam is embedded or clamped at one end and
free at the other. A diving board, an outstretched arm, an airplane wing, and a bal-
cony are common examples of such beams, but even trees, flagpoles, skyscrapers,
and the George Washington Monument can act as cantilever beams because they
are embedded at one end and are subject to the bending force of the wind. For
a cantilever beam the deflection y(x) must satisfy the following two conditions at
the embedded end x � 0:

• y(0) � 0 because there is no deflection, and
• y�(0) � 0 because the deflection curve is tangent to the x-axis (in other

words, the slope of the deflection curve is zero at this point).

At x � L the free-end conditions are

• y	(L) � 0 because the bending moment is zero, and
• y�(L) � 0 because the shear force is zero.

The function F(x) � dM�dx � EI d3y�dx3 is called the shear force. If an end of
a beam is simply supported or hinged (also called pin supported and fulcrum
supported) then we must have y � 0 and y	 � 0 at that end. Table 5.1 summarizes
the boundary conditions that are associated with (4). See Figure 5.2.2.

EXAMPLE 1 An Embedded Beam

A beam of length L is embedded at both ends. Find the deflection of the beam if a con-
stant load w0 is uniformly distributed along its length—that is, w(x) � w0, 0 � x � L.

SOLUTION From (4) we see that the deflection y(x) satisfies

.

Because the beam is embedded at both its left end (x � 0) and its right end (x � L),
there is no vertical deflection and the line of deflection is horizontal at these points.
Thus the boundary conditions are

.

We can solve the nonhomogeneous differential equation in the usual manner (find yc

by observing that m � 0 is root of multiplicity four of the auxiliary equation m4 � 0
and then find a particular solution yp by undetermined coefficients), or we can simply
integrate the equation d4y�dx4 � w0�EI four times in succession. Either way, we
find the general solution of the equation y � yc � yp to be

.

Now the conditions y(0) � 0 and y�(0) � 0 give, in turn, c1 � 0 and c2 � 0, whereas the

remaining conditions y(L) � 0 and y�(L) � 0 applied to 
yield the simultaneous equations 

 2c3 L � 3c4 L2 �
w0

6EI
L3 � 0.

c3 L2 � c4 L3 �
w0

24EI
L4 � 0

y(x) � c3x2 � c4x3 �
w0

24EI
x4

y(x) � c1 � c2x � c3x2 � c4x3 �
w0

24EI
x4

y(0) � 0,    y�(0) � 0,  y(L) � 0,    y�(L) � 0

EI
d 4y

dx4 � w0
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x = 0 x = L

(a) embedded at both ends

(b) cantilever beam: embedded at
the left end, free at the right
end

(c) simply supported at both ends

x = 0 x = L

x = 0 x = L

FIGURE 5.2.2 Beams with various end
conditions

TABLE 5.1

Ends of the Beam Boundary Conditions

embedded y � 0, y� � 0
free y	 � 0, y� � 0
simply supported
or hinged y � 0, y	 � 0



Solving this system gives c3 � w0L2�24EI and c4 � �w0L�12EI. Thus the deflection is

or . By choosing w0 � 24EI, and L � 1, we obtain the 

deflection curve in Figure 5.2.3.

EIGENVALUES AND EIGENFUNCTIONS Many applied problems demand
that we solve a two-point boundary-value problem (BVP) involving a linear differen-
tial equation that contains a parameter l. We seek the values of l for which the
boundary-value problem has nontrivial, that is, nonzero, solutions.

EXAMPLE 2 Nontrivial Solutions of a BVP

Solve the boundary-value problem

.

SOLUTION We shall consider three cases: l� 0, l� 0, and l� 0.

CASE I: For l� 0 the solution of y	 � 0 is y � c1x � c2. The conditions y(0) � 0
and y(L) � 0 applied to this solution imply, in turn, c2 � 0 and c1 � 0. Hence for l� 0
the only solution of the boundary-value problem is the trivial solution y � 0.

CASE II: For l� 0 it is convenient to write l� �a2, where a denotes a positive
number. With this notation the roots of the auxiliary equation m2 � a2 � 0 are m1 � a
and m2 � �a. Since the interval on which we are working is finite, we choose to write
the general solution of y	 � a2y � 0 as y � c1 cosh ax � c2 sinh ax. Now y(0) is

,

and so y(0) � 0 implies that c1 � 0. Thus y � c2 sinh ax. The second condition,
y(L) � 0, demands that c2 sinh aL � 0. For a � 0, sinh aL � 0; consequently, we
are forced to choose c2 � 0. Again the only solution of the BVP is the trivial solu-
tion y � 0.

CASE III: For l � 0 we write l � a2, where a is a positive number. Because the
auxiliary equation m2 � a2 � 0 has complex roots m1 � ia and m2 � �ia, the
general solution of y	 � a2y � 0 is y � c1 cos ax � c2 sin ax. As before, y(0) � 0
yields c1 � 0, and so y � c2 sin ax. Now the last condition y(L) � 0, or

,

is satisfied by choosing c2 � 0. But this means that y � 0. If we require c2 � 0, then
sin aL � 0 is satisfied whenever aL is an integer multiple of p.

.

Therefore for any real nonzero c2, y � c2 sin(npx�L) is a solution of the problem for
each n. Because the differential equation is homogeneous, any constant multiple of a
solution is also a solution, so we may, if desired, simply take c2 � 1. In other words,
for each number in the sequence

�1 �
�2

L2, �2 �
4�2

L2 , �3 �
9�2

L2 ,    ,

�L � n� or  � �
n�

L
 or  �n � �n

2 � �n�

L �
2

,  n � 1, 2, 3, . . . 

c2 sin �L � 0

y(0) � c1 cosh 0 � c2 sinh 0 � c1 � 1 � c2 � 0 � c1

y	 � �y � 0, y(0) � 0,  y(L) � 0

y(x) �
w0

24EI
x2(x � L)2

y(x) �
w0L2

24EI
x2 �

w0L

12EI
x3 �

w0

24EI
x4
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FIGURE 5.2.3 Deflection curve for
Example 1

■ Note that we use
hyperbolic functions
here. Reread “Two
Equations Worth
Knowing” on
page 135.



the corresponding function in the sequence

is a nontrivial solution of the original problem.

The numbers ln � n2p2�L2, n � 1, 2, 3, . . . for which the boundary-value
problem in Example 2 possesses nontrivial solutions are known as eigenvalues. The
nontrivial solutions that depend on these values of ln, yn � c2 sin(npx�L) or simply
yn � sin(npx�L), are called eigenfunctions.

BUCKLING OF A THIN VERTICAL COLUMN In the eighteenth century
Leonhard Euler was one of the first mathematicians to study an eigenvalue problem
in analyzing how a thin elastic column buckles under a compressive axial force.

Consider a long, slender vertical column of uniform cross section and length L.
Let y(x) denote the deflection of the column when a constant vertical compressive
force, or load, P is applied to its top, as shown in Figure 5.2.4. By comparing bend-
ing moments at any point along the column, we obtain

, (5)

where E is Young’s modulus of elasticity and I is the moment of inertia of a cross
section about a vertical line through its centroid.

