5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS

REVIEW MATERIAL

- Sections 4.1, 4.3, and 4.4
- Problems 29-36 in Exercises 4.3
- Problems 27-36 in Exercises 4.4

INTRODUCTION In this section we are going to consider several linear dynamical systems in which each mathematical model is a second-order differential equation with constant coefficients along with initial conditions specified at a time that we shall take to be $t=0$:

$$
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} .
$$

Recall that the function g is the input, driving function, or forcing function of the system. A solution $y(t)$ of the differential equation on an interval I containing $t=0$ that satisfies the initial conditions is called the output or response of the system.

(a)
(b)
(c)

FIGURE 5.1.1 Spring/mass system

FIGURE 5.1.2 Direction below the equilibrium position is positive.

5.1.1 SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

HOOKE'S LAW Suppose that a flexible spring is suspended vertically from a rigid support and then a mass m is attached to its free end. The amount of stretch, or elongation, of the spring will of course depend on the mass; masses with different weights stretch the spring by differing amounts. By Hooke's law the spring itself exerts a restoring force F opposite to the direction of elongation and proportional to the amount of elongation s. Simply stated, $F=k s$, where k is a constant of proportionality called the spring constant. The spring is essentially characterized by the number k. For example, if a mass weighing 10 pounds stretches a spring $\frac{1}{2}$ foot, then $10=k\left(\frac{1}{2}\right)$ implies $k=20 \mathrm{lb} / \mathrm{ft}$. Necessarily then, a mass weighing, say, 8 pounds stretches the same spring only $\frac{2}{5}$ foot.

NEWTON'S SECOND LAW After a mass m is attached to a spring, it stretches the spring by an amount s and attains a position of equilibrium at which its weight W is balanced by the restoring force $k s$. Recall that weight is defined by $W=m g$, where mass is measured in slugs, kilograms, or grams and $g=32 \mathrm{ft} / \mathrm{s}^{2}$, $9.8 \mathrm{~m} / \mathrm{s}^{2}$, or $980 \mathrm{~cm} / \mathrm{s}^{2}$, respectively. As indicated in Figure 5.1.1(b), the condition of equilibrium is $m g=k s$ or $m g-k s=0$. If the mass is displaced by an amount x from its equilibrium position, the restoring force of the spring is then $k(x+s)$. Assuming that there are no retarding forces acting on the system and assuming that the mass vibrates free of other external forces - free motion - we can equate Newton's second law with the net, or resultant, force of the restoring force and the weight:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k(s+x)+m g=-k x+\underbrace{m g-k s}_{\text {zero }}=-k x . \tag{1}
\end{equation*}
$$

The negative sign in (1) indicates that the restoring force of the spring acts opposite to the direction of motion. Furthermore, we adopt the convention that displacements measured below the equilibrium position are positive. See Figure 5.1.2.

DE OF FREE UNDAMPED MOTION By dividing (1) by the mass m, we obtain the second-order differential equation $d^{2} x / d t^{2}+(k / m) x=0$, or

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0 \tag{2}
\end{equation*}
$$

where $\omega^{2}=k / m$. Equation (2) is said to describe simple harmonic motion or free undamped motion. Two obvious initial conditions associated with (2) are $x(0)=x_{0}$ and $x^{\prime}(0)=x_{1}$, the initial displacement and initial velocity of the mass, respectively. For example, if $x_{0}>0, x_{1}<0$, the mass starts from a point below the equilibrium position with an imparted upward velocity. When $x^{\prime}(0)=0$, the mass is said to be released from rest. For example, if $x_{0}<0, x_{1}=0$, the mass is released from rest from a point $\left|x_{0}\right|$ units above the equilibrium position.

EQUATION OF MOTION To solve equation (2), we note that the solutions of its auxiliary equation $m^{2}+\omega^{2}=0$ are the complex numbers $m_{1}=\omega i, m_{2}=-\omega i$. Thus from (8) of Section 4.3 we find the general solution of (2) to be

$$
\begin{equation*}
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t \tag{3}
\end{equation*}
$$

The period of motion described by (3) is $T=2 \pi / \omega$. The number T represents the time (measured in seconds) it takes the mass to execute one cycle of motion. A cycle is one complete oscillation of the mass, that is, the mass m moving from, say, the lowest point below the equilibrium position to the point highest above the equilibrium position and then back to the lowest point. From a graphical viewpoint $T=2 \pi / \omega$ seconds is the length of the time interval between two successive maxima (or minima) of $x(t)$. Keep in mind that a maximum of $x(t)$ is a positive displacement corresponding to the mass attaining its greatest distance below the equilibrium position, whereas a minimum of $x(t)$ is negative displacement corresponding to the mass attaining its greatest height above the equilibrium position. We refer to either case as an extreme displacement of the mass. The frequency of motion is $f=1 / T=\omega / 2 \pi$ and is the number of cycles completed each second. For example, if $x(t)=2 \cos 3 \pi t-4 \sin 3 \pi t$, then the period is $T=2 \pi / 3 \pi=2 / 3 \mathrm{~s}$, and the frequency is $f=3 / 2$ cycles/s. From a graphical viewpoint the graph of $x(t)$ repeats every $\frac{2}{3}$ second, that is, $x\left(t+\frac{2}{3}\right)=x(t)$, and $\frac{3}{2}$ cycles of the graph are completed each second (or, equivalently, three cycles of the graph are completed every 2 seconds). The number $\omega=\sqrt{k / m}$ (measured in radians per second) is called the circular frequency of the system. Depending on which text you read, both $f=\omega / 2 \pi$ and ω are also referred to as the natural frequency of the system. Finally, when the initial conditions are used to determine the constants c_{1} and c_{2} in (3), we say that the resulting particular solution or response is the equation of motion.

EXAMPLE 1 Free Undamped Motion

A mass weighing 2 pounds stretches a spring 6 inches. At $t=0$ the mass is released from a point 8 inches below the equilibrium position with an upward velocity of $\frac{4}{3} \mathrm{ft} / \mathrm{s}$. Determine the equation of motion.

SOLUTION Because we are using the engineering system of units, the measurements given in terms of inches must be converted into feet: $6 \mathrm{in} .=\frac{1}{2} \mathrm{ft} ; 8 \mathrm{in} .=\frac{2}{3} \mathrm{ft}$. In addition, we must convert the units of weight given in pounds into units of mass. From $m=W / g$ we have $m=\frac{2}{32}=\frac{1}{16}$ slug. Also, from Hooke's law, $2=k\left(\frac{1}{2}\right)$ implies that the spring constant is $k=4 \mathrm{lb} / \mathrm{ft}$. Hence (1) gives

$$
\frac{1}{16} \frac{d^{2} x}{d t^{2}}=-4 x \quad \text { or } \quad \frac{d^{2} x}{d t^{2}}+64 x=0
$$

The initial displacement and initial velocity are $x(0)=\frac{2}{3}, x^{\prime}(0)=-\frac{4}{3}$, where the negative sign in the last condition is a consequence of the fact that the mass is given an initial velocity in the negative, or upward, direction.

