
LINEAR MODELS: INITIAL-VALUE PROBLEMS

REVIEW MATERIAL
● Sections 4.1, 4.3, and 4.4
● Problems 29–36 in Exercises 4.3
● Problems 27–36 in Exercises 4.4

INTRODUCTION In this section we are going to consider several linear dynamical systems in
which each mathematical model is a second-order differential equation with constant coefficients
along with initial conditions specified at a time that we shall take to be t � 0:

.

Recall that the function g is the input, driving function, or forcing function of the system. A solution
y(t) of the differential equation on an interval I containing t � 0 that satisfies the initial conditions is
called the output or response of the system.

a
d 2y

dt2 � b
dy

dt
� cy � g(t), y(0) � y0, y�(0) � y1
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5.1

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

HOOKE’S LAW Suppose that a flexible spring is suspended vertically from a rigid
support and then a mass m is attached to its free end. The amount of stretch, or elonga-
tion, of the spring will of course depend on the mass; masses with different weights
stretch the spring by differing amounts. By Hooke’s law the spring itself exerts a restor-
ing force F opposite to the direction of elongation and proportional to the amount of
elongation s. Simply stated, F � ks, where k is a constant of proportionality called the
spring constant. The spring is essentially characterized by the number k. For example,
if a mass weighing 10 pounds stretches a spring foot, then implies
k � 20 lb/ft. Necessarily then, a mass weighing, say, 8 pounds stretches the same
spring only foot.

NEWTON’S SECOND LAW After a mass m is attached to a spring, it stretches
the spring by an amount s and attains a position of equilibrium at which its
weight W is balanced by the restoring force ks. Recall that weight is defined by
W � mg, where mass is measured in slugs, kilograms, or grams and g � 32 ft /s2,
9.8 m/s2, or 980 cm/s2, respectively. As indicated in Figure 5.1.1(b), the condition
of equilibrium is mg � ks or mg � ks � 0. If the mass is displaced by an amount
x from its equilibrium position, the restoring force of the spring is then k(x � s).
Assuming that there are no retarding forces acting on the system and assuming that
the mass vibrates free of other external forces — free motion — we can equate
Newton’s second law with the net, or resultant, force of the restoring force and the
weight:

(1)

The negative sign in (1) indicates that the restoring force of the spring acts opposite
to the direction of motion. Furthermore, we adopt the convention that displacements
measured below the equilibrium position are positive. See Figure 5.1.2.
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DE OF FREE UNDAMPED MOTION By dividing (1) by the mass m, we obtain
the second-order differential equation d2x�dt2 � (k�m)x � 0, or

, (2)

where v2 � k�m. Equation (2) is said to describe simple harmonic motion or
free undamped motion. Two obvious initial conditions associated with (2) are
x(0) � x0 and x�(0) � x1, the initial displacement and initial velocity of the mass,
respectively. For example, if x0 � 0, x1 � 0, the mass starts from a point below the
equilibrium position with an imparted upward velocity. When x�(0) � 0, the mass is
said to be released from rest. For example, if x0 � 0, x1 � 0, the mass is released
from rest from a point �x0 � units above the equilibrium position.

EQUATION OF MOTION To solve equation (2), we note that the solutions of its
auxiliary equation m2 � v2 � 0 are the complex numbers m1 � vi, m2 � �vi. Thus
from (8) of Section 4.3 we find the general solution of (2) to be

. (3)

The period of motion described by (3) is T � 2p�v. The number T represents the time
(measured in seconds) it takes the mass to execute one cycle of motion. A cycle is one
complete oscillation of the mass, that is, the mass m moving from, say, the lowest point
below the equilibrium position to the point highest above the equilibrium position and
then back to the lowest point. From a graphical viewpoint T � 2p�v seconds is the
length of the time interval between two successive maxima (or minima) of x(t). Keep
in mind that a maximum of x(t) is a positive displacement corresponding to the mass
attaining its greatest distance below the equilibrium position, whereas a minimum of
x(t) is negative displacement corresponding to the mass attaining its greatest height
above the equilibrium position. We refer to either case as an extreme displacement of
the mass. The frequency of motion is f � 1�T � v�2p and is the number of cycles
completed each second. For example, if x(t) � 2 cos 3p t � 4 sin 3p t, then the period
is T � 2p�3p� 2�3 s, and the frequency is f � 3�2 cycles/s. From a graphical view-
point the graph of x(t) repeats every second, that is, , and cycles of
the graph are completed each second (or, equivalently, three cycles of the graph are
completed every 2 seconds). The number (measured in radians per second)
is called the circular frequency of the system. Depending on which text you read, both
f � v�2p and v are also referred to as the natural frequency of the system. Finally,
when the initial conditions are used to determine the constants c1 and c2 in (3), we say
that the resulting particular solution or response is the equation of motion.

EXAMPLE 1 Free Undamped Motion

A mass weighing 2 pounds stretches a spring 6 inches. At t � 0 the mass is released
from a point 8 inches below the equilibrium position with an upward velocity of .
Determine the equation of motion.

SOLUTION Because we are using the engineering system of units, the measure-
ments given in terms of inches must be converted into feet: ; .
In addition, we must convert the units of weight given in pounds into units of mass.
From m � W�g we have slug. Also, from Hooke’s law, 
implies that the spring constant is k � 4 lb/ft. Hence (1) gives

.