EXAMPLE 3 The Euler Load

Find the deflection of a thin vertical homogeneous column of length L subjected to a
constant axial load P if the column is hinged at both ends.

SOLUTION The boundary-value problem to be solved is

.

First note that y � 0 is a perfectly good solution of this problem. This solution has
a simple intuitive interpretation: If the load P is not great enough, there is no
deflection. The question then is this: For what values of P will the column bend? In
mathematical terms: For what values of P does the given boundary-value problem
possess nontrivial solutions?

By writing l� P�EI, we see that

is identical to the problem in Example 2. From Case III of that discussion we see
that the deflections are yn(x) � c2 sin(npx�L) corresponding to the eigenvalues
ln � Pn �EI � n2p 2 �L2, n � 1, 2, 3, . . . . Physically, this means that the column
will buckle or deflect only when the compressive force is one of the values
Pn � n2p 2EI�L2, n � 1, 2, 3, . . . . These different forces are called critical
loads. The deflection corresponding to the smallest critical load P1 � p 2EI�L2,
called the Euler load, is y1(x) � c2 sin(px�L) and is known as the first buckling
mode.

The deflection curves in Example 3 corresponding to n � 1, n � 2, and n � 3
are shown in Figure 5.2.5. Note that if the original column has some sort of physical
restraint put on it at x � L �2, then the smallest critical load will be P2 � 4p2EI�L2,
and the deflection curve will be as shown in Figure 5.2.5(b). If restraints are put on
the column at x � L �3 and at x � 2L �3, then the column will not buckle until the

y	 � �y � 0,  y(0) � 0, y(L) �  0

EI
d 2y

dx2 � Py � 0, y(0) � 0, y(L) � 0

EI
d 2y

dx2 � �Py   or   EI
d 2y

dx2 � Py � 0

y1 � sin
�

L
x, y2 � sin

2�

L
x, y3 � sin

3�

L
x,    ,
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FIGURE 5.2.4 Elastic column
buckling under a compressive force
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FIGURE 5.2.5 Deflection curves
corresponding to compressive forces 
P1, P2, P3



critical load P3 � 9p2EI�L2 is applied, and the deflection curve will be as shown in
Figure 5.2.5(c). See Problem 23 in Exercises 5.2.

ROTATING STRING The simple linear second-order differential equation

(6)

occurs again and again as a mathematical model. In Section 5.1 we saw (6) in the
forms d2x�dt2 � (k�m)x � 0 and d2q�dt2 � (1�LC)q � 0 as models for, respec-
tively, the simple harmonic motion of a spring/mass system and the simple harmonic
response of a series circuit. It is apparent when the model for the deflection of a thin
column in (5) is written as d2y�dx2 � (P�EI)y � 0 that it is the same as (6). We
encounter the basic equation (6) one more time in this section: as a model that defines
the deflection curve or the shape y(x) assumed by a rotating string. The physical situ-
ation is analogous to when two people hold a jump rope and twirl it in a synchronous
manner. See Figures 5.2.6(a) and 5.2.6(b).

Suppose a string of length L with constant linear density r (mass per unit length)
is stretched along the x-axis and fixed at x � 0 and x � L. Suppose the string is then
rotated about that axis at a constant angular speed v. Consider a portion of the string
on the interval [x, x � �x], where �x is small. If the magnitude T of the tension T,
acting tangential to the string, is constant along the string, then the desired differen-
tial equation can be obtained by equating two different formulations of the net force
acting on the string on the interval [x, x � �x]. First, we see from Figure 5.2.6(c) that
the net vertical force is

. (7)

When angles u1 and u2 (measured in radians) are small, we have sin u2  tan u2 and
sin u1  tan u1. Moreover, since tan u2 and tan u1 are, in turn, slopes of the lines con-
taining the vectors T2 and T1, we can also write

.

Thus (7) becomes

. (8)

Second, we can obtain a different form of this same net force using Newton’s second
law, F � ma. Here the mass of the string on the interval is m � r �x; the centripetal
acceleration of a body rotating with angular speed v in a circle of radius r is a � rv2.
With �x small we take r � y. Thus the net vertical force is also approximated by

, (9)

where the minus sign comes from the fact that the acceleration points in the direction
opposite to the positive y-direction. Now by equating (8) and (9), we have

F  �(� �x)y�2

F  T [ y�(x � �x) � y�(x)]

tan �2 � y�(x � �x)   and   tan �1 � y�(x)

F � T sin �2 � T sin �1

y	 � �y � 0
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FIGURE 5.2.6 Rotating string and
forces acting on it

(10)
y�(x � �x) � y�(x)
–––––––––––––––––

�x
T [y�(x � �x) � y�(x)] � �(r�x)yv2 T � rv2y � 0.or

difference quotient

For �x close to zero the difference quotient in (10) is approximately the second
derivative d2y�dx2. Finally, we arrive at the model

. (11)

Since the string is anchored at its ends x � 0 and x � L, we expect that the solution
y(x) of equation (11) should also satisfy the boundary conditions y(0) � 0 and
y(L) � 0.

T
d 2y

dx2 � ��2y � 0



REMARKS

(i) Eigenvalues are not always easily found, as they were in Example 2;
you might have to approximate roots of equations such as tan x � �x or
cos x cosh x � 1. See Problems 34–38 in Exercises 5.2.

(ii) Boundary conditions applied to a general solution of a linear differential
equation can lead to a homogeneous algebraic system of linear equations in
which the unknowns are the coefficients ci in the general solution. A homoge-
neous algebraic system of linear equations is always consistent because it
possesses at least a trivial solution. But a homogeneous system of n linear
equations in n unknowns has a nontrivial solution if and only if the determi-
nant of the coefficients equals zero. You might need to use this last fact in
Problems 19 and 20 in Exercises 5.2.

204 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 5.2 Answers to selected odd-numbered problems begin on page ANS-8.

Deflection of a Beam

In Problems 1–5 solve equation (4) subject to the appropriate
boundary conditions. The beam is of length L, and w0 is a
constant.

1. (a) The beam is embedded at its left end and free at its
right end, and w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

2. (a) The beam is simply supported at both ends, and
w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

3. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 48EI and L � 1.

4. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0 sin(px�L),
0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 2p3EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the
graph in part (b) at which the maximum deflection
occurs. What is the maximum deflection?

5. (a) The beam is simply supported at both ends, and
w(x) � w0x, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 36EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the

graph in part (b) at which the maximum deflection
occurs. What is the maximum deflection?

6. (a) Find the maximum deflection of the cantilever beam
in Problem 1.

(b) How does the maximum deflection of a beam that is
half as long compare with the value in part (a)?

(c) Find the maximum deflection of the simply sup-
ported beam in Problem 2.