FIGURE 5.1.3 A relationship between $c_{1}>0, c_{2}>0$ and phase angle ϕ

Now $\omega^{2}=64$ or $\omega=8$, so the general solution of the differential equation is

$$
\begin{equation*}
x(t)=c_{1} \cos 8 t+c_{2} \sin 8 t \tag{4}
\end{equation*}
$$

Applying the initial conditions to $x(t)$ and $x^{\prime}(t)$ gives $c_{1}=\frac{2}{3}$ and $c_{2}=-\frac{1}{6}$. Thus the equation of motion is

$$
\begin{equation*}
x(t)=\frac{2}{3} \cos 8 t-\frac{1}{6} \sin 8 t \tag{5}
\end{equation*}
$$

ALTERNATIVE FORM OF $X(t)$ When $c_{1} \neq 0$ and $c_{2} \neq 0$, the actual amplitude A of free vibrations is not obvious from inspection of equation (3). For example, although the mass in Example 1 is initially displaced $\frac{2}{3}$ foot beyond the equilibrium position, the amplitude of vibrations is a number larger than $\frac{2}{3}$. Hence it is often convenient to convert a solution of form (3) to the simpler form

$$
\begin{equation*}
x(t)=A \sin (\omega t+\phi) \tag{6}
\end{equation*}
$$

where $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$ and ϕ is a phase angle defined by

$$
\left.\begin{array}{rl}
\sin \phi & =\frac{c_{1}}{A} \tag{7}\\
\cos \phi & =\frac{c_{2}}{A}
\end{array}\right\} \tan \phi=\frac{c_{1}}{c_{2}}
$$

To verify this, we expand (6) by the addition formula for the sine function:

$$
\begin{equation*}
A \sin \omega t \cos \phi+A \cos \omega t \sin \phi=(A \sin \phi) \cos \omega t+(A \cos \phi) \sin \omega t \tag{8}
\end{equation*}
$$

It follows from Figure 5.1.3 that if ϕ is defined by

$$
\sin \phi=\frac{c_{1}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}=\frac{c_{1}}{A}, \quad \cos \phi=\frac{c_{2}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}=\frac{c_{2}}{A}
$$

then (8) becomes

$$
A \frac{c_{1}}{A} \cos \omega t+A \frac{c_{2}}{A} \sin \omega t=c_{1} \cos \omega t+c_{2} \sin \omega t=x(t)
$$

EXAMPLE 2 Alternative Form of Solution (5)

In view of the foregoing discussion we can write solution (5) in the alternative form $x(t)=A \sin (8 t+\phi)$. Computation of the amplitude is straightforward, $A=\sqrt{\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{6}\right)^{2}}=\sqrt{\frac{17}{36}} \approx 0.69 \mathrm{ft}$, but some care should be exercised in computing the phase angle ϕ defined by (7). With $c_{1}=\frac{2}{3}$ and $c_{2}=-\frac{1}{6}$ we find $\tan \phi=-4$, and a calculator then gives $\tan ^{-1}(-4)=-1.326 \mathrm{rad}$. This is not the phase angle, since $\tan ^{-1}(-4)$ is located in the fourth quadrant and therefore contradicts the fact that $\sin \phi>0$ and $\cos \phi<0$ because $c_{1}>0$ and $c_{2}<0$. Hence we must take ϕ to be the second-quadrant angle $\phi=\pi+(-1.326)=1.816 \mathrm{rad}$. Thus (5) is the same as

$$
\begin{equation*}
x(t)=\frac{\sqrt{17}}{6} \sin (8 t+1.816) \tag{9}
\end{equation*}
$$

The period of this function is $T=2 \pi / 8=\pi / 4 \mathrm{~s}$.
Figure 5.1.4(a) illustrates the mass in Example 2 going through approximately two complete cycles of motion. Reading from left to right, the first five positions (marked with black dots) correspond to the initial position of the mass below the equilibrium position $\left(x=\frac{2}{3}\right)$, the mass passing through the equilibrium position

FIGURE 5.1.4 Simple harmonic motion
for the first time heading upward $(x=0)$, the mass at its extreme displacement above the equilibrium position $(x=-\sqrt{17} / 6)$, the mass at the equilibrium position for the second time heading downward $(x=0)$, and the mass at its extreme displacement below the equilibrium position $(x=\sqrt{17} / 6)$. The black dots on the graph of (9), given in Figure 5.1.4(b), also agree with the five positions just given. Note, however, that in Figure 5.1.4(b) the positive direction in the $t x$-plane is the usual upward direction and so is opposite to the positive direction indicated in Figure 5.1.4(a). Hence the solid blue graph representing the motion of the mass in Figure 5.1.4(b) is the reflection through the t-axis of the blue dashed curve in Figure 5.1.4(a).

Form (6) is very useful because it is easy to find values of time for which the graph of $x(t)$ crosses the positive t-axis (the line $x=0$). We observe that $\sin (\omega t+\phi)=0$ when $\omega t+\phi=n \pi$, where n is a nonnegative integer.

SYSTEMS WITH VARIABLE SPRING CONSTANTS In the model discussed above we assumed an ideal world - a world in which the physical characteristics of the spring do not change over time. In the nonideal world, however, it seems reasonable to expect that when a spring/mass system is in motion for a long period, the spring will weaken; in other words, the "spring constant" will vary - or, more specifically, decay - with time. In one model for the aging spring the spring constant k in (1) is replaced by the decreasing function $K(t)=k e^{-\alpha t}, k>0, \alpha>0$. The linear differential equation $m x^{\prime \prime}+k e^{-\alpha t} x=0$ cannot be solved by the methods that were considered in Chapter 4. Nevertheless, we can obtain two linearly independent solutions using the methods in Chapter 6. See Problem 15 in Exercises 5.1, Example 4 in Section 6.3, and Problems 33 and 39 in Exercises 6.3.

(a)

(b)

FIGURE 5.1.5 Damping devices

FIGURE 5.1.6 Motion of an overdamped system

When a spring/mass system is subjected to an environment in which the temperature is rapidly decreasing, it might make sense to replace the constant k with $K(t)=k t, k>0$, a function that increases with time. The resulting model, $m x^{\prime \prime}+k t x=0$, is a form of Airy's differential equation. Like the equation for an aging spring, Airy's equation can be solved by the methods of Chapter 6. See Problem 16 in Exercises 5.1, Example 3 in Section 6.1, and Problems 34, 35, and 40 in Exercises 6.3.

5.1.2 SPRING/MASS SYSTEMS: FREE DAMPED MOTION

The concept of free harmonic motion is somewhat unrealistic, since the motion described by equation (1) assumes that there are no retarding forces acting on the moving mass. Unless the mass is suspended in a perfect vacuum, there will be at least a resisting force due to the surrounding medium. As Figure 5.1 .5 shows, the mass could be suspended in a viscous medium or connected to a dashpot damping device.

DE OF FREE DAMPED MOTION In the study of mechanics, damping forces acting on a body are considered to be proportional to a power of the instantaneous velocity. In particular, we shall assume throughout the subsequent discussion that this force is given by a constant multiple of $d x / d t$. When no other external forces are impressed on the system, it follows from Newton's second law that

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t} \tag{10}
\end{equation*}
$$

where β is a positive damping constant and the negative sign is a consequence of the fact that the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we find that the differential equation of free damped motion is $d^{2} x / d t^{2}+(\beta / m) d x / d t+(k / m) x=0$ or

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0 \tag{11}\\
2 \lambda=\frac{\beta}{m}, \quad \omega^{2}=\frac{k}{m} \tag{12}
\end{gather*}
$$

The symbol 2λ is used only for algebraic convenience because the auxiliary equation is $m^{2}+2 \lambda m+\omega^{2}=0$, and the corresponding roots are then

$$
m_{1}=-\lambda+\sqrt{\lambda^{2}-\omega^{2}}, \quad m_{2}=-\lambda-\sqrt{\lambda^{2}-\omega^{2}}
$$

We can now distinguish three possible cases depending on the algebraic sign of $\lambda^{2}-\omega^{2}$. Since each solution contains the damping factor $e^{-\lambda t}, \lambda>0$, the displacements of the mass become negligible as time t increases.