The initial displacement and initial velocity are , , where the neg-
ative sign in the last condition is a consequence of the fact that the mass is given an
initial velocity in the negative, or upward, direction.

x�(0) � �4
3x(0) � 2

3

1

16

d 2x

dt2 � �4x  or  d 2x

dt2 � 64x � 0

2 � k � 1
2�m � 2

32 � 1
16

8 in. � 2
3 ft6 in. � 1

2 ft

4
3 ft /s

� � 1k>m
3
2x(t � 2

3) � x(t)2
3

x(t) � c1 cos �t � c2 sin �t

d 2x

dt2 � �2x � 0
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Now v2 � 64 or v � 8, so the general solution of the differential equation is

. (4)

Applying the initial conditions to x(t) and x�(t) gives and . Thus the
equation of motion is

. (5)

ALTERNATIVE FORM OF X(t) When c1 � 0 and c2 � 0, the actual amplitude A
of free vibrations is not obvious from inspection of equation (3). For example,
although the mass in Example 1 is initially displaced foot beyond the equilibrium
position, the amplitude of vibrations is a number larger than . Hence it is often con-
venient to convert a solution of form (3) to the simpler form

, (6)

where and f is a phase angle defined by

. (7)

To verify this, we expand (6) by the addition formula for the sine function:

. (8)

It follows from Figure 5.1.3 that if f is defined by

,

then (8) becomes

.

EXAMPLE 2 Alternative Form of Solution (5)

In view of the foregoing discussion we can write solution (5) in the alternative
form x(t) � A sin(8t � f). Computation of the amplitude is straightforward,

, but some care should be exercised in
computing the phase angle f defined by (7). With and we find
tan f � �4, and a calculator then gives tan�1(�4) � �1.326 rad. This is not the
phase angle, since tan�1(�4) is located in the fourth quadrant and therefore con-
tradicts the fact that sin f � 0 and cos f � 0 because c1 � 0 and c2 � 0. Hence
we must take f to be the second-quadrant angle f � p � (�1.326) � 1.816 rad.
Thus (5) is the same as

. (9)

The period of this function is T � 2p�8 � p�4 s.

Figure 5.1.4(a) illustrates the mass in Example 2 going through approximately
two complete cycles of motion. Reading from left to right, the first five positions
(marked with black dots) correspond to the initial position of the mass below the
equilibrium position , the mass passing through the equilibrium position(x � 2

3)

x(t) �
117

6
 sin(8t � 1.816)

c2 � �1
6c1 � 2

3

A � 2(2
3)2 � (�1

6)2 � 217
36  0.69 ft

A
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A
 cos �t � A
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c2 � �1
6c1 � 2

3
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for the first time heading upward (x � 0), the mass at its extreme displacement above
the equilibrium position , the mass at the equilibrium position for the
second time heading downward (x � 0), and the mass at its extreme displacement
below the equilibrium position . The black dots on the graph of (9),
given in Figure 5.1.4(b), also agree with the five positions just given. Note, however,
that in Figure 5.1.4(b) the positive direction in the tx-plane is the usual upward
direction and so is opposite to the positive direction indicated in Figure 5.1.4(a).
Hence the solid blue graph representing the motion of the mass in Figure 5.1.4(b) is
the reflection through the t-axis of the blue dashed curve in Figure 5.1.4(a).

Form (6) is very useful because it is easy to find values of time for which
the graph of x(t) crosses the positive t-axis (the line x � 0). We observe that
sin(vt � f) � 0 when vt � f � np, where n is a nonnegative integer.

SYSTEMS WITH VARIABLE SPRING CONSTANTS In the model discussed
above we assumed an ideal world—a world in which the physical characteristics of
the spring do not change over time. In the nonideal world, however, it seems reason-
able to expect that when a spring/mass system is in motion for a long period, the
spring will weaken; in other words, the “spring constant” will vary—or, more specif-
ically, decay—with time. In one model for the aging spring the spring constant k
in (1) is replaced by the decreasing function K(t) � ke�at, k � 0, a� 0. The linear
differential equation mx	 � ke�atx � 0 cannot be solved by the methods that were
considered in Chapter 4. Nevertheless, we can obtain two linearly independent solu-
tions using the methods in Chapter 6. See Problem 15 in Exercises 5.1, Example 4 in
Section 6.3, and Problems 33 and 39 in Exercises 6.3.

(x � 117�6)

(x � �117�6)
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When a spring/mass system is subjected to an environment in which the
temperature is rapidly decreasing, it might make sense to replace the constant k
with K(t) � kt, k � 0, a function that increases with time. The resulting model,
mx	 � ktx � 0, is a form of Airy’s differential equation. Like the equation for
an aging spring, Airy’s equation can be solved by the methods of Chapter 6. See
Problem 16 in Exercises 5.1, Example 3 in Section 6.1, and Problems 34, 35, and
40 in Exercises 6.3.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

The concept of free harmonic motion is somewhat unrealistic, since the motion
described by equation (1) assumes that there are no retarding forces acting on the
moving mass. Unless the mass is suspended in a perfect vacuum, there will be at
least a resisting force due to the surrounding medium. As Figure 5.1.5 shows, the
mass could be suspended in a viscous medium or connected to a dashpot damping
device.

DE OF FREE DAMPED MOTION In the study of mechanics, damping forces
acting on a body are considered to be proportional to a power of the instantaneous
velocity. In particular, we shall assume throughout the subsequent discussion that
this force is given by a constant multiple of dx�dt. When no other external forces are
impressed on the system, it follows from Newton’s second law that

, (10)

where b is a positive damping constant and the negative sign is a consequence of the
fact that the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we find that the differential equation of free
damped motion is d2x�dt2 � (b�m)dx�dt � (k�m)x � 0 or

, (11)

where . (12)

The symbol 2l is used only for algebraic convenience because the auxiliary equation
is m2 � 2lm � v2 � 0, and the corresponding roots are then

.

We can now distinguish three possible cases depending on the algebraic sign of
l2 � v2. Since each solution contains the damping factor e�lt, l� 0, the displace-
ments of the mass become negligible as time t increases.