(d) How does the maximum deflection of the simply
supported beam in part (c) compare with the value
of maximum deflection of the embedded beam in
Example 1?

7. A cantilever beam of length L is embedded at its right
end, and a horizontal tensile force of P pounds is applied
to its free left end. When the origin is taken at its free end,
as shown in Figure 5.2.7, the deflection y(x) of the beam
can be shown to satisfy the differential equation

.

Find the deflection of the cantilever beam if 
w(x) � w0x, 0 � x � L, and y(0) � 0, y�(L) � 0.

EIy	 � Py � w(x)
x

2

xO
P

y
L

x

w0x

FIGURE 5.2.7 Deflection of cantilever beam in Problem 7 



8. When a compressive instead of a tensile force is applied
at the free end of the beam in Problem 7, the differential
equation of the deflection is

.

Solve this equation if w(x) � w0x, 0 � x � L, and
y(0) � 0, y�(L) � 0.

Eigenvalues and Eigenfunctions

In Problems 9–18 find the eigenvalues and eigenfunctions
for the given boundary-value problem.

9. y	 � ly � 0, y(0) � 0, y(p) � 0

10. y	 � ly � 0, y(0) � 0, y(p�4) � 0

11. y	 � ly � 0, y�(0) � 0, y(L) � 0

12. y	 � ly � 0, y(0) � 0, y�(p�2) � 0

13. y	 � ly � 0, y�(0) � 0, y�(p) � 0

14. y	 � ly � 0, y(�p) � 0, y(p) � 0

15. y	 � 2y� � (l� 1)y � 0, y(0) � 0, y(5) � 0

16. y	 � (l� 1)y � 0, y�(0) � 0, y�(1) � 0

17. x2y	 � xy� � ly � 0, y(1) � 0, y(ep) � 0

18. x2y	 � xy� � ly � 0, y�(e�1) � 0, y(1) � 0

In Problems 19 and 20 find the eigenvalues and eigenfunc-
tions for the given boundary-value problem. Consider only
the case l� a4, a � 0.

19. y (4) � ly � 0, y(0) � 0, y	(0) � 0, y(1) � 0,
y	(1) � 0

20. y (4) � ly � 0, y�(0) � 0, y�(0) � 0, y(p) � 0,
y	(p) � 0

Buckling of a Thin Column

21. Consider Figure 5.2.5. Where should physical restraints
be placed on the column if we want the critical load to be
P4? Sketch the deflection curve corresponding to this load.

22. The critical loads of thin columns depend on the end
conditions of the column. The value of the Euler load P1

in Example 3 was derived under the assumption that the
column was hinged at both ends. Suppose that a thin
vertical homogeneous column is embedded at its base
(x � 0) and free at its top (x � L) and that a constant
axial load P is applied to its free end. This load either
causes a small deflection d as shown in Figure 5.2.8 or
does not cause such a deflection. In either case the dif-
ferential equation for the deflection y(x) is

.EI
d2y

dx2 � Py � P$

EIy	 � �Py � w(x)
x

2
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(a) What is the predicted deflection when d � 0?

(b) When d � 0, show that the Euler load for this col-
umn is one-fourth of the Euler load for the hinged
column in Example 3.

23. As was mentioned in Problem 22, the differential equa-
tion (5) that governs the deflection y(x) of a thin elastic
column subject to a constant compressive axial force P
is valid only when the ends of the column are hinged. In
general, the differential equation governing the deflection
of the column is given by

.

Assume that the column is uniform (EI is a constant)
and that the ends of the column are hinged. Show that
the solution of this fourth-order differential equation
subject to the boundary conditions y(0) � 0, y	(0) � 0,
y(L) � 0, y	(L) � 0 is equivalent to the analysis in
Example 3.

24. Suppose that a uniform thin elastic column is hinged at
the end x � 0 and embedded at the end x � L.

(a) Use the fourth-order differential equation given in
Problem 23 to find the eigenvalues ln, the critical
loads Pn, the Euler load P1, and the deflections yn(x).

(b) Use a graphing utility to graph the first buckling
mode.

Rotating String

25. Consider the boundary-value problem introduced in the
construction of the mathematical model for the shape of
a rotating string:

.

For constant T and r, define the critical speeds of angu-
lar rotation vn as the values of v for which the boundary-
value problem has nontrivial solutions. Find the critical
speeds vn and the corresponding deflections yn(x).

T
d2y

dx2 � ��2y � 0,  y(0) � 0, y(L) � 0

d2

dx2 �EI
d2y

dx2� � P
d2y

dx2 � 0

y
x =  0

x = L
P

δ

x

FIGURE 5.2.8 Deflection of vertical column in 
Problem 22



26. When the magnitude of tension T is not constant, then a
model for the deflection curve or shape y(x) assumed by
a rotating string is given by

.

Suppose that 1 � x � e and that T(x) � x2.

(a) If y(1) � 0, y(e) � 0, and rv2 � 0.25, show that
the critical speeds of angular rotation are

and the corresponding
deflections are

yn(x) � c2x�1/2 sin(np ln x), n � 1, 2, 3, . . . .

(b) Use a graphing utility to graph the deflection curves
on the interval [1, e] for n � 1, 2, 3. Choose c2 � 1.

Miscellaneous Boundary-Value Problems

27. Temperature in a Sphere Consider two concentric
spheres of radius r � a and r � b, a � b. See
Figure 5.2.9. The temperature u(r) in the region
between the spheres is determined from the boundary-
value problem

,

where u0 and u1 are constants. Solve for u(r).

r
d2u

dr2 � 2
du

dr
� 0,  u(a) � u0, u(b) � u1

�n � 1
22(4n2�2 � 1)>�

d

dx 
T(x)
dy

dx� � ��2y � 0
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where u0 and u1 are constants. Show that

.

Discussion Problems

29. Simple Harmonic Motion The model mx	 � kx � 0
for simple harmonic motion, discussed in Section 5.1,
can be related to Example 2 of this section.

Consider a free undamped spring/mass system for
which the spring constant is, say, k � 10 lb/ft. Deter-
mine those masses mn that can be attached to the spring
so that when each mass is released at the equilibrium
position at t � 0 with a nonzero velocity v0, it will then
pass through the equilibrium position at t � 1 second.
How many times will each mass mn pass through the
equilibrium position in the time interval 0 � t � 1?

30. Damped Motion Assume that the model for the
spring/mass system in Problem 29 is replaced by mx	 �
2x� � kx � 0. In other words, the system is free but is
subjected to damping numerically equal to 2 times the
instantaneous velocity. With the same initial conditions
and spring constant as in Problem 29, investigate
whether a mass m can be found that will pass through
the equilibrium position at t � 1 second.

In Problems 31 and 32 determine whether it is possible to
find values y0 and y1 (Problem 31) and values of L � 0
(Problem 32) so that the given boundary-value problem has
(a) precisely one nontrivial solution, (b) more than one
solution, (c) no solution, (d) the trivial solution.