CASE I: $\lambda^{2}-\omega^{2}>0$ In this situation the system is said to be overdamped because the damping coefficient β is large when compared to the spring constant k. The corresponding solution of (11) is $x(t)=c_{1} e^{m_{1} t}+c_{2} e^{m_{2} t}$ or

$$
\begin{equation*}
x(t)=e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2} t}}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right) \tag{13}
\end{equation*}
$$

This equation represents a smooth and nonoscillatory motion. Figure 5.1.6 shows two possible graphs of $x(t)$.

FIGURE 5.1.7 Motion of a critically damped system

FIGURE 5.1.8 Motion of an underdamped system

(b)

FIGURE 5.1.9 Overdamped system

CASE II: $\lambda^{2}-\omega^{2}=0$ The system is said to be critically damped because any slight decrease in the damping force would result in oscillatory motion. The general solution of (11) is $x(t)=c_{1} e^{m_{1} t}+c_{2} t e^{m_{1} t}$ or

$$
\begin{equation*}
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right) \tag{14}
\end{equation*}
$$

Some graphs of typical motion are given in Figure 5.1.7. Notice that the motion is quite similar to that of an overdamped system. It is also apparent from (14) that the mass can pass through the equilibrium position at most one time.

CASE III: $\lambda^{2}-\omega^{2}<0$ In this case the system is said to be underdamped, since the damping coefficient is small in comparison to the spring constant. The roots m_{1} and m_{2} are now complex:

$$
m_{1}=-\lambda+\sqrt{\omega^{2}-\lambda^{2}} i, \quad m_{2}=-\lambda-\sqrt{\omega^{2}-\lambda^{2}} i .
$$

Thus the general solution of equation (11) is

$$
\begin{equation*}
x(t)=e^{-\lambda t}\left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right) . \tag{15}
\end{equation*}
$$

As indicated in Figure 5.1.8, the motion described by (15) is oscillatory; but because of the coefficient $e^{-\lambda t}$, the amplitudes of vibration $\rightarrow 0$ as $t \rightarrow \infty$.

EXAMPLE 3 Overdamped Motion

It is readily verified that the solution of the initial-value problem
is

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+4 x=0, \quad x(0)=1, \quad x^{\prime}(0)=1 \\
x(t)=\frac{5}{3} e^{-t}-\frac{2}{3} e^{-4 t} \tag{16}
\end{gather*}
$$

The problem can be interpreted as representing the overdamped motion of a mass on a spring. The mass is initially released from a position 1 unit below the equilibrium position with a downward velocity of $1 \mathrm{ft} / \mathrm{s}$.

To graph $x(t)$, we find the value of t for which the function has an extremum - that is, the value of time for which the first derivative (velocity) is zero. Differentiating (16) gives $x^{\prime}(t)=-\frac{5}{3} e^{-t}+\frac{8}{3} e^{-4 t}$, so $x^{\prime}(t)=0$ implies that $e^{3 t}=\frac{8}{5}$ or $t=\frac{1}{3} \ln \frac{8}{5}=0.157$. It follows from the first derivative test, as well as our physical intuition, that $x(0.157)=1.069 \mathrm{ft}$ is actually a maximum. In other words, the mass attains an extreme displacement of 1.069 feet below the equilibrium position.

We should also check to see whether the graph crosses the t-axis - that is, whether the mass passes through the equilibrium position. This cannot happen in this instance because the equation $x(t)=0$, or $e^{3 t}=\frac{2}{5}$, has the physically irrelevant solution $t=\frac{1}{3} \ln \frac{2}{5}=-0.305$.

The graph of $x(t)$, along with some other pertinent data, is given in Figure 5.1.9.

EXAMPLE 4 Critically Damped Motion

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force numerically equal to 2 times the instantaneous velocity acts on the system, determine the equation of motion if the mass is initially released from the equilibrium position with an upward velocity of $3 \mathrm{ft} / \mathrm{s}$.

FIGURE 5.1.10 Critically damped system

SOLUTION From Hooke's law we see that $8=k(2)$ gives $k=4 \mathrm{lb} / \mathrm{ft}$ and that $W=m g$ gives $m=\frac{8}{32}=\frac{1}{4}$ slug. The differential equation of motion is then

$$
\begin{equation*}
\frac{1}{4} \frac{d^{2} x}{d t^{2}}=-4 x-2 \frac{d x}{d t} \quad \text { or } \quad \frac{d^{2} x}{d t^{2}}+8 \frac{d x}{d t}+16 x=0 \tag{17}
\end{equation*}
$$

The auxiliary equation for (17) is $m^{2}+8 m+16=(m+4)^{2}=0$, so $m_{1}=m_{2}=-4$. Hence the system is critically damped, and

$$
\begin{equation*}
x(t)=c_{1} e^{-4 t}+c_{2} t e^{-4 t} \tag{18}
\end{equation*}
$$

Applying the initial conditions $x(0)=0$ and $x^{\prime}(0)=-3$, we find, in turn, that $c_{1}=0$ and $c_{2}=-3$. Thus the equation of motion is

$$
\begin{equation*}
x(t)=-3 t e^{-4 t} \tag{19}
\end{equation*}
$$

To graph $x(t)$, we proceed as in Example 3. From $x^{\prime}(t)=-3 e^{-4 t}(1-4 t)$ we see that $x^{\prime}(t)=0$ when $t=\frac{1}{4}$. The corresponding extreme displacement is $x\left(\frac{1}{4}\right)=-3\left(\frac{1}{4}\right) e^{-1}=-0.276 \mathrm{ft}$. As shown in Figure 5.1.10, we interpret this value to mean that the mass reaches a maximum height of 0.276 foot above the equilibrium position.

EXAMPLE 5 Underdamped Motion

A mass weighing 16 pounds is attached to a 5 -foot-long spring. At equilibrium the spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet above the equilibrium position, find the displacements $x(t)$ if it is further known that the surrounding medium offers a resistance numerically equal to the instantaneous velocity.

SOLUTION The elongation of the spring after the mass is attached is $8.2-5=3.2 \mathrm{ft}$, so it follows from Hooke's law that $16=k(3.2)$ or $k=5 \mathrm{lb} / \mathrm{ft}$. In addition, $m=\frac{16}{32}=\frac{1}{2}$ slug, so the differential equation is given by

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2} x}{d t^{2}}=-5 x-\frac{d x}{d t} \quad \text { or } \quad \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+10 x=0 \tag{20}
\end{equation*}
$$

Proceeding, we find that the roots of $m^{2}+2 m+10=0$ are $m_{1}=-1+3 i$ and $m_{2}=-1-3 i$, which then implies that the system is underdamped, and

$$
\begin{equation*}
x(t)=e^{-t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right) \tag{21}
\end{equation*}
$$

Finally, the initial conditions $x(0)=-2$ and $x^{\prime}(0)=0$ yield $c_{1}=-2$ and $c_{2}=-\frac{2}{3}$, so the equation of motion is

$$
\begin{equation*}
x(t)=e^{-t}\left(-2 \cos 3 t-\frac{2}{3} \sin 3 t\right) \tag{22}
\end{equation*}
$$

ALTERNATIVE FORM OF $x(t)$ In a manner identical to the procedure used on page 184 , we can write any solution

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right)
$$

in the alternative form

$$
\begin{equation*}
x(t)=A e^{-\lambda t} \sin \left(\sqrt{\omega^{2}-\lambda^{2}} t+\phi\right) \tag{23}
\end{equation*}
$$

where $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$ and the phase angle ϕ is determined from the equations

$$
\sin \phi=\frac{c_{1}}{A}, \quad \cos \phi=\frac{c_{2}}{A}, \quad \tan \phi=\frac{c_{1}}{c_{2}}
$$