CASE I: L2 � V2 � 0 In this situation the system is said to be overdamped
because the damping coefficient b is large when compared to the spring constant k.
The corresponding solution of (11) is or

. (13)

This equation represents a smooth and nonoscillatory motion. Figure 5.1.6 shows
two possible graphs of x(t).

x(t) � e��t (c1e1�2��2t � c2e�1�2��2t)

x(t) � c1em1t � c2em2t

m1 � �� � 2�2 � �2,    m2 � �� � 2�2 � �2

2� �
�

m
,  �2 �

k

m

d 2x

dt2 � 2�
dx

dt
� �2x � 0

m
d 2x

dt2 � �kx � �
dx

dt
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CASE II: L2 � V2 � 0 The system is said to be critically damped because any
slight decrease in the damping force would result in oscillatory motion. The general
solution of (11) is or

. (14)

Some graphs of typical motion are given in Figure 5.1.7. Notice that the motion is
quite similar to that of an overdamped system. It is also apparent from (14) that the
mass can pass through the equilibrium position at most one time.

CASE III: L2 � V2 � 0 In this case the system is said to be underdamped, since
the damping coefficient is small in comparison to the spring constant. The roots m1

and m2 are now complex:

.

Thus the general solution of equation (11) is

. (15)

As indicated in Figure 5.1.8, the motion described by (15) is oscillatory; but because
of the coefficient e�lt, the amplitudes of vibration as .

EXAMPLE 3 Overdamped Motion

It is readily verified that the solution of the initial-value problem

is . (16)

The problem can be interpreted as representing the overdamped motion of a mass on
a spring. The mass is initially released from a position 1 unit below the equilibrium
position with a downward velocity of 1 ft /s.

To graph x(t), we find the value of t for which the function has an
extremum — that is, the value of time for which the first derivative (velocity) is
zero. Differentiating (16) gives , so x�(t) � 0 implies that

or . It follows from the first derivative test, as well as our
physical intuition, that x(0.157) � 1.069 ft is actually a maximum. In other
words, the mass attains an extreme displacement of 1.069 feet below the equilib-
rium position.

We should also check to see whether the graph crosses the t-axis—that is,
whether the mass passes through the equilibrium position. This cannot happen in this
instance because the equation x(t) � 0, or , has the physically irrelevant solu-
tion .

The graph of x(t), along with some other pertinent data, is given in
Figure 5.1.9.

EXAMPLE 4 Critically Damped Motion

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force
numerically equal to 2 times the instantaneous velocity acts on the system, determine
the equation of motion if the mass is initially released from the equilibrium position
with an upward velocity of 3 ft /s.

t � 1
3 ln 2

5 � �0.305
e3t � 2

5

t � 1
3 ln 8

5 � 0.157e3t � 8
5

x�(t) � �5
3 e�t � 8

3 e�4t

x(t) �
5

3
e�t �

2

3
e�4t

d 2x

dt2 � 5
dx

dt
� 4x � 0, x(0) � 1, x�(0) � 1

t : 
: 0

x(t) � e��t (c1 cos 1�2 � �2t � c2 sin 1�2 � �2t)

m1 � �� � 1�2 � �2i,    m2 � �� � 1�2 � �2i

x(t) � e��t(c1 � c2t)

x(t) � c1em1t � c2tem1t
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SOLUTION From Hooke’s law we see that 8 � k(2) gives k � 4 lb/ft and that
W � mg gives slug. The differential equation of motion is then

. (17)

The auxiliary equation for (17) is m2 � 8m � 16 � (m � 4)2 � 0, so m1 � m2 � � 4.
Hence the system is critically damped, and

. (18)

Applying the initial conditions x(0) � 0 and x�(0) � �3, we find, in turn, that c1 � 0
and c2 � �3. Thus the equation of motion is

. (19)

To graph x(t), we proceed as in Example 3. From x�(t) � �3e�4t(1 � 4t) we
see that x�(t) � 0 when . The corresponding extreme displacement is

. As shown in Figure 5.1.10, we interpret this value
to mean that the mass reaches a maximum height of 0.276 foot above the
equilibrium position.

EXAMPLE 5 Underdamped Motion

A mass weighing 16 pounds is attached to a 5-foot-long spring. At equilibrium the
spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet
above the equilibrium position, find the displacements x(t) if it is further known that
the surrounding medium offers a resistance numerically equal to the instantaneous
velocity.

SOLUTION The elongation of the spring after the mass is attached is 8.2 � 5 � 3.2 ft,
so it follows from Hooke’s law that 16 � k(3.2) or k � 5 lb/ft. In addition,

slug, so the differential equation is given by

. (20)

Proceeding, we find that the roots of m2 � 2m � 10 � 0 are m1 � �1 � 3i and
m2 � �1 � 3i, which then implies that the system is underdamped, and

. (21)

Finally, the initial conditions x(0) � �2 and x�(0) � 0 yield c1 � �2 and ,
so the equation of motion is

. (22)

ALTERNATIVE FORM OF x(t) In a manner identical to the procedure used on
page 184, we can write any solution

in the alternative form

, (23)

where and the phase angle f is determined from the equations

.sin � �
c1

A
,  cos � �

c2

A
,  tan � �

c1

c2

A � 1c1
2 � c2

2

x(t) � Ae��t sin(1�2 � �2t � �)

x(t) � e��t (c1 cos 1�2 � �2t � c2 sin 1�2 � �2t)

x(t) � e�t ��2 cos 3t �
2

3
 sin 3t�

c2 � �2
3

x(t) � e�t(c1 cos 3t � c2 sin 3t)

1

2

d 2x

dt2 � �5x �
dx

dt
    or    

d 2x

dt2 � 2
dx

dt
� 10x � 0

m � 16
32 � 1

2

x(1
4) � �3(1

4)e�1 � �0.276 ft
t � 1

4

x(t) � �3te�4t

x(t) � c1e�4t � c2te�4t

1

4

d2x

dt2 � �4x � 2
dx

dt
  or  d 2x

dt2 � 8
dx

dt
� 16x � 0

m � 8
32 � 1

4
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The coefficient Ae�lt is sometimes called the damped amplitude of vibrations.
Because (23) is not a periodic function, the number is called the
quasi period and is the quasi frequency. The quasi period is the
time interval between two successive maxima of x(t). You should verify, for the equa-
tion of motion in Example 5, that and f � 4.391. Therefore an equiv-
alent form of (22) is

.