31. y	 � 16y � 0, y(0) � y0, y(p�2) � y1

32. y	 � 16y � 0, y(0) � 1, y(L) � 1

33. Consider the boundary-value problem

(a) The type of boundary conditions specified are called
periodic boundary conditions. Give a geometric
interpretation of these conditions.

(b) Find the eigenvalues and eigenfunctions of the
problem.

(c) Use a graphing utility to graph some of the eigen-
functions. Verify your geometric interpretation of
the boundary conditions given in part (a).

34. Show that the eigenvalues and eigenfunctions of the
boundary-value problem

are and yn � sin an x, respectively, where an,
n � 1, 2, 3, . . . are the consecutive positive roots of
the equation tan a � �a.

�n � � 2
n

y	 � �y � 0,  y(0) � 0,  y(1) � y�(1) � 0

y	 � �y � 0,  y(��) � y(�),  y�(��) � y�(�).

u(r) �
u0 ln(r>b) � u1 ln(r>a)

ln(a>b)

u = u1

u = u0

FIGURE 5.2.9 Concentric spheres in Problem 27

28. Temperature in a Ring The temperature u(r) in the
circular ring shown in Figure 5.2.10 is determined from
the boundary-value problem

,r
d2u

dr2 �
du

dr
� 0,  u(a) � u0, u(b) � u1

FIGURE 5.2.10 Circular ring in Problem 28

a

u = u1

u = u0

b



Computer Lab Assignments

35. Use a CAS to plot graphs to convince yourself that the
equation tan a � �a in Problem 34 has an infinite
number of roots. Explain why the negative roots of the
equation can be ignored. Explain why l� 0 is not an
eigenvalue even though a � 0 is an obvious solution of
the equation tan a � �a.

36. Use a root-finding application of a CAS to approximate
the first four eigenvalues l1, l2, l3, and l4 for the BVP
in Problem 34.
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In Problems 37 and 38 find the eigenvalues and eigenfunc-
tions of the given boundary-value problem. Use a CAS to
approximate the first four eigenvalues l1, l2, l3, and l4.

37.

38. y(4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0, y�(1) � 0
[Hint: Consider only l� a4, a � 0.]

y	 � �y � 0, y(0) � 0, y(1) � 1
2 y�(1) � 0

NONLINEAR MODELS

REVIEW MATERIAL
● Section 4.9

INTRODUCTION In this section we examine some nonlinear higher-order mathematical
models. We are able to solve some of these models using the substitution method (leading to
reduction of the order of the DE) introduced on page 174. In some cases in which the model
cannot be solved, we show how a nonlinear DE can be replaced by a linear DE through a process
called linearization.

5.3

NONLINEAR SPRINGS The mathematical model in (1) of Section 5.1 has the
form

, (1)

where F(x) � kx. Because x denotes the displacement of the mass from its equilibrium
position, F(x) � kx is Hooke’s law—that is, the force exerted by the spring that tends
to restore the mass to the equilibrium position. A spring acting under a linear restoring
force F(x) � kx is naturally referred to as a linear spring. But springs are seldom per-
fectly linear. Depending on how it is constructed and the material that is used, a spring
can range from “mushy,” or soft, to “stiff,” or hard, so its restorative force may vary
from something below to something above that given by the linear law. In the case of
free motion, if we assume that a nonaging spring has some nonlinear characteristics,
then it might be reasonable to assume that the restorative force of a spring—that is,
F(x) in (1)—is proportional to, say, the cube of the displacement x of the mass beyond
its equilibrium position or that F(x) is a linear combination of powers of the displace-
ment such as that given by the nonlinear function F(x) � kx � k1x3. A spring whose
mathematical model incorporates a nonlinear restorative force, such as

, (2)

is called a nonlinear spring. In addition, we examined mathematical models in which
damping imparted to the motion was proportional to the instantaneous velocity dx�dt
and the restoring force of a spring was given by the linear function F(x) � kx. But these
were simply assumptions; in more realistic situations damping could be proportional to
some power of the instantaneous velocity dx�dt. The nonlinear differential equation

(3)m
d 2x

dt2 � � �dx

dt � dx

dt
� kx � 0

m
d 2x

dt2 � kx3 � 0    or    m
d 2x

dt2 � kx � k1x3 � 0

m
d 2x

dt2 � F(x) � 0



is one model of a free spring/mass system in which the damping force is proportional
to the square of the velocity. One can then envision other kinds of models: linear
damping and nonlinear restoring force, nonlinear damping and nonlinear restoring
force, and so on. The point is that nonlinear characteristics of a physical system lead
to a mathematical model that is nonlinear.

Notice in (2) that both F(x) � kx3 and F(x) � kx � k1x3 are odd functions of x.
To see why a polynomial function containing only odd powers of x provides a
reasonable model for the restoring force, let us express F as a power series centered
at the equilibrium position x � 0:

When the displacements x are small, the values of xn are negligible for n suffi-
ciently large. If we truncate the power series with, say, the fourth term, then
F(x) � c0 � c1x � c2x2 � c3x3. For the force at x � 0,

,

and for the force at �x � 0,

to have the same magnitude but act in the opposite direction, we must have
F(�x) � �F(x). Because this means that F is an odd function, we must have c0 � 0
and c2 � 0, and so F(x) � c1x � c3x3. Had we used only the first two terms in the
series, the same argument yields the linear function F(x) � c1x. A restoring force with
mixed powers, such as F(x) � c1x � c2x2, and the corresponding vibrations are said
to be unsymmetrical. In the next discussion we shall write c1 � k and c3 � k1.

HARD AND SOFT SPRINGS Let us take a closer look at the equation in (1) in
the case in which the restoring force is given by F(x) � kx � k1x3, k � 0. The
spring is said to be hard if k1 � 0 and soft if k1 � 0. Graphs of three types of
restoring forces are illustrated in Figure 5.3.1. The next example illustrates
these two special cases of the differential equation m d2x�dt2 � kx � k1x3 � 0,
m � 0, k � 0.

EXAMPLE 1 Comparison of Hard and Soft Springs

The differential equations

(4)

and (5)

are special cases of the second equation in (2) and are models of a hard spring and
a soft spring, respectively. Figure 5.3.2(a) shows two solutions of (4) and
Figure 5.3.2(b) shows two solutions of (5) obtained from a numerical solver. The
curves shown in red are solutions that satisfy the initial conditions x(0) � 2,
x�(0) � �3; the two curves in blue are solutions that satisfy x(0) � 2, x�(0) � 0.
These solution curves certainly suggest that the motion of a mass on the hard spring
is oscillatory, whereas motion of a mass on the soft spring appears to be nonoscil-
latory. But we must be careful about drawing conclusions based on a couple of
numerical solution curves. A more complete picture of the nature of the solutions
of both of these equations can be obtained from the qualitative analysis discussed
in Chapter 10.