FIGURE 5.1.11 Oscillatory vertical motion of the support

The coefficient $A e^{-\lambda t}$ is sometimes called the damped amplitude of vibrations. Because (23) is not a periodic function, the number $2 \pi / \sqrt{\omega^{2}-\lambda^{2}}$ is called the quasi period and $\sqrt{\omega^{2}-\lambda^{2}} / 2 \pi$ is the quasi frequency. The quasi period is the time interval between two successive maxima of $x(t)$. You should verify, for the equation of motion in Example 5, that $A=2 \sqrt{10} / 3$ and $\phi=4.391$. Therefore an equivalent form of (22) is

$$
x(t)=\frac{2 \sqrt{10}}{3} e^{-t} \sin (3 t+4.391)
$$

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION

DE OF DRIVEN MOTION WITH DAMPING Suppose we now take into consideration an external force $f(t)$ acting on a vibrating mass on a spring. For example, $f(t)$ could represent a driving force causing an oscillatory vertical motion of the support of the spring. See Figure 5.1.11. The inclusion of $f(t)$ in the formulation of Newton's second law gives the differential equation of driven or forced motion:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}+f(t) \tag{24}
\end{equation*}
$$

Dividing (24) by m gives

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t) \tag{25}
\end{equation*}
$$

where $F(t)=f(t) / m$ and, as in the preceding section, $2 \lambda=\beta / m, \omega^{2}=k / m$. To solve the latter nonhomogeneous equation, we can use either the method of undetermined coefficients or variation of parameters.

EXAMPLE 6 Interpretation of an Initial-Value Problem

Interpret and solve the initial-value problem

$$
\begin{equation*}
\frac{1}{5} \frac{d^{2} x}{d t^{2}}+1.2 \frac{d x}{d t}+2 x=5 \cos 4 t, \quad x(0)=\frac{1}{2}, \quad x^{\prime}(0)=0 \tag{26}
\end{equation*}
$$

SOLUTION We can interpret the problem to represent a vibrational system consisting of a mass ($m=\frac{1}{5}$ slug or kilogram) attached to a spring ($k=2 \mathrm{lb} / \mathrm{ft}$ or N / m). The mass is initially released from rest $\frac{1}{2}$ unit (foot or meter) below the equilibrium position. The motion is damped ($\beta=1.2$) and is being driven by an external periodic ($T=\pi / 2 \mathrm{~s}$) force beginning at $t=0$. Intuitively, we would expect that even with damping, the system would remain in motion until such time as the forcing function was "turned off," in which case the amplitudes would diminish. However, as the problem is given, $f(t)=5 \cos 4 t$ will remain "on" forever.

We first multiply the differential equation in (26) by 5 and solve

$$
\frac{d x^{2}}{d t^{2}}+6 \frac{d x}{d t}+10 x=0
$$

by the usual methods. Because $m_{1}=-3+i, m_{2}=-3-i$, it follows that $x_{c}(t)=e^{-3 t}\left(c_{1} \cos t+c_{2} \sin t\right)$. Using the method of undetermined coefficients, we assume a particular solution of the form $x_{p}(t)=A \cos 4 t+B \sin 4 t$. Differentiating $x_{p}(t)$ and substituting into the DE gives

$$
x_{p}^{\prime \prime}+6 x_{p}^{\prime}+10 x_{p}=(-6 A+24 B) \cos 4 t+(-24 A-6 B) \sin 4 t=25 \cos 4 t .
$$

(a)

(b)

FIGURE 5.1.12 Graph of solution given in (28)

FIGURE 5.1.13 Graph of solution in Example 7 for various x_{1}

The resulting system of equations

$$
-6 A+24 B=25, \quad-24 A-6 B=0
$$

yields $A=-\frac{25}{102}$ and $B=\frac{50}{51}$. It follows that

$$
\begin{equation*}
x(t)=e^{-3 t}\left(c_{1} \cos t+c_{2} \sin t\right)-\frac{25}{102} \cos 4 t+\frac{50}{51} \sin 4 t \tag{27}
\end{equation*}
$$

When we set $t=0$ in the above equation, we obtain $c_{1}=\frac{38}{51}$. By differentiating the expression and then setting $t=0$, we also find that $c_{2}=-\frac{86}{51}$. Therefore the equation of motion is

$$
\begin{equation*}
x(t)=e^{-3 t}\left(\frac{38}{51} \cos t-\frac{86}{51} \sin t\right)-\frac{25}{102} \cos 4 t+\frac{50}{51} \sin 4 t . \tag{28}
\end{equation*}
$$

TRANSIENT AND STEADY-STATE TERMS When F is a periodic function, such as $F(t)=F_{0} \sin \gamma t$ or $F(t)=F_{0} \cos \gamma t$, the general solution of (25) for $\lambda>0$ is the sum of a nonperiodic function $x_{c}(t)$ and a periodic function $x_{p}(t)$. Moreover, $x_{c}(t)$ dies off as time increases - that is, $\lim _{t \rightarrow \infty} x_{c}(t)=0$. Thus for large values of time, the displacements of the mass are closely approximated by the particular solution $x_{p}(t)$. The complementary function $x_{c}(t)$ is said to be a transient term or transient solution, and the function $x_{p}(t)$, the part of the solution that remains after an interval of time, is called a steady-state term or steady-state solution. Note therefore that the effect of the initial conditions on a spring/mass system driven by F is transient. In the particular solution (28), $e^{-3 t}\left(\frac{38}{51} \cos t-\frac{86}{51} \sin t\right)$ is a transient term, and $x_{p}(t)=-\frac{25}{102} \cos 4 t+\frac{50}{51} \sin 4 t$ is a steady-state term. The graphs of these two terms and the solution (28) are given in Figures 5.1.12(a) and 5.1.12(b), respectively.

EXAMPLE 7 Transient/Steady-State Solutions

The solution of the initial-value problem

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=4 \cos t+2 \sin t, \quad x(0)=0, \quad x^{\prime}(0)=x_{1}
$$

where x_{1} is constant, is given by

$$
x(t)=\left(x_{1}-2\right) \underbrace{e^{-t} \sin t}_{\text {transient }}+\underbrace{2 \sin t}_{\text {steady-state }}
$$

Solution curves for selected values of the initial velocity x_{1} are shown in Figure 5.1.13. The graphs show that the influence of the transient term is negligible for about $t>3 \pi / 2$.

DE OF DRIVEN MOTION WITHOUT DAMPING With a periodic impressed force and no damping force, there is no transient term in the solution of a problem. Also, we shall see that a periodic impressed force with a frequency near or the same as the frequency of free undamped vibrations can cause a severe problem in any oscillatory mechanical system.

EXAMPLE 8 Undamped Forced Motion

Solve the initial-value problem

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \sin \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0 \tag{29}
\end{equation*}
$$

where F_{0} is a constant and $\gamma \neq \omega$.