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION

DE OF DRIVEN MOTION WITH DAMPING Suppose we now take into
consideration an external force f (t) acting on a vibrating mass on a spring. For
example, f (t) could represent a driving force causing an oscillatory vertical
motion of the support of the spring. See Figure 5.1.11. The inclusion of f (t) in the
formulation of Newton’s second law gives the differential equation of driven or
forced motion:

. (24)

Dividing (24) by m gives

, (25)

where F(t) � f(t)�m and, as in the preceding section, 2l� b�m, v2 � k�m. To solve
the latter nonhomogeneous equation, we can use either the method of undetermined
coefficients or variation of parameters.

EXAMPLE 6 Interpretation of an Initial-Value Problem

Interpret and solve the initial-value problem

. (26)

SOLUTION We can interpret the problem to represent a vibrational system consist-
ing of a mass ( slug or kilogram) attached to a spring (k � 2 lb/ft or N/m).
The mass is initially released from rest unit (foot or meter) below the equilibrium
position. The motion is damped (b � 1.2) and is being driven by an external peri-
odic (T � p�2 s) force beginning at t � 0. Intuitively, we would expect that even
with damping, the system would remain in motion until such time as the forcing
function was “turned off,” in which case the amplitudes would diminish. However,
as the problem is given, f (t) � 5 cos 4t will remain “on” forever.

We first multiply the differential equation in (26) by 5 and solve

by the usual methods. Because m1 � �3 � i, m2 � �3 � i, it follows that
xc(t) � e�3t(c1 cos t � c2 sin t). Using the method of undetermined coefficients,
we assume a particular solution of the form xp(t) � A cos 4t � B sin 4t. Differentiating
xp(t) and substituting into the DE gives

.x	p � 6x�p � 10xp � (�6A � 24B) cos 4t � (�24A � 6B) sin 4t � 25 cos 4t

dx2

dt2 � 6
dx

dt
� 10x � 0

1
2

m � 1
5

1

5

d 2x

dt2 � 1.2
dx

dt
� 2x � 5 cos 4t, x(0) �

1

2
, x�(0) � 0

d 2x

dt2 � 2�
dx

dt
� �2x � F(t)

m
d 2x

dt2 � �kx � � 
dx

dt
� f(t)

x(t) �
2110

3
e�t sin(3t � 4.391)

A � 2110�3

1�2 � �2 �2�
2� �1�2 � �2
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The resulting system of equations

yields and . It follows that

. (27)

When we set t � 0 in the above equation, we obtain . By differentiating
the expression and then setting t � 0, we also find that . Therefore the
equation of motion is

. (28)

TRANSIENT AND STEADY-STATE TERMS When F is a periodic function, such
as F(t) � F0 sin gt or F(t) � F0 cos gt, the general solution of (25) for l� 0 is
the sum of a nonperiodic function xc(t) and a periodic function xp(t). Moreover, xc(t)
dies off as time increases—that is, . Thus for large values of time,
the displacements of the mass are closely approximated by the particular solution
xp(t). The complementary function xc(t) is said to be a transient term or transient
solution, and the function xp(t), the part of the solution that remains after an interval
of time, is called a steady-state term or steady-state solution. Note therefore
that the effect of the initial conditions on a spring/mass system driven by F is
transient. In the particular solution (28), is a transient term,
and is a steady-state term. The graphs of these two
terms and the solution (28) are given in Figures 5.1.12(a) and 5.1.12(b), respectively.

EXAMPLE 7 Transient/Steady-State Solutions

The solution of the initial-value problem

,

where x1 is constant, is given by

Solution curves for selected values of the initial velocity x1 are shown in Figure 5.1.13.
The graphs show that the influence of the transient term is negligible for about
t � 3p�2.

DE OF DRIVEN MOTION WITHOUT DAMPING With a periodic impressed
force and no damping force, there is no transient term in the solution of a problem.
Also, we shall see that a periodic impressed force with a frequency near or the same
as the frequency of free undamped vibrations can cause a severe problem in any
oscillatory mechanical system.

EXAMPLE 8 Undamped Forced Motion

Solve the initial-value problem

, (29)

where F0 is a constant and g � v.

d 2x

dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0

x(t) � (x1 � 2) e�t sin t � 2 sin t.

transient steady-state

d 2x

dt2 � 2
dx

dt
� 2x � 4 cos t � 2 sin t, x(0) � 0, x�(0) � x1

xp(t) � � 25
102 cos 4t � 50

51 sin 4t
e�3t (38

51 cos t � 86
51 sin t)

limt:
 xc (t) � 0

x(t) � e�3t�38

51
 cos t �

86

51
 sin t� �

25

102
 cos 4t �

50

51
 sin 4t

c2 � �86
51

c1 � 38
51

x(t) � e�3t(c1 cos t � c2 sin t) �
25

102
 cos 4t �

50

51
 sin 4t

B � 50
51A � � 25

102

�6A � 24B � 25,  �24A � 6B � 0

190 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

t

x

steady state
xp(t)

transient
_ 1

1

π /2

(a)

(b)

t

x
x(t)=transient

+ steady state

_ 1

1

π /2

FIGURE 5.1.12 Graph of solution
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SOLUTION The complementary function is xc(t) � c1 cos vt � c2 sin vt. To obtain a
particular solution, we assume xp(t) � A cos gt � B sin gt so that

.

Equating coefficients immediately gives A � 0 and B � F0�(v2 � g2). Therefore

.