d 2x

dt2 � x � x3 � 0

d 2x

dt2 � x � x3 � 0

F(�x) � c0 � c1x � c2x2 � c3x3

F(x) � c0 � c1x � c2x2 � c3x3

F(x) � c0 � c1x � c2x2 � c3x3 �   .
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F
linear spring

hard
spring

soft spring 

x

FIGURE 5.3.1 Hard and soft springs

(a) hard spring

(b) soft spring

x
  x(0)= 2,
x'(0)= _3

t

  x(0)= 2,
x'(0)= _3

t

x

x(0)= 2,
x'(0)= 0

  x(0)= 2,
x'(0)= 0

FIGURE 5.3.2 Numerical solution
curves



NONLINEAR PENDULUM Any object that swings back and forth is called a
physical pendulum. The simple pendulum is a special case of the physical pendu-
lum and consists of a rod of length l to which a mass m is attached at one end. In
describing the motion of a simple pendulum in a vertical plane, we make the simpli-
fying assumptions that the mass of the rod is negligible and that no external damping
or driving forces act on the system. The displacement angle u of the pendulum,
measured from the vertical as shown in Figure 5.3.3, is considered positive when
measured to the right of OP and negative to the left of OP. Now recall the arc s of a
circle of radius l is related to the central angle u by the formula s � lu. Hence angu-
lar acceleration is

.

From Newton’s second law we then have

.

From Figure 5.3.3 we see that the magnitude of the tangential component of the force
due to the weight W is mg sin u. In direction this force is �mg sin u because it points
to the left for u � 0 and to the right for u � 0. We equate the two different versions
of the tangential force to obtain ml d2u�dt2 � �mg sin u, or

. (6)

LINEARIZATION Because of the presence of sin u, the model in (6) is non-
linear. In an attempt to understand the behavior of the solutions of nonlinear
higher-order differential equations, one sometimes tries to simplify the problem
by replacing nonlinear terms by certain approximations. For example, the
Maclaurin series for sin u is given by

so if we use the approximation sin u  u � u3�6, equation (6) becomes
d2u�dt2 � (g�l)u � (g�6l)u3 � 0. Observe that this last equation is the same
as the second nonlinear equation in (2) with m � 1, k � g�l, and k1 � �g�6l.
However, if we assume that the displacements u are small enough to justify using
the replacement sin u  u, then (6) becomes

. (7)

See Problem 22 in Exercises 5.3. If we set v2 � g�l, we recognize (7) as the differ-
ential equation (2) of Section 5.1 that is a model for the free undamped vibrations of
a linear spring/mass system. In other words, (7) is again the basic linear equation 
y	 � ly � 0 discussed on page 201 of Section 5.2. As a consequence we say that
equation (7) is a linearization of equation (6). Because the general solution of (7) is
u(t) � c1 cos vt � c2 sin vt, this linearization suggests that for initial conditions
amenable to small oscillations the motion of the pendulum described by (6) will be
periodic.

EXAMPLE 2 Two Initial-Value Problems

The graphs in Figure 5.3.4(a) were obtained with the aid of a numerical solver and
represent solution curves of (6) when v2 � 1. The blue curve depicts the solution
of (6) that satisfies the initial conditions , whereas the red
curve is the solution of (6) that satisfies u�(0) � 2. The blue curve�(0) � 1

2,
�(0) � 1

2, ��(0) � 1
2

d 2�

dt2 �
g

l
� � 0

sin � � � �
� 3

3!
�

� 5

5!
� . . .

d 2�

dt2 �
g

l
 sin � � 0

F � ma � ml
d 2�

dt2

a �
d 2s

dt2 � l
d 2�

dt2
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FIGURE 5.3.3 Simple pendulum

t

2��

(0) =   , (0)  = 2

(0)  =   , (0) =

(a)

(b) (0) � ,
�(0) �

(c) (0) � ,�

�

�

�

�

�

��

��

�� (0) � 2

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 5.3.4 Oscillating pendulum
in (b); whirling pendulum in (c)



represents a periodic solution—the pendulum oscillating back and forth as shown
in Figure 5.3.4(b) with an apparent amplitude A � 1. The red curve shows that u
increases without bound as time increases—the pendulum, starting from the same
initial displacement, is given an initial velocity of magnitude great enough to send
it over the top; in other words, the pendulum is whirling about its pivot as shown in
Figure 5.3.4(c). In the absence of damping, the motion in each case is continued
indefinitely.

TELEPHONE WIRES The first-order differential equation dy�dx � W�T1 is
equation (17) of Section 1.3. This differential equation, established with the aid
of Figure 1.3.7 on page 25, serves as a mathematical model for the shape of a flexi-
ble cable suspended between two vertical supports when the cable is carrying a
vertical load. In Section 2.2 we solved this simple DE under the assumption that
the vertical load carried by the cables of a suspension bridge was the weight of a
horizontal roadbed distributed evenly along the x-axis. With W � rx, r the weight
per unit length of the roadbed, the shape of each cable between the vertical supports
turned out to be parabolic. We are now in a position to determine the shape of a uni-
form flexible cable hanging only under its own weight, such as a wire strung between
two telephone posts. The vertical load is now the wire itself, and so if r is the linear
density of the wire (measured, say, in pounds per feet) and s is the length of the
segment P1P2 in Figure 1.3.7 then W � rs. Hence

. (8)

Since the arc length between points P1 and P2 is given by

, (9)

it follows from the fundamental theorem of calculus that the derivative of (9) is

. (10)

Differentiating (8) with respect to x and using (10) lead to the second-order equation

. (11)

In the example that follows we solve (11) and show that the curve assumed by
the suspended cable is a catenary. Before proceeding, observe that the nonlinear
second-order differential equation (11) is one of those equations having the form
F(x, y�, y	) � 0 discussed in Section 4.9. Recall that we have a chance of solving an
equation of this type by reducing the order of the equation by means of the substitu-
tion u � y�.

EXAMPLE 3 An Initial-Value Problem

From the position of the y-axis in Figure 1.3.7 it is apparent that initial conditions
associated with the second differential equation in (11) are y(0) � a and y�(0) � 0.

If we substitute u � y�, then the equation in (11) becomes . Sepa-

rating variables, we find that

.� du

11 � u2
�

�

T1
� dx    gives    sinh�1u �

�

T1
x � c1

du

dx
�

�

%1
11 � u2

d 2y

dx2 �
�

T1

ds

dx
    or    

d 2y

dx2 �
�

T1 B1 � �dy

dx�
2

ds

dx
� B1 � �dy

dx�
2

s � �x

0 B1 � �dy

dx�
2

dx

dy

dx
�

�s

%1
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Now, y�(0) � 0 is equivalent to u(0) � 0. Since sinh�1 0 � 0, c1 � 0, so 
u � sinh (rx�T1). Finally, by integrating both sides of

.

Using y(0) � a, cosh 0 � 1, the last equation implies that c2 � a � T1�r.
Thus we see that the shape of the hanging wire is given by

.

In Example 3, had we been clever enough at the start to choose a � T1�r,
then the solution of the problem would have been simply the hyperbolic cosine
y � (T1�r) cosh (rx�T1).