FIGURE 5.1.14 Pure resonance

SOLUTION The complementary function is $x_{c}(t)=c_{1} \cos \omega t+c_{2} \sin \omega t$. To obtain a particular solution, we assume $x_{p}(t)=A \cos \gamma t+B \sin \gamma t$ so that

$$
x_{p}^{\prime \prime}+\omega^{2} x_{p}=A\left(\omega^{2}-\gamma^{2}\right) \cos \gamma t+B\left(\omega^{2}-\gamma^{2}\right) \sin \gamma t=F_{0} \sin \gamma t
$$

Equating coefficients immediately gives $A=0$ and $B=F_{0} /\left(\omega^{2}-\gamma^{2}\right)$. Therefore

$$
x_{p}(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}} \sin \gamma t .
$$

Applying the given initial conditions to the general solution

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{\omega^{2}-\gamma^{2}} \sin \gamma t
$$

yields $c_{1}=0$ and $c_{2}=-\gamma F_{0} / \omega\left(\omega^{2}-\gamma^{2}\right)$. Thus the solution is

$$
\begin{equation*}
x(t)=\frac{F_{0}}{\omega\left(\omega^{2}-\gamma^{2}\right)}(-\gamma \sin \omega t+\omega \sin \gamma t), \quad \gamma \neq \omega \tag{30}
\end{equation*}
$$

PURE RESONANCE Although equation (30) is not defined for $\gamma=\omega$, it is interesting to observe that its limiting value as $\gamma \rightarrow \omega$ can be obtained by applying L'Hôpital's Rule. This limiting process is analogous to "tuning in" the frequency of the driving force $(\gamma / 2 \pi)$ to the frequency of free vibrations $(\omega / 2 \pi)$. Intuitively, we expect that over a length of time we should be able to substantially increase the amplitudes of vibration. For $\gamma=\omega$ we define the solution to be

$$
\begin{align*}
x(t)=\lim _{\gamma \rightarrow \omega} F_{0} \frac{-\gamma \sin \omega t+\omega \sin \gamma t}{\omega\left(\omega^{2}-\gamma^{2}\right)} & =F_{0} \lim _{\gamma \rightarrow \omega} \frac{\frac{d}{d \gamma}(-\gamma \sin \omega t+\omega \sin \gamma t)}{\frac{d}{d \gamma}\left(\omega^{3}-\omega \gamma^{2}\right)} \\
& =F_{0} \lim _{\gamma \rightarrow \omega} \frac{-\sin \omega t+\omega t \cos \gamma t}{-2 \omega \gamma} \tag{31}\\
& =F_{0} \frac{-\sin \omega t+\omega t \cos \omega t}{-2 \omega^{2}} \\
& =\frac{F_{0}}{2 \omega^{2}} \sin \omega t-\frac{F_{0}}{2 \omega} t \cos \omega t
\end{align*}
$$

As suspected, when $t \rightarrow \infty$, the displacements become large; in fact, $\left|x\left(t_{n}\right)\right| \rightarrow \infty$ when $t_{n}=n \pi / \omega, n=1,2, \ldots$. The phenomenon that we have just described is known as pure resonance. The graph given in Figure 5.1.14 shows typical motion in this case.

In conclusion it should be noted that there is no actual need to use a limiting process on (30) to obtain the solution for $\gamma=\omega$. Alternatively, equation (31) follows by solving the initial-value problem

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \sin \omega t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

directly by conventional methods.
If the displacements of a spring/mass system were actually described by a function such as (31), the system would necessarily fail. Large oscillations of the mass would eventually force the spring beyond its elastic limit. One might argue too that the resonating model presented in Figure 5.1.14 is completely unrealistic because it ignores the retarding effects of ever-present damping forces. Although it is true that pure resonance cannot occur when the smallest amount of damping is taken into consideration, large and equally destructive amplitudes of vibration (although bounded as $t \rightarrow \infty$) can occur. See Problem 43 in Exercises 5.1.

FIGURE 5.1.15 LRC series circuit

5.1.4 SERIES CIRCUIT ANALOGUE

LRC SERIES CIRCUITS As was mentioned in the introduction to this chapter, many different physical systems can be described by a linear second-order differential equation similar to the differential equation of forced motion with damping:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=f(t) \tag{32}
\end{equation*}
$$

If $i(t)$ denotes current in the $\boldsymbol{L R} \boldsymbol{C}$ series electrical circuit shown in Figure 5.1.15, then the voltage drops across the inductor, resistor, and capacitor are as shown in Figure 1.3.3. By Kirchhoff's second law the sum of these voltages equals the voltage $E(t)$ impressed on the circuit; that is,

$$
\begin{equation*}
L \frac{d i}{d t}+R i+\frac{1}{C} q=E(t) \tag{33}
\end{equation*}
$$

But the charge $q(t)$ on the capacitor is related to the current $i(t)$ by $i=d q / d t$, so (33) becomes the linear second-order differential equation

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t) \tag{34}
\end{equation*}
$$

The nomenclature used in the analysis of circuits is similar to that used to describe spring/mass systems.

If $E(t)=0$, the electrical vibrations of the circuit are said to be free. Because the auxiliary equation for (34) is $L m^{2}+R m+1 / C=0$, there will be three forms of the solution with $R \neq 0$, depending on the value of the discriminant $R^{2}-4 L / C$. We say that the circuit is
overdamped if $\quad R^{2}-4 L / C>0$,
critically damped if $R^{2}-4 L / C=0$,
and underdamped if $\quad R^{2}-4 L / C<0$.
In each of these three cases the general solution of (34) contains the factor $e^{-R t / 2 L}$, so $q(t) \rightarrow 0$ as $t \rightarrow \infty$. In the underdamped case when $q(0)=q_{0}$, the charge on the capacitor oscillates as it decays; in other words, the capacitor is charging and discharging as $t \rightarrow \infty$. When $E(t)=0$ and $R=0$, the circuit is said to be undamped, and the electrical vibrations do not approach zero as t increases without bound; the response of the circuit is simple harmonic.

EXAMPLE 9 Underdamped Series Circuit

Find the charge $q(t)$ on the capacitor in an $L R C$ series circuit when $L=0.25$ henry (h), $R=10 \operatorname{ohms}(\Omega), C=0.001$ farad (f), $E(t)=0, q(0)=q_{0}$ coulombs (C), and $i(0)=0$.

SOLUTION Since $1 / C=1000$, equation (34) becomes

$$
\frac{1}{4} q^{\prime \prime}+10 q^{\prime}+1000 q=0 \quad \text { or } \quad q^{\prime \prime}+40 q^{\prime}+4000 q=0
$$

Solving this homogeneous equation in the usual manner, we find that the circuit is underdamped and $q(t)=e^{-20 t}\left(c_{1} \cos 60 t+c_{2} \sin 60 t\right)$. Applying the initial conditions, we find $c_{1}=q_{0}$ and $c_{2}=\frac{1}{3} q_{0}$. Thus

$$
q(t)=q_{0} e^{-20 t}\left(\cos 60 t+\frac{1}{3} \sin 60 t\right)
$$

Using (23), we can write the foregoing solution as

$$
q(t)=\frac{q_{0} \sqrt{10}}{3} e^{-20 t} \sin (60 t+1.249)
$$

When there is an impressed voltage $E(t)$ on the circuit, the electrical vibrations are said to be forced. In the case when $R \neq 0$, the complementary function $q_{c}(t)$ of (34) is called a transient solution. If $E(t)$ is periodic or a constant, then the particular solution $q_{p}(t)$ of (34) is a steady-state solution.

EXAMPLE 10 Steady-State Current

Find the steady-state solution $q_{p}(t)$ and the steady-state current in an $L R C$ series circuit when the impressed voltage is $E(t)=E_{0} \sin \gamma t$.