Applying the given initial conditions to the general solution

yields c1 � 0 and c2 � �gF0�v(v2 � g2). Thus the solution is

. (30)

PURE RESONANCE Although equation (30) is not defined for g� v, it is
interesting to observe that its limiting value as can be obtained by applying
L’Hôpital’s Rule. This limiting process is analogous to “tuning in” the frequency of
the driving force (g�2p) to the frequency of free vibrations (v�2p). Intuitively, we
expect that over a length of time we should be able to substantially increase the
amplitudes of vibration. For g � v we define the solution to be

(31)

As suspected, when , the displacements become large; in fact, 
when tn � np�v, n � 1, 2, . . . . The phenomenon that we have just described is
known as pure resonance. The graph given in Figure 5.1.14 shows typical motion
in this case.

In conclusion it should be noted that there is no actual need to use a limiting
process on (30) to obtain the solution for g � v. Alternatively, equation (31) follows
by solving the initial-value problem

directly by conventional methods.
If the displacements of a spring/mass system were actually described by a func-

tion such as (31), the system would necessarily fail. Large oscillations of the mass
would eventually force the spring beyond its elastic limit. One might argue too that
the resonating model presented in Figure 5.1.14 is completely unrealistic because it
ignores the retarding effects of ever-present damping forces. Although it is true that
pure resonance cannot occur when the smallest amount of damping is taken into con-
sideration, large and equally destructive amplitudes of vibration (although bounded
as ) can occur. See Problem 43 in Exercises 5.1.t : 


d 2x

dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0

� x(tn) � B 
t : 


�
F0

2�2 sin �t �
F0

2�
t cos �t.

� F0
�sin �t � �t cos �t

�2�2

� F0 lim
� :�

�sin �t � �t cos �t

�2��

x(t) � lim
� :�

F0
�� sin �t � � sin �t

�(�2 � �2)
� F0 lim

� :�

d

d�
 (�� sin �t � � sin �t)

d

d�
 (�3 � ��2)

� : �

x(t) �
F0

�(�2 � �2)
(�� sin �t � � sin �t),  � � �

x(t) � c1 cos �t � c2 sin �t �
F0

�2 � �2 sin �t

xp(t) �
F0

�2 � �2 sin �t

x	p � �2xp � A(�2 � �2) cos �t � B(�2 � �2) sin �t � F0 sin �t
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5.1.4 SERIES CIRCUIT ANALOGUE

LRC SERIES CIRCUITS As was mentioned in the introduction to this chapter, many
different physical systems can be described by a linear second-order differential equa-
tion similar to the differential equation of forced motion with damping:

. (32)

If i(t) denotes current in the LRC series electrical circuit shown in Figure 5.1.15,
then the voltage drops across the inductor, resistor, and capacitor are as shown in
Figure 1.3.3. By Kirchhoff’s second law the sum of these voltages equals the voltage
E(t) impressed on the circuit; that is,

. (33)

But the charge q(t) on the capacitor is related to the current i(t) by i � dq�dt, so (33)
becomes the linear second-order differential equation

. (34)

The nomenclature used in the analysis of circuits is similar to that used to
describe spring/mass systems.

If E(t) � 0, the electrical vibrations of the circuit are said to be free. Because
the auxiliary equation for (34) is Lm2 � Rm � 1�C � 0, there will be three forms of
the solution with R � 0, depending on the value of the discriminant R2 � 4L�C. We
say that the circuit is

,

,

and .

In each of these three cases the general solution of (34) contains the factor e�Rt/2L, so
as . In the underdamped case when q(0) � q0, the charge on the

capacitor oscillates as it decays; in other words, the capacitor is charging and dis-
charging as . When E(t) � 0 and R � 0, the circuit is said to be undamped,
and the electrical vibrations do not approach zero as t increases without bound; the
response of the circuit is simple harmonic.

EXAMPLE 9 Underdamped Series Circuit

Find the charge q(t) on the capacitor in an LRC series circuit when L � 0.25 henry (h),
R � 10 ohms ("), C � 0.001 farad (f), E(t) � 0, q(0) � q0 coulombs (C), and i(0) � 0.

SOLUTION Since 1�C � 1000, equation (34) becomes

.

Solving this homogeneous equation in the usual manner, we find that the circuit is un-
derdamped and q(t) � e�20t(c1 cos 60t � c2 sin 60t). Applying the initial conditions,
we find c1 � q0 and . Thus

.q(t) � q0e
�20t�cos 60t �

1

3
 sin 60t�

c2 � 1
3 q0

1

4
q	 � 10q� � 1000q � 0  or  q	 � 40q� � 4000q � 0

t : 


t : 
q(t) : 0

underdamped if R2 � 4L /C � 0

critically damped if R2 � 4L /C � 0

overdamped if R2 � 4L /C � 0

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t)

L
di

dt
� Ri �

1

C
q � E(t)

m
d 2x

dt2 � �
dx

dt
� kx � f(t)
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Using (23), we can write the foregoing solution as

.

When there is an impressed voltage E(t) on the circuit, the electrical vibrations
are said to be forced. In the case when R � 0, the complementary function qc(t) of
(34) is called a transient solution. If E(t) is periodic or a constant, then the particu-
lar solution qp(t) of (34) is a steady-state solution.

EXAMPLE 10 Steady-State Current

Find the steady-state solution qp(t) and the steady-state current in an LRC series cir-
cuit when the impressed voltage is E(t) � E0 sin gt.

SOLUTION The steady-state solution qp(t) is a particular solution of the differential
equation

.

Using the method of undetermined coefficients, we assume a particular solution of
the form qp(t) � A sin gt � B cos gt. Substituting this expression into the differen-
tial equation, simplifying, and equating coefficients gives

It is convenient to express A and B in terms of some new symbols.

If

If

Therefore A � E0X�(�gZ2) and B � E0R�(�gZ2), so the steady-state charge is

.

Now the steady-state current is given by :

. (35)

The quantities X � Lg � 1�Cg and defined in Example 11 are
called the reactance and impedance, respectively, of the circuit. Both the reactance
and the impedance are measured in ohms.