ROCKET MOTION In Section 1.3 we saw that the differential equation of a free-
falling body of mass m near the surface of the Earth is given by

,

where s represents the distance from the surface of the Earth to the object and the
positive direction is considered to be upward. In other words, the underlying
assumption here is that the distance s to the object is small when compared with the
radius R of the Earth; put yet another way, the distance y from the center of the Earth
to the object is approximately the same as R. If, on the other hand, the distance y to
the object, such as a rocket or a space probe, is large when compared to R, then we
combine Newton’s second law of motion and his universal law of gravitation to
derive a differential equation in the variable y.

Suppose a rocket is launched vertically upward from the ground as shown in
Figure 5.3.5. If the positive direction is upward and air resistance is ignored, then the
differential equation of motion after fuel burnout is

, (12)

where k is a constant of proportionality, y is the distance from the center of the
Earth to the rocket, M is the mass of the Earth, and m is the mass of the rocket. To
determine the constant k, we use the fact that when y � R, kMm�R2 � mg or
k � gR2�M. Thus the last equation in (12) becomes

. (13)

See Problem 14 in Exercises 5.3.

VARIABLE MASS Notice in the preceding discussion that we described the
motion of the rocket after it has burned all its fuel, when presumably its mass m is
constant. Of course, during its powered ascent the total mass of the rocket varies as
its fuel is being expended. The second law of motion, as originally advanced by
Newton, states that when a body of mass m moves through a force field with veloc-
ity v, the time rate of change of the momentum mv of the body is equal to applied or
net force F acting on the body:

. (14)

If m is constant, then (14) yields the more familiar form F � m dv�dt � ma, where
a is acceleration. We use the form of Newton’s second law given in (14) in the next
example, in which the mass m of the body is variable.

F �
d

dt
(mv)

d 2y

dt2 � �g
R2

y2

m
d 2y

dt2 � �k
Mm

y2     or    
d 2y

dt2 � �k
M

y2

m
d 2s

dt2 � �mg,    or simply    
d 2s

dt2 � �g

y � (T1>�) cosh(�x> T1) � a � T1>�

dy

dx
� sinh

�

T1
x,    we get    y �

T1

�
cosh

�

T1
x � c2
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FIGURE 5.3.5 Distance to rocket is
large compared to R.



EXAMPLE 4 Chain Pulled Upward by a Constant Force

A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain
is pulled vertically upward by means of constant force of 5 pounds. The chain weighs
1 pound per foot. Determine the height of the end above ground level at time t. See
Figure 5.3.6.

SOLUTION Let us suppose that x � x(t) denotes the height of the end of the chain in
the air at time t, v � dx�dt, and the positive direction is upward. For the portion of the
chain that is in the air at time t we have the following variable quantities:

Thus from (14) we have

(15)

Because v � dx�dt, the last equation becomes

. (16)

The nonlinear second-order differential equation (16) has the form F(x, x�, x	) � 0,
which is the second of the two forms considered in Section 4.9 that can possibly
be solved by reduction of order. To solve (16), we revert back to (15) and use v � x�

along with the Chain Rule. From the second equation in (15)

can be rewritten as

. (17)

On inspection (17) might appear intractable, since it cannot be characterized as any
of the first-order equations that were solved in Chapter 2. However, by rewriting
(17) in differential form M(x,v)dx � N(x,v)dv � 0, we observe that although the
equation

(18)

is not exact, it can be transformed into an exact equation by multiplying it by an
integrating factor. From (Mv � Nx)�N � 1�x we see from (13) of Section 2.4 that
an integrating factor is When (18) is multiplied by m(x) � x, the
resulting equation is exact (verify). By identifying �f ��x � xv2 � 32x2 � 160x,
�f ��v � x2v and then proceeding as in Section 2.4, we obtain

. (19)

Since we have assumed that all of the chain is on the floor initially, we have
x(0) � 0. This last condition applied to (19) yields c1 � 0. By solving the algebraic
equation for v � dx�dt � 0, we get another first-order
differential equation,

.
dx

dt
� B160 �

64
3

x

1
2 x2v2 � 32

3 x3 � 80x2 � 0

1

2
x2v2 �

32

3
x3 � 80x2 � c1

e�dx/x � eln x � x.

(v2 � 32x � 160)dx � xv dv � 0

xv
dv

dx
� v2 � 160 � 32x

dv

dt
�

dv

dx

dx

dt
� v

dv

dx

x
d 2x

dt2 � �dx

dt�
2

� 32x � 160

Product Rule

� v �  160 � 32x.x( v) � 5 � x or
x

–––
32

d
–––
dt

dv
–––
dt

dx
–––
dt

net force: F � 5 � W � 5 � x.

mass:  m � W>g � x>32,

weight:  W � (x ft) � (1 lb/ft) � x,
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FIGURE 5.3.6 Chain pulled upward
by a constant force 



The last equation can be solved by separation of variables. You should verify that

. (20)

This time the initial condition x(0) � 0 implies that . Finally, by
squaring both sides of (20) and solving for x, we arrive at the desired result,

(21)

The graph of (21) given in Figure 5.3.7 should not, on physical grounds, be taken at
face value. See Problem 15 in Exercises 5.3.

x(t) �
15

2
�

15

2 �1 �
4110

15
t�

2

.

c2 � �3110�8

�
3

32 �160 �
64

3
x�

1/2

� t � c2
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EXERCISES 5.3 Answers to selected odd-numbered problems begin on page ANS-8.

To the Instructor In addition to Problems 24 and 25, all
or portions of Problems 1–6, 8–13, 15, 20, and 21 could
serve as Computer Lab Assignments.

Nonlinear Springs

In Problems 1–4, the given differential equation is model of
an undamped spring/mass system in which the restoring force
F(x) in (1) is nonlinear. For each equation use a numerical
solver to plot the solution curves that satisfy the given initial
conditions. If the solutions appear to be periodic use the solu-
tion curve to estimate the period T of oscillations.

1.

2.

3.

4.

5. In Problem 3, suppose the mass is released from
the initial position x(0) � 1 with an initial velocity
x�(0) � x1. Use a numerical solver to estimate the
smallest value of �x1� at which the motion of the mass
is nonperiodic.

6. In Problem 3, suppose the mass is released from an initial
position x(0) � x0 with the initial velocity x�(0) � 1. Use
a numerical solver to estimate an interval a � x0 � b for
which the motion is oscillatory.

7. Find a linearization of the differential equation in
Problem 4.

x(0) � 1, x�(0) � 1; x(0) � 3, x�(0) � �1

d 2x

dt2 � xe0.01x � 0,

x(0) � 1, x�(0) � 1; x(0) � 3
2, x�(0) � �1

d 2x

dt2 � 2x � x2 � 0,

x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 2

d 2x

dt2 � 4x � 16x3 � 0,

x(0) � 1, x�(0) � 1; x(0) � 1
2, x�(0) � �1

d 2x

dt2 � x3 � 0,

8. Consider the model of an undamped nonlinear
spring/mass system given by x	 � 8x � 6x3 � x5 � 0.
Use a numerical solver to discuss the nature of the
oscillations of the system corresponding to the initial
conditions:

In Problems 9 and 10 the given differential equation is a
model of a damped nonlinear spring/mass system. Predict
the behavior of each system as . For each equation use
a numerical solver to obtain the solution curves satisfying
the given initial conditions.