SOLUTION The steady-state solution $q_{p}(t)$ is a particular solution of the differential equation

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E_{0} \sin \gamma t
$$

Using the method of undetermined coefficients, we assume a particular solution of the form $q_{p}(t)=A \sin \gamma t+B \cos \gamma t$. Substituting this expression into the differential equation, simplifying, and equating coefficients gives

$$
A=\frac{E_{0}\left(L \gamma-\frac{1}{C \gamma}\right)}{-\gamma\left(L^{2} \gamma^{2}-\frac{2 L}{C}+\frac{1}{C^{2} \gamma^{2}}+R^{2}\right)}, \quad B=\frac{E_{0} R}{-\gamma\left(L^{2} \gamma^{2}-\frac{2 L}{C}+\frac{1}{C^{2} \gamma^{2}}+R^{2}\right)}
$$

It is convenient to express A and B in terms of some new symbols.
If $\quad X=L \gamma-\frac{1}{C \gamma}, \quad$ then $\quad X^{2}=L^{2} \gamma^{2}-\frac{2 L}{C}+\frac{1}{C^{2} \gamma^{2}}$.
If $\quad Z=\sqrt{X^{2}+R^{2}}, \quad$ then $\quad Z^{2}=L^{2} \gamma^{2}-\frac{2 L}{C}+\frac{1}{C^{2} \gamma^{2}}+R^{2}$.
Therefore $A=E_{0} X /\left(-\gamma Z^{2}\right)$ and $B=E_{0} R /\left(-\gamma Z^{2}\right)$, so the steady-state charge is

$$
q_{p}(t)=-\frac{E_{0} X}{\gamma Z^{2}} \sin \gamma t-\frac{E_{0} R}{\gamma Z^{2}} \cos \gamma t
$$

Now the steady-state current is given by $i_{p}(t)=q_{p}^{\prime}(t)$:

$$
\begin{equation*}
i_{p}(t)=\frac{E_{0}}{Z}\left(\frac{R}{Z} \sin \gamma t-\frac{X}{Z} \cos \gamma t\right) \tag{35}
\end{equation*}
$$

The quantities $X=L \gamma-1 / C \gamma$ and $Z=\sqrt{X^{2}+R^{2}}$ defined in Example 11 are called the reactance and impedance, respectively, of the circuit. Both the reactance and the impedance are measured in ohms.

5.1.1 SPRING/MASS SYSTEMS: FREE UNDAMPED MOTION

1. A mass weighing 4 pounds is attached to a spring whose spring constant is $16 \mathrm{lb} / \mathrm{ft}$. What is the period of simple harmonic motion?
2. A 20-kilogram mass is attached to a spring. If the frequency of simple harmonic motion is $2 / \pi$ cycles/s, what is the spring constant k ? What is the frequency of simple harmonic motion if the original mass is replaced with an 80-kilogram mass?
3. A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest from a point 3 inches above the equilibrium position. Find the equation of motion.
4. Determine the equation of motion if the mass in Problem 3 is initially released from the equilibrium position with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$.
5. A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 6 inches below the equilibrium position.
(a) Find the position of the mass at the times $t=\pi / 12$, $\pi / 8, \pi / 6, \pi / 4$, and $9 \pi / 32 \mathrm{~s}$.
(b) What is the velocity of the mass when $t=3 \pi / 16 \mathrm{~s}$? In which direction is the mass heading at this instant?
(c) At what times does the mass pass through the equilibrium position?
6. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of $10 \mathrm{~m} / \mathrm{s}$. Find the equation of motion.
7. Another spring whose constant is $20 \mathrm{~N} / \mathrm{m}$ is suspended from the same rigid support but parallel to the spring/mass system in Problem 6. A mass of 20 kilograms is attached to the second spring, and both masses are initially released from the equilibrium position with an upward velocity of $10 \mathrm{~m} / \mathrm{s}$.
(a) Which mass exhibits the greater amplitude of motion?
(b) Which mass is moving faster at $t=\pi / 4 \mathrm{~s}$? At $\pi / 2 \mathrm{~s}$?
(c) At what times are the two masses in the same position? Where are the masses at these times? In which directions are the masses moving?
8. A mass weighing 32 pounds stretches a spring 2 feet. Determine the amplitude and period of motion if the mass is initially released from a point 1 foot above the
equilibrium position with an upward velocity of $2 \mathrm{ft} / \mathrm{s}$. How many complete cycles will the mass have completed at the end of 4π seconds?
9. A mass weighing 8 pounds is attached to a spring. When set in motion, the spring/mass system exhibits simple harmonic motion. Determine the equation of motion if the spring constant is $1 \mathrm{lb} / \mathrm{ft}$ and the mass is initially released from a point 6 inches below the equilibrium position with a downward velocity of $\frac{3}{2} \mathrm{ft} / \mathrm{s}$. Express the equation of motion in the form given in (6).
10. A mass weighing 10 pounds stretches a spring $\frac{1}{4}$ foot. This mass is removed and replaced with a mass of 1.6 slugs, which is initially released from a point $\frac{1}{3}$ foot above the equilibrium position with a downward velocity of $\frac{5}{4} \mathrm{ft} / \mathrm{s}$. Express the equation of motion in the form given in (6). At what times does the mass attain a displacement below the equilibrium position numerically equal to $\frac{1}{2}$ the amplitude?
11. A mass weighing 64 pounds stretches a spring 0.32 foot. The mass is initially released from a point 8 inches above the equilibrium position with a downward velocity of $5 \mathrm{ft} / \mathrm{s}$.
(a) Find the equation of motion.
(b) What are the amplitude and period of motion?
(c) How many complete cycles will the mass have completed at the end of 3π seconds?
(d) At what time does the mass pass through the equilibrium position heading downward for the second time?
(e) At what times does the mass attain its extreme displacements on either side of the equilibrium position?
(f) What is the position of the mass at $t=3 \mathrm{~s}$?
(g) What is the instantaneous velocity at $t=3 \mathrm{~s}$?
(h) What is the acceleration at $t=3 \mathrm{~s}$?
(i) What is the instantaneous velocity at the times when the mass passes through the equilibrium position?
(j) At what times is the mass 5 inches below the equilibrium position?
(k) At what times is the mass 5 inches below the equilibrium position heading in the upward direction?
12. A mass of 1 slug is suspended from a spring whose spring constant is $9 \mathrm{lb} / \mathrm{ft}$. The mass is initially released from a point 1 foot above the equilibrium position with an upward velocity of $\sqrt{3} \mathrm{ft} / \mathrm{s}$. Find the times at which the mass is heading downward at a velocity of $3 \mathrm{ft} / \mathrm{s}$.
13. Under some circumstances when two parallel springs, with constants k_{1} and k_{2}, support a single mass, the
effective spring constant of the system is given by $k=4 k_{1} k_{2} /\left(k_{1}+k_{2}\right)$. A mass weighing 20 pounds stretches one spring 6 inches and another spring 2 inches. The springs are attached to a common rigid support and then to a metal plate. As shown in Figure 5.1.16, the mass is attached to the center of the plate in the double-spring arrangement. Determine the effective spring constant of this system. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$.

FIGURE 5.1.16 Double-spring system in Problem 13
14. A certain mass stretches one spring $\frac{1}{3}$ foot and another spring $\frac{1}{2}$ foot. The two springs are attached to a common rigid support in the manner described in Problem 13 and Figure 5.1.16. The first mass is set aside, a mass weighing 8 pounds is attached to the double-spring arrangement, and the system is set in motion. If the period of motion is $\pi / 15$ second, determine how much the first mass weighs.
15. A model of a spring/mass system is $4 x^{\prime \prime}+e^{-0.1 t} x=0$. By inspection of the differential equation only, discuss the behavior of the system over a long period of time.
16. A model of a spring/mass system is $4 x^{\prime \prime}+t x=0$. By inspection of the differential equation only, discuss the behavior of the system over a long period of time.