Z � 1X2 � R2

ip(t) �
E0

Z �R

Z
 sin �t �

X

Z
 cos �t�

ip(t) � q�p(t)

qp(t) � �
E0X

�Z2 sin �t �
E0R

�Z2 cos �t

Z � 1X2 � R2,    then    Z 2 � L2�2 �
2L

C
�

1

C2�2 � R2.

X � L� �
1

C�
,    then    X2 � L2�2 �

2L

C
�

1

C2�2
.

A �

E0�L� �
1

C��
�� �L2�2 �

2L

C
�

1

C2� 2 � R2�
,    B �

E0R

�� �L2�2 �
2L

C
�

1

C2� 2 � R2�
.

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E0 sin �t

q(t) �
q01 10

3
e�20t sin(60t � 1.249)
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EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-7.

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

1. A mass weighing 4 pounds is attached to a spring whose
spring constant is 16 lb/ft. What is the period of simple
harmonic motion?

2. A 20-kilogram mass is attached to a spring. If the fre-
quency of simple harmonic motion is 2�p cycles/s,
what is the spring constant k? What is the frequency
of simple harmonic motion if the original mass is
replaced with an 80-kilogram mass?

3. A mass weighing 24 pounds, attached to the end of
a spring, stretches it 4 inches. Initially, the mass is
released from rest from a point 3 inches above the equi-
librium position. Find the equation of motion.

4. Determine the equation of motion if the mass in
Problem 3 is initially released from the equilibrium
position with a downward velocity of 2 ft /s.

5. A mass weighing 20 pounds stretches a spring 6 inches.
The mass is initially released from rest from a point
6 inches below the equilibrium position.

(a) Find the position of the mass at the times t � p�12,
p�8, p�6, p�4, and 9p�32 s.

(b) What is the velocity of the mass when t � 3p�16 s?
In which direction is the mass heading at this
instant?

(c) At what times does the mass pass through the equi-
librium position?

6. A force of 400 newtons stretches a spring 2 meters.
A mass of 50 kilograms is attached to the end of the
spring and is initially released from the equilibrium
position with an upward velocity of 10 m/s. Find the
equation of motion.

7. Another spring whose constant is 20 N/m is suspended
from the same rigid support but parallel to the
spring/mass system in Problem 6. A mass of 20 kilo-
grams is attached to the second spring, and both masses
are initially released from the equilibrium position with
an upward velocity of 10 m/s.

(a) Which mass exhibits the greater amplitude of
motion?

(b) Which mass is moving faster at t � p�4 s? At
p�2 s?

(c) At what times are the two masses in the same
position? Where are the masses at these times? In
which directions are the masses moving?

8. A mass weighing 32 pounds stretches a spring 2 feet.
Determine the amplitude and period of motion if the
mass is initially released from a point 1 foot above the

equilibrium position with an upward velocity of 2 ft/s.
How many complete cycles will the mass have com-
pleted at the end of 4p seconds?

9. A mass weighing 8 pounds is attached to a spring. When
set in motion, the spring/mass system exhibits simple
harmonic motion. Determine the equation of motion if
the spring constant is 1 lb/ft and the mass is initially
released from a point 6 inches below the equilibrium
position with a downward velocity of . Express the
equation of motion in the form given in (6).

10. A mass weighing 10 pounds stretches a spring foot.
This mass is removed and replaced with a mass of
1.6 slugs, which is initially released from a point foot
above the equilibrium position with a downward veloc-
ity of . Express the equation of motion in the form
given in (6). At what times does the mass attain a dis-
placement below the equilibrium position numerically
equal to the amplitude?

11. A mass weighing 64 pounds stretches a spring 0.32 foot.
The mass is initially released from a point 8 inches
above the equilibrium position with a downward veloc-
ity of 5 ft /s.

(a) Find the equation of motion.

(b) What are the amplitude and period of motion?

(c) How many complete cycles will the mass have com-
pleted at the end of 3p seconds?

(d) At what time does the mass pass through the equi-
librium position heading downward for the second
time?

(e) At what times does the mass attain its extreme
displacements on either side of the equilibrium
position?

(f ) What is the position of the mass at t � 3 s?

(g) What is the instantaneous velocity at t � 3 s?

(h) What is the acceleration at t � 3 s?

(i) What is the instantaneous velocity at the times when
the mass passes through the equilibrium position?

(j) At what times is the mass 5 inches below the equi-
librium position?

(k) At what times is the mass 5 inches below the equi-
librium position heading in the upward direction?

12. A mass of 1 slug is suspended from a spring whose
spring constant is 9 lb/ft. The mass is initially released
from a point 1 foot above the equilibrium position
with an upward velocity of . Find the times
at which the mass is heading downward at a velocity
of 3 ft /s.

13. Under some circumstances when two parallel springs,
with constants k1 and k2, support a single mass, the

13 ft /s

1
2

5
4 ft/s

1
3

1
4

3
2 ft/s



effective spring constant of the system is given by
k � 4k1k2 �(k1 � k2). A mass weighing 20 pounds
stretches one spring 6 inches and another spring
2 inches. The springs are attached to a common rigid
support and then to a metal plate. As shown in
Figure 5.1.16, the mass is attached to the center of
the plate in the double-spring arrangement. Determine
the effective spring constant of this system. Find the
equation of motion if the mass is initially released
from the equilibrium position with a downward velocity
of 2 ft /s.

14. A certain mass stretches one spring foot and another
spring foot. The two springs are attached to a common
rigid support in the manner described in Problem 13 and
Figure 5.1.16. The first mass is set aside, a mass weigh-
ing 8 pounds is attached to the double-spring arrange-
ment, and the system is set in motion. If the period
of motion is p�15 second, determine how much the
first mass weighs.

15. A model of a spring/mass system is 4x	 � e�0.1tx � 0.
By inspection of the differential equation only, dis-
cuss the behavior of the system over a long period of
time.