9.

10.

11. The model mx	 � kx � k1x3 � F0cosvt of an
undamped periodically driven spring/mass system is
called Duffing’s differential equation. Consider the
initial-value problem x	 � x � k1x3 � 5 cos t, x(0) � 1,
x�(0) � 0. Use a numerical solver to investigate the
behavior of the system for values of k1 � 0 ranging from
k1 � 0.01 to k1 � 100. State your conclusions.

12. (a) Find values of k1 � 0 for which the system in
Problem 11 is oscillatory.

(b) Consider the initial-value problem

x	 � x � k1x3 � , x(0) � 0, x�(0) � 0.

Find values for k1 � 0 for which the system is 
oscillatory.

cos 3
2 t

x(0) � 0, x�(0) � 3
2; x(0) � �1, x�(0) � 1

d 2x

dt2 �
dx

dt
� x � x3 � 0,

x(0) � �3, x�(0) � 4; x(0) � 0, x�(0) � �8

d 2x

dt2 �
dx

dt
� x � x3 � 0,

t : 


x(0) � 2, x�(0) � 0;  x(0) � �12, x�(0) � �1.

x(0) � 12, x�(0) � 1;  x(0) � 2, x�(0) � 1
2;

x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 1
2;



Nonlinear Pendulum

13. Consider the model of the free damped nonlinear pen-
dulum given by

.

Use a numerical solver to investigate whether the motion
in the two cases l2 � v2 � 0 and l2 � v2 � 0 corre-
sponds, respectively, to the overdamped and under-
damped cases discussed in Section 5.1 for spring/mass
systems. Choose appropriate initial conditions and val-
ues of l and v.

Rocket Motion

14. (a) Use the substitution v � dy�dt to solve (13) for v in
terms of y. Assuming that the velocity of the rocket
at burnout is v � v0 and y  R at that instant, show
that the approximate value of the constant c of
integration is .

(b) Use the solution for v in part (a) to show that the
escape velocity of the rocket is given by .
[Hint: Take and assume v � 0 for all time t.]

(c) The result in part (b) holds for any body in the solar
system. Use the values g � 32 ft/s2 and R � 4000 mi
to show that the escape velocity from the Earth is
(approximately) v0 � 25,000 mi/h.

(d) Find the escape velocity from the Moon if the
acceleration of gravity is 0.165g and R � 1080 mi.

Variable Mass

15. (a) In Example 4, how much of the chain would you
intuitively expect the constant 5-pound force to be
able to lift?

(b) What is the initial velocity of the chain?

(c) Why is the time interval corresponding to x(t) � 0
given in Figure 5.3.7 not the interval I of definition of
the solution (21)? Determine the interval I. How
much chain is actually lifted? Explain any difference
between this answer and your prediction in part (a).

(d) Why would you expect x(t) to be a periodic solution?

16. A uniform chain of length L, measured in feet, is held
vertically so that the lower end just touches the floor.
The chain weighs 2 lb/ft. The upper end that is held is
released from rest at t � 0 and the chain falls straight
down. If x(t) denotes the length of the chain on the floor
at time t, air resistance is ignored, and the positive direc-
tion is taken to be downward, then

.

(a) Solve for v in terms of x. Solve for x in terms of t.
Express v in terms of t.

(L � x)
d 2x

dt2 � �dx

dt�
2

� Lg

y : 

v0 � 12gR

c � �gR � 1
2 v0

2

d 2�

dt2 � 2�
d�

dt
� �2 sin� � 0
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(b) Determine how long it takes for the chain to fall
completely to the ground.

(c) What velocity does the model in part (a) predict for
the upper end of the chain as it hits the ground?

Miscellaneous Mathematical Models

17. Pursuit Curve In a naval exercise a ship S1 is pursued by
a submarine S2 as shown in Figure 5.3.8. Ship S1 departs
point (0, 0) at t � 0 and proceeds along a straight-line
course (the y-axis) at a constant speed v1. The submarine
S2 keeps ship S1 in visual contact, indicated by the straight
dashed line L in the figure, while traveling at a constant
speed v2 along a curve C. Assume that ship S2 starts at the
point (a, 0), a � 0, at t � 0 and that L is tangent to C.

(a) Determine a mathematical model that describes the
curve C.

(b) Find an explicit solution of the differential equation.
For convenience define r � v1�v2.

(c) Determine whether the paths of S1 and S2 will ever
intersect by considering the cases r � 1, r � 1, and
r � 1.

[Hint: , where s is arc length measured

along C.]

dt

dx
�

dt

ds

ds

dx

S2

x

y

S1

L

C

FIGURE 5.3.8 Pursuit curve in Problem 17

18. Pursuit Curve In another naval exercise a destroyer
S1 pursues a submerged submarine S2. Suppose that S1

at (9, 0) on the x-axis detects S2 at (0, 0) and that S2

simultaneously detects S1. The captain of the destroyer
S1 assumes that the submarine will take immediate eva-
sive action and conjectures that its likely new course is
the straight line indicated in Figure 5.3.9. When S1 is at
(3, 0), it changes from its straight-line course toward the
origin to a pursuit curve C. Assume that the speed of
the destroyer is, at all times, a constant 30 mi/h and
that the submarine’s speed is a constant 15 mi/h.

(a) Explain why the captain waits until S1 reaches (3, 0)
before ordering a course change to C.

(b) Using polar coordinates, find an equation r � f(u)
for the curve C.

(c) Let T denote the time, measured from the initial
detection, at which the destroyer intercepts the sub-
marine. Find an upper bound for T.



Discussion Problems

19. Discuss why the damping term in equation (3) is
written as

.

20. (a) Experiment with a calculator to find an interval
0 � u � u1, where u is measured in radians, for
which you think sin u  u is a fairly good estimate.
Then use a graphing utility to plot the graphs of
y � x and y � sin x on the same coordinate axes
for 0 � x � p�2. Do the graphs confirm your
observations with the calculator?

(b) Use a numerical solver to plot the solution curves of
the initial-value problems

and

for several values of u0 in the interval 0 � u � u1

found in part (a). Then plot solution curves of the
initial-value problems for several values of u0 for
which u0 � u1.

21. (a) Consider the nonlinear pendulum whose oscillations
are defined by (6). Use a numerical solver as an aid to
determine whether a pendulum of length l will oscil-
late faster on the Earth or on the Moon. Use the same
initial conditions, but choose these initial conditions
so that the pendulum oscillates back and forth.

(b) For which location in part (a) does the pendulum
have greater amplitude?