5.1.2 SPRING/MASS SYSTEMS: FREE DAMPED MOTION

In Problems 17-20 the given figure represents the graph of an equation of motion for a damped spring/mass system. Use the graph to determine
(a) whether the initial displacement is above or below the equilibrium position and
(b) whether the mass is initially released from rest, heading downward, or heading upward.
17.

FIGURE 5.1.17 Graph for Problem 17
18.

FIGURE 5.1.18 Graph for Problem 18
19.

FIGURE 5.1.19 Graph for Problem 19
20.

FIGURE 5.1.20 Graph for Problem 20
21. A mass weighing 4 pounds is attached to a spring whose constant is $2 \mathrm{lb} / \mathrm{ft}$. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of $8 \mathrm{ft} / \mathrm{s}$. Determine the time at which the mass passes through the equilibrium position. Find the time at which the mass attains its extreme displacement from the equilibrium position. What is the position of the mass at this instant?
22. A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to $\sqrt{2}$ times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of $5 \mathrm{ft} / \mathrm{s}$. Find the time at which the mass attains its extreme displacement from the equilibrium position. What is the position of the mass at this instant?
23. A 1-kilogram mass is attached to a spring whose constant is $16 \mathrm{~N} / \mathrm{m}$, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equations of motion if
(a) the mass is initially released from rest from a point 1 meter below the equilibrium position, and then
(b) the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of $12 \mathrm{~m} / \mathrm{s}$.
24. In parts (a) and (b) of Problem 23 determine whether the mass passes through the equilibrium position. In each case find the time at which the mass attains its extreme displacement from the equilibrium position. What is the position of the mass at this instant?
25. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force that is numerically equal to 0.4 times the instantaneous velocity.
(a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position.
(b) Express the equation of motion in the form given in (23).
(c) Find the first time at which the mass passes through the equilibrium position heading upward.
26. After a mass weighing 10 pounds is attached to a 5 -foot spring, the spring measures 7 feet. This mass is removed and replaced with another mass that weighs 8 pounds. The entire system is placed in a medium that offers a damping force that is numerically equal to the instantaneous velocity.
(a) Find the equation of motion if the mass is initially released from a point $\frac{1}{2}$ foot below the equilibrium position with a downward velocity of $1 \mathrm{ft} / \mathrm{s}$.
(b) Express the equation of motion in the form given in (23).
(c) Find the times at which the mass passes through the equilibrium position heading downward.
(d) Graph the equation of motion.
27. A mass weighing 10 pounds stretches a spring 2 feet. The mass is attached to a dashpot device that offers a damping
force numerically equal to $\beta(\beta>0)$ times the instantaneous velocity. Determine the values of the damping constant β so that the subsequent motion is (a) overdamped, (b) critically damped, and (c) underdamped.
28. A mass weighing 24 pounds stretches a spring 4 feet. The subsequent motion takes place in medium that offers a damping force numerically equal to $\beta(\beta>0)$ times the instantaneous velocity. If the mass is initially released from the equilibrium position with an upward velocity of $2 \mathrm{ft} / \mathrm{s}$, show that when $\beta>3 \sqrt{2}$ the equation of motion is

$$
x(t)=\frac{-3}{\sqrt{\beta^{2}-18}} e^{-2 \beta t / 3} \sinh \frac{2}{3} \sqrt{\beta^{2}-18} t
$$

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION

29. A mass weighing 16 pounds stretches a spring $\frac{8}{3}$ feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to $\frac{1}{2}$ the instantaneous velocity. Find the equation of motion if the mass is driven by an external force equal to $f(t)=10 \cos 3 t$.
30. A mass of 1 slug is attached to a spring whose constant is $5 \mathrm{lb} / \mathrm{ft}$. Initially, the mass is released 1 foot below the equilibrium position with a downward velocity of $5 \mathrm{ft} / \mathrm{s}$, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 2 times the instantaneous velocity.
(a) Find the equation of motion if the mass is driven by an external force equal to $f(t)=12 \cos 2 t+3 \sin 2 t$.
(b) Graph the transient and steady-state solutions on the same coordinate axes.
(c) Graph the equation of motion.
31. A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at $t=0$, an external force equal to $f(t)=8 \sin 4 t$ is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity.
32. In Problem 31 determine the equation of motion if the external force is $f(t)=e^{-t} \sin 4 t$. Analyze the displacements for $t \rightarrow \infty$.
33. When a mass of 2 kilograms is attached to a spring whose constant is $32 \mathrm{~N} / \mathrm{m}$, it comes to rest in the equilibrium position. Starting at $t=0$, a force equal to $f(t)=68 e^{-2 t} \cos 4 t$ is applied to the system. Find the equation of motion in the absence of damping.
34. In Problem 33 write the equation of motion in the form $x(t)=A \sin (\omega t+\phi)+B e^{-2 t} \sin (4 t+\theta)$. What is the amplitude of vibrations after a very long time?
35. A mass m is attached to the end of a spring whose constant is k. After the mass reaches equilibrium, its support begins to oscillate vertically about a horizontal line L according to a formula $h(t)$. The value of h represents the distance in feet measured from L. See Figure 5.1.21.
(a) Determine the differential equation of motion if the entire system moves through a medium offering a damping force that is numerically equal to $\beta(d x / d t)$.
(b) Solve the differential equation in part (a) if the spring is stretched 4 feet by a mass weighing 16 pounds and $\beta=2, h(t)=5 \cos t, x(0)=x^{\prime}(0)=0$.

FIGURE 5.1.21 Oscillating support in Problem 35
36. A mass of 100 grams is attached to a spring whose constant is 1600 dynes $/ \mathrm{cm}$. After the mass reaches equilibrium, its support oscillates according to the formula $h(t)=\sin 8 t$, where h represents displacement from its original position. See Problem 35 and Figure 5.1.21.
(a) In the absence of damping, determine the equation of motion if the mass starts from rest from the equilibrium position.
(b) At what times does the mass pass through the equilibrium position?
(c) At what times does the mass attain its extreme displacements?
(d) What are the maximum and minimum displacements?
(e) Graph the equation of motion.

In Problems 37 and 38 solve the given initial-value problem.
37. $\frac{d^{2} x}{d t^{2}}+4 x=-5 \sin 2 t+3 \cos 2 t$,

$$
x(0)=-1, \quad x^{\prime}(0)=1
$$

38. $\frac{d^{2} x}{d t^{2}}+9 x=5 \sin 3 t, \quad x(0)=2, \quad x^{\prime}(0)=0$
39. (a) Show that the solution of the initial-value problem

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \cos \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0 \\
& \text { is } \quad x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}(\cos \gamma t-\cos \omega t)
\end{aligned}
$$

(b) Evaluate $\lim _{\gamma \rightarrow \omega} \frac{F_{0}}{\omega^{2}-\gamma^{2}}(\cos \gamma t-\cos \omega t)$.
40. Compare the result obtained in part (b) of Problem 39 with the solution obtained using variation of parameters when the external force is $F_{0} \cos \omega t$.
41. (a) Show that $x(t)$ given in part (a) of Problem 39 can be written in the form

$$
x(t)=\frac{-2 F_{0}}{\omega^{2}-\gamma^{2}} \sin \frac{1}{2}(\gamma-\omega) t \sin \frac{1}{2}(\gamma+\omega) t
$$

(b) If we define $\varepsilon=\frac{1}{2}(\gamma-\omega)$, show that when ε is small an approximate solution is

$$
x(t)=\frac{F_{0}}{2 \varepsilon \gamma} \sin \varepsilon t \sin \gamma t
$$

When ε is small, the frequency $\gamma / 2 \pi$ of the impressed force is close to the frequency $\omega / 2 \pi$ of free vibrations. When this occurs, the motion is as indicated in Figure 5.1.22. Oscillations of this kind are called beats and are due to the fact that the frequency of $\sin \varepsilon t$ is quite small in comparison to the frequency of $\sin \gamma t$. The dashed curves, or envelope of the graph of $x(t)$, are obtained from the graphs of $\pm\left(F_{0} / 2 \varepsilon \gamma\right) \sin \varepsilon t$. Use a graphing utility with various values of F_{0}, ε, and γ to verify the graph in Figure 5.1.22.