16. A model of a spring/mass system is 4x	 � tx � 0.
By inspection of the differential equation only, dis-
cuss the behavior of the system over a long period of
time.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

In Problems 17–20 the given figure represents the graph of
an equation of motion for a damped spring/mass system.
Use the graph to determine

(a) whether the initial displacement is above or below the
equilibrium position and

(b) whether the mass is initially released from rest, heading
downward, or heading upward.

1
2

1
3

17.
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FIGURE 5.1.16 Double-spring system in 
Problem 13
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FIGURE 5.1.17 Graph for Problem 17

FIGURE 5.1.19 Graph for Problem 19

FIGURE 5.1.18 Graph for Problem 18

FIGURE 5.1.20 Graph for Problem 20

18.

20.

21. A mass weighing 4 pounds is attached to a spring whose
constant is 2 lb/ft. The medium offers a damping force
that is numerically equal to the instantaneous velocity.
The mass is initially released from a point 1 foot above
the equilibrium position with a downward velocity of
8 ft /s. Determine the time at which the mass passes
through the equilibrium position. Find the time at which
the mass attains its extreme displacement from the equi-
librium position. What is the position of the mass at this
instant?

19.



22. A 4-foot spring measures 8 feet long after a mass weigh-
ing 8 pounds is attached to it. The medium through
which the mass moves offers a damping force numeri-
cally equal to times the instantaneous velocity. Find
the equation of motion if the mass is initially released
from the equilibrium position with a downward velocity
of 5 ft /s. Find the time at which the mass attains its
extreme displacement from the equilibrium position.
What is the position of the mass at this instant?

23. A 1-kilogram mass is attached to a spring whose constant
is 16 N/m, and the entire system is then submerged in a
liquid that imparts a damping force numerically equal to
10 times the instantaneous velocity. Determine the equa-
tions of motion if

(a) the mass is initially released from rest from a point
1 meter below the equilibrium position, and then

(b) the mass is initially released from a point 1 meter
below the equilibrium position with an upward
velocity of 12 m/s.

24. In parts (a) and (b) of Problem 23 determine whether the
mass passes through the equilibrium position. In each
case find the time at which the mass attains its extreme
displacement from the equilibrium position. What is the
position of the mass at this instant?

25. A force of 2 pounds stretches a spring 1 foot. A mass
weighing 3.2 pounds is attached to the spring, and the
system is then immersed in a medium that offers a
damping force that is numerically equal to 0.4 times the
instantaneous velocity.

(a) Find the equation of motion if the mass is initially
released from rest from a point 1 foot above the
equilibrium position.

(b) Express the equation of motion in the form given
in (23).

(c) Find the first time at which the mass passes through
the equilibrium position heading upward.

26. After a mass weighing 10 pounds is attached to a 5-foot
spring, the spring measures 7 feet. This mass is removed
and replaced with another mass that weighs 8 pounds.
The entire system is placed in a medium that offers a
damping force that is numerically equal to the instanta-
neous velocity.

(a) Find the equation of motion if the mass is initially
released from a point foot below the equilibrium
position with a downward velocity of 1 ft /s.

(b) Express the equation of motion in the form given
in (23).

(c) Find the times at which the mass passes through the
equilibrium position heading downward.

(d) Graph the equation of motion.

27. A mass weighing 10 pounds stretches a spring 2 feet. The
mass is attached to a dashpot device that offers a damping

1
2

12

force numerically equal to b (b� 0) times the instanta-
neous velocity. Determine the values of the damping con-
stant b so that the subsequent motion is (a) overdamped,
(b) critically damped, and (c) underdamped.

28. A mass weighing 24 pounds stretches a spring 4 feet.
The subsequent motion takes place in medium that offers
a damping force numerically equal to b (b� 0) times
the instantaneous velocity. If the mass is initially
released from the equilibrium position with an upward
velocity of 2 ft /s, show that when the equa-
tion of motion is

.

5.1.3 SPRING/MASS SYSTEMS: 
DRIVEN MOTION

29. A mass weighing 16 pounds stretches a spring feet. The
mass is initially released from rest from a point 2 feet
below the equilibrium position, and the subsequent
motion takes place in a medium that offers a damping
force that is numerically equal to the instantaneous
velocity. Find the equation of motion if the mass is
driven by an external force equal to f(t) � 10 cos 3t.

30. A mass of 1 slug is attached to a spring whose constant
is 5 lb/ft. Initially, the mass is released 1 foot below
the equilibrium position with a downward velocity of
5 ft /s, and the subsequent motion takes place in a
medium that offers a damping force that is numerically
equal to 2 times the instantaneous velocity.

(a) Find the equation of motion if the mass is driven by an
external force equal to f(t) � 12 cos 2t � 3 sin 2t.

(b) Graph the transient and steady-state solutions on the
same coordinate axes.

(c) Graph the equation of motion.

31. A mass of 1 slug, when attached to a spring, stretches it
2 feet and then comes to rest in the equilibrium position.
Starting at t � 0, an external force equal to f(t) � 8 sin 4t
is applied to the system. Find the equation of motion if
the surrounding medium offers a damping force that is
numerically equal to 8 times the instantaneous velocity.

32. In Problem 31 determine the equation of motion if the
external force is f(t) � e�t sin 4t. Analyze the displace-
ments for .

33. When a mass of 2 kilograms is attached to a spring
whose constant is 32 N/m, it comes to rest in the equi-
librium position. Starting at t � 0, a force equal to
f(t) � 68e�2t cos 4t is applied to the system. Find the
equation of motion in the absence of damping.

34. In Problem 33 write the equation of motion in the form
x(t) � Asin(vt � f) � Be�2tsin(4t � u). What is the
amplitude of vibrations after a very long time?

t : 


1
2

8
3

x(t) �
�3

1� 2 � 18
e�2�t/3 sinh 

2

3
1�2 � 18t

� � 312
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35. A mass m is attached to the end of a spring whose con-
stant is k. After the mass reaches equilibrium, its support
begins to oscillate vertically about a horizontal line L
according to a formula h(t). The value of h represents the
distance in feet measured from L. See Figure 5.1.21.