(c) Are the conclusions in parts (a) and (b) the same
when the linear model (7) is used?

Computer Lab Assignments

22. Consider the initial-value problem

for a nonlinear pendulum. Since we cannot solve the
differential equation, we can find no explicit solution of

d 2�

dt2 � sin� � 0,  � (0) �
�

12
, ��(0) � �

1

3

d 2�

dt2 � � � 0,    � (0) � �0,  ��(0) � 0

d 2�

dt2 � sin� � 0,  � (0) � �0,  ��(0) � 0

��dx

dt � dx

dt
  instead of  � �dx

dt�
2
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this problem. But suppose we wish to determine the first
time t1 � 0 for which the pendulum in Figure 5.3.3,
starting from its initial position to the right, reaches the
position OP—that is, the first positive root of u(t) � 0.
In this problem and the next we examine several ways to
proceed.

(a) Approximate t1 by solving the linear problem
d2u�dt2 � u � 0, u(0) � p�12,

(b) Use the method illustrated in Example 3 of Section
4.9 to find the first four nonzero terms of a Taylor
series solution u(t) centered at 0 for the nonlinear
initial-value problem. Give the exact values of all
coefficients.

(c) Use the first two terms of the Taylor series in
part (b) to approximate t1.

(d) Use the first three terms of the Taylor series in
part (b) to approximate t1.

(e) Use a root-finding application of a CAS (or a
graphic calculator) and the first four terms of the
Taylor series in part (b) to approximate t1.

(f ) In this part of the problem you are led through
the commands in Mathematica that enable you to
approximate the root t1. The procedure is easily
modified so that any root of u(t) � 0 can be
approximated. (If you do not have Mathematica,
adapt the given procedure by finding the corre-
sponding syntax for the CAS you have on hand.)
Precisely reproduce and then, in turn, execute each
line in the given sequence of commands.

sol � NDSolve[{y�[t] � Sin[y[t]] �� 0,
y[0] �� Pi/12, y�[0] �� �1/3}, 
y, {t, 0, 5}] //Flatten

solution � y[t] /.sol
Clear[y]
y[t_]: � Evaluate[solution]
y[t]
gr1 � Plot[y[t], {t, 0, 5}]
root � FindRoot[y[t] �� 0, {t, 1}]

(g) Appropriately modify the syntax in part (f ) and find
the next two positive roots of u(t) � 0.

23. Consider a pendulum that is released from rest from an
initial displacement of u0 radians. Solving the linear
model (7) subject to the initial conditions u(0) � u0,
u�(0) � 0 gives . The period of
oscillations predicted by this model is given by the
familiar formula . The inter-
esting thing about this formula for T is that it does not
depend on the magnitude of the initial displacement u0.
In other words, the linear model predicts that the time it
would take the pendulum to swing from an initial dis-
placement of, say, u0 � p�2 (� 90°) to �p�2 and back
again would be exactly the same as the time it would take
to cycle from, say, u0 � p�360 (� 0.5°) to �p�360.
This is intuitively unreasonable; the actual period must
depend on u0.

T � 2� �1g/l � 2�1l/g

�(t) � �0 cos 1g/l t

��(0) � �1
3.

S2

L

x

y

S1

C

θ
(3, 0) (9, 0)

FIGURE 5.3.9 Pursuit curve in Problem 18



If we assume that g � 32 ft/s2 and l � 32 ft, then
the period of oscillation of the linear model is T � 2p s.
Let us compare this last number with the period
predicted by the nonlinear model when u0 � p�4. Using
a numerical solver that is capable of generating hard
data, approximate the solution of

on the interval 0 � t � 2. As in Problem 22, if t1 denotes
the first time the pendulum reaches the position OP in
Figure 5.3.3, then the period of the nonlinear pendulum is
4t1. Here is another way of solving the equation u(t) � 0.
Experiment with small step sizes and advance the time,
starting at t � 0 and ending at t � 2. From your hard data
observe the time t1 when u(t) changes, for the first time,
from positive to negative. Use the value t1 to determine
the true value of the period of the nonlinear pendulum.
Compute the percentage relative error in the period esti-
mated by T � 2p.

Contributed Problem

24. The Ballistic Pendulum
Historically, to maintain
quality control over muni-
tions (bullets) produced by an assembly line, the manu-
facturer would use a ballistic pendulum to determine
the muzzle velocity of a gun, that is, the speed of a
bullet as it leaves the barrel. The ballistic pendulum
(invented in 1742) is simply a plane pendulum consist-
ing of a rod of negligible mass to which a block of wood
of mass mw is attached. The system is set in motion by
the impact of a bullet that is moving horizontally at the
unknown velocity vb; at the time of the impact, which
we take as t � 0, the combined mass is mw � mb, where
mb is the mass of the bullet imbedded in the wood. In (7)
we saw that in the case of small oscillations, the angular
displacement u(t) of a plane pendulum shown in
Figure 5.3.3 is given by the linear DE u	 � (g�l)u � 0,
where u � 0 corresponds to motion to the right of
vertical. The velocity vb can be found by measuring the
height h of the mass mw � mb at the maximum displace-
ment angle umax shown in Figure 5.3.10.

d 2�

dt2 � sin � � 0,  �(0) �
�

4
, ��(0) � 0
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Intuitively, the horizontal velocity V of the com-
bined mass (wood plus bullet) after impact is only a
fraction of the velocity vb of the bullet, that is,

Now, recall that a distance s traveled by a particle mov-
ing along a circular path is related to the radius l and
central angle u by the formula s � lu. By differentiating
the last formula with respect to time t, it follows that
the angular velocityv of the mass and its linear velocity v
are related by v � lv. Thus the initial angular velocity
v0 at the time t at which the bullet impacts the wood
block is related to V by V � lv0 or

(a) Solve the initial-value problem

(b) Use the result from part (a) to show that

(c) Use Figure 5.3.10 to express cos umax in terms of l
and h. Then use the first two terms of the Maclaurin
series for cos u to express umax in terms of l and h.
Finally, show that vb is given (approximately) by

(d) Use the result in part (c) to find vb when mb � 5 g,
mw � 1 kg, and h � 6 cm.

vb � �mw � mb

mb
�22gh.

vb � �mw � mb

mb
�2lg umax.

d 2u

dt2 �
g

l
u � 0,  u(0) � 0,  u�(0) � v0.

v0 � � mb

mw � mb
� vb

l
.

V � � mb

mw � mb
�vb.
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FIGURE 5.3.10 Ballistic pendulum

CHAPTER 5 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-8.

Answer Problems 1–8 without referring back to the text. Fill
in the blank or answer true/false.

1. If a mass weighing 10 pounds stretches a spring 
2.5 feet, a mass weighing 32 pounds will stretch it

feet.

2. The period of simple harmonic motion of mass weigh-
ing 8 pounds attached to a spring whose constant is
6.25 lb/ft is seconds.

3. The differential equation of a spring/mass system is
x	 � 16x � 0. If the mass is initially released from a