FIGURE 5.1.22 Beats phenomenon in Problem 41

Computer Lab Assignments

42. Can there be beats when a damping force is added to the model in part (a) of Problem 39? Defend your position with graphs obtained either from the explicit solution of the problem

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F_{0} \cos \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

or from solution curves obtained using a numerical solver.
43. (a) Show that the general solution of

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F_{0} \sin \gamma t
$$

is

$$
\begin{aligned}
x(t)= & A e^{-\lambda t} \sin \left(\sqrt{\omega^{2}-\lambda^{2}} t+\phi\right) \\
& +\frac{F_{0}}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}} \sin (\gamma t+\theta),
\end{aligned}
$$

where $A=\sqrt{c_{1}{ }^{2}+c_{2}{ }^{2}}$ and the phase angles ϕ and θ are, respectively, defined by $\sin \phi=c_{1} / A$, $\cos \phi=c_{2} / A$ and

$$
\begin{aligned}
& \sin \theta=\frac{-2 \lambda \gamma}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}} \\
& \cos \theta=\frac{\omega^{2}-\gamma^{2}}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}
\end{aligned}
$$

(b) The solution in part (a) has the form $x(t)=x_{c}(t)+x_{p}(t)$. Inspection shows that $x_{c}(t)$ is transient, and hence for large values of time, the solution is approximated by $x_{p}(t)=g(\gamma) \sin (\gamma t+\theta)$, where

$$
g(\gamma)=\frac{F_{0}}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}
$$

Although the amplitude $g(\gamma)$ of $x_{p}(t)$ is bounded as $t \rightarrow \infty$, show that the maximum oscillations will occur at the value $\gamma_{1}=\sqrt{\omega^{2}-2 \lambda^{2}}$. What is the maximum value of g ? The number $\sqrt{\omega^{2}-2 \lambda^{2}} / 2 \pi$ is said to be the resonance frequency of the system.
(c) When $F_{0}=2$, $m=1$, and $k=4, g$ becomes

$$
g(\gamma)=\frac{2}{\sqrt{\left(4-\gamma^{2}\right)^{2}+\beta^{2} \gamma^{2}}}
$$

Construct a table of the values of γ_{1} and $g\left(\gamma_{1}\right)$ corresponding to the damping coefficients $\beta=2, \beta=1$, $\beta=\frac{3}{4}, \beta=\frac{1}{2}$, and $\beta=\frac{1}{4}$. Use a graphing utility to obtain the graphs of g corresponding to these damping coefficients. Use the same coordinate axes. This family of graphs is called the resonance curve or frequency response curve of the system. What is γ_{1} approaching as $\beta \rightarrow 0$? What is happening to the resonance curve as $\beta \rightarrow 0$?
44. Consider a driven undamped spring/mass system described by the initial-value problem

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \sin ^{n} \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

(a) For $n=2$, discuss why there is a single frequency $\gamma_{1} / 2 \pi$ at which the system is in pure resonance.
(b) For $n=3$, discuss why there are two frequencies $\gamma_{1} / 2 \pi$ and $\gamma_{2} / 2 \pi$ at which the system is in pure resonance.
(c) Suppose $\omega=1$ and $F_{0}=1$. Use a numerical solver to obtain the graph of the solution of the initial-value problem for $n=2$ and $\gamma=\gamma_{1}$ in part (a). Obtain the graph of the solution of the initial-value problem for $n=3$ corresponding, in turn, to $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ in part (b).

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an $L R C$ series circuit at $t=0.01 \mathrm{~s}$ when $L=0.05 \mathrm{~h}, R=2 \Omega, C=0.01 \mathrm{f}$, $E(t)=0 \mathrm{~V}, q(0)=5 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$. Determine the first time at which the charge on the capacitor is equal to zero.
46. Find the charge on the capacitor in an $L R C$ series circuit when $L=\frac{1}{4} \mathrm{~h}, R=20 \Omega, C=\frac{1}{300} \mathrm{f}, E(t)=0 \mathrm{~V}$, $q(0)=4 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$. Is the charge on the capacitor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and the current in the given $L R C$ series circuit. Find the maximum charge on the capacitor.
47. $L=\frac{5}{3} \mathrm{~h}, R=10 \Omega, C=\frac{1}{30} \mathrm{f}, E(t)=300 \mathrm{~V}, q(0)=0 \mathrm{C}$, $i(0)=0 \mathrm{~A}$
48. $L=1 \mathrm{~h}, \quad R=100 \Omega, \quad C=0.0004 \mathrm{f}, \quad E(t)=30 \mathrm{~V}$, $q(0)=0 \mathrm{C}, i(0)=2 \mathrm{~A}$
49. Find the steady-state charge and the steady-state current in an $L R C$ series circuit when $L=1 \mathrm{~h}, R=2 \Omega$, $C=0.25 \mathrm{f}$, and $E(t)=50 \cos t \mathrm{~V}$.
50. Show that the amplitude of the steady-state current in the $L R C$ series circuit in Example 10 is given by E_{0} / Z, where Z is the impedance of the circuit.
51. Use Problem 50 to show that the steady-state current in an $L R C$ series circuit when $L=\frac{1}{2} \mathrm{~h}, R=20 \Omega$, $C=0.001 \mathrm{f}$, and $E(t)=100 \sin 60 t \mathrm{~V}$, is given by $i_{p}(t)=4.160 \sin (60 t-0.588)$.
52. Find the steady-state current in an $L R C$ series circuit when $L=\frac{1}{2} \mathrm{~h}, R=20 \Omega, C=0.001 \mathrm{f}$, and $E(t)=100 \sin 60 t+200 \cos 40 t \mathrm{~V}$.
53. Find the charge on the capacitor in an $L R C$ series circuit when $L=\frac{1}{2} \mathrm{~h}, R=10 \Omega, C=0.01 \mathrm{f}, E(t)=150 \mathrm{~V}$, $q(0)=1 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$. What is the charge on the capacitor after a long time?
54. Show that if L, R, C, and E_{0} are constant, then the amplitude of the steady-state current in Example 10 is a maximum when $\gamma=1 / \sqrt{L C}$. What is the maximum amplitude?
55. Show that if L, R, E_{0}, and γ are constant, then the amplitude of the steady-state current in Example 10 is a maximum when the capacitance is $C=1 / L \gamma^{2}$.
56. Find the charge on the capacitor and the current in an $L C$ circuit when $L=0.1 \mathrm{~h}, C=0.1 \mathrm{f}, E(t)=100 \sin \gamma t \mathrm{~V}$, $q(0)=0 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$.
57. Find the charge on the capacitor and the current in an $L C$ circuit when $E(t)=E_{0} \cos \gamma t \mathrm{~V}, q(0)=q_{0} \mathrm{C}$, and $i(0)=i_{0} \mathrm{~A}$.
58. In Problem 57 find the current when the circuit is in resonance.