(a) Determine the differential equation of motion if
the entire system moves through a medium offer-
ing a damping force that is numerically equal to
b(dx�dt).

(b) Solve the differential equation in part (a) if the spring
is stretched 4 feet by a mass weighing 16 pounds and
b� 2, h(t) � 5 cos t, x(0) � x�(0) � 0.

(b) Evaluate .

40. Compare the result obtained in part (b) of Problem 39
with the solution obtained using variation of parameters
when the external force is F0 cos vt.

41. (a) Show that x(t) given in part (a) of Problem 39 can
be written in the form

.

(b) If we define , show that when # is
small an approximate solution is

.

When # is small, the frequency g�2p of the
impressed force is close to the frequency v�2p of
free vibrations. When this occurs, the motion is as
indicated in Figure 5.1.22. Oscillations of this
kind are called beats and are due to the fact that
the frequency of sin #t is quite small in compari-
son to the frequency of sin g t. The dashed curves,
or envelope of the graph of x(t), are obtained from
the graphs of �(F0 �2#g) sin #t. Use a graphing
utility with various values of F0, #, and g to verify
the graph in Figure 5.1.22.

x(t) �
F0

2#�
 sin #t sin �t

# � 1
2 (� � �)

x(t) �
�2F0

�2 � �2 sin 
1

2
 (� � �)t sin 

1

2
 (� � �)t

lim
�:�

F0

�2 � �2 (cos �t � cos �t)

36. A mass of 100 grams is attached to a spring whose
constant is 1600 dynes/cm. After the mass reaches equi-
librium, its support oscillates according to the formula
h(t) � sin 8t, where h represents displacement from its
original position. See Problem 35 and Figure 5.1.21.

(a) In the absence of damping, determine the equation
of motion if the mass starts from rest from the equi-
librium position.

(b) At what times does the mass pass through the equi-
librium position?

(c) At what times does the mass attain its extreme
displacements?

(d) What are the maximum and minimum displace-
ments?

(e) Graph the equation of motion.

In Problems 37 and 38 solve the given initial-value problem.

37.

38.

39. (a) Show that the solution of the initial-value problem

is .x(t) �
F0

�2 � �2 (cos �t � cos �t)

d 2x

dt2 � �2x � F0 cos �t, x(0) � 0, x�(0) � 0

d 2x

dt2 � 9x � 5 sin 3t,  x(0) � 2, x�(0) � 0

x(0) � �1, x�(0) � 1

d 2x

dt2 � 4x � �5 sin 2t � 3 cos 2t,
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FIGURE 5.1.21 Oscillating support in Problem 35

t

x

FIGURE 5.1.22 Beats phenomenon in Problem 41

Computer Lab Assignments

42. Can there be beats when a damping force is added to the
model in part (a) of Problem 39? Defend your position
with graphs obtained either from the explicit solution of
the problem

or from solution curves obtained using a numerical
solver.

43. (a) Show that the general solution of

d 2x

dt2 � 2�
dx

dt
� �2x � F0 sin �t

d2x

dt2 � 2�
dx

dt
� �2x � F0cos �t, x(0) � 0, x�(0) � 0



is

where and the phase angles f
and u are, respectively, defined by sin f � c1 �A,
cos f � c2 �A and

,

.

(b) The solution in part (a) has the form
x(t) � xc(t) � xp(t). Inspection shows that xc(t) is tran-
sient, and hence for large values of time, the solution
is approximated by xp(t) � g(g) sin(gt � u), where

.

Although the amplitude g(g) of xp(t) is bounded as
show that the maximum oscillations will

occur at the value . What is the
maximum value of g? The number 
is said to be the resonance frequency of the system.

(c) When F0 � 2, m � 1, and k � 4, g becomes

.

Construct a table of the values of g1 and g(g1) corre-
sponding to the damping coefficients b� 2, b� 1,

, and . Use a graphing utility to
obtain the graphs of g corresponding to these damp-
ing coefficients. Use the same coordinate axes. This
family of graphs is called the resonance curve or
frequency response curve of the system. What is
g1 approaching as ? What is happening to the
resonance curve as ?

44. Consider a driven undamped spring/mass system
described by the initial-value problem

.

(a) For n � 2, discuss why there is a single frequency
g1�2p at which the system is in pure resonance.

(b) For n � 3, discuss why there are two frequencies
g1�2p and g2�2p at which the system is in pure
resonance.

(c) Suppose v� 1 and F0 � 1. Use a numerical solver
to obtain the graph of the solution of the initial-value
problem for n � 2 and g� g1 in part (a). Obtain the
graph of the solution of the initial-value problem for
n � 3 corresponding, in turn, to g� g1 and g� g2

in part (b).

d 2x

dt2 � �2x � F0 sinn �t, x(0) � 0, x�(0) � 0

� : 0
� : 0

� � 1
4� � 3

4, � � 1
2

g(�) �
2

1(4 � �2 )2 � �2�2

1�2 � 2�2/2�
�1 � 1�2 � 2�2

t : 
,

g(�) �
F0

1(�2 � �2)2 � 4�2�2

 cos � �
�2 � � 2

1(�2 � �2)2 � 4�2� 2

 sin � �
�2��

1(�2 � �2)2 � 4�2� 2

A � 1c1
2 � c2

2

�
F0

1(�2 � �2)2 � 4�2�2
 sin(�t � � ),

x(t) � Ae�lt sin�2v2 � l2t � f�

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an LRC series circuit
at t � 0.01 s when L � 0.05 h, R � 2 ", C � 0.01 f,
E(t) � 0 V, q(0) � 5 C, and i(0) � 0 A. Determine the
first time at which the charge on the capacitor is equal to
zero.

46. Find the charge on the capacitor in an LRC series
circuit when , R � 20 ", , E(t) � 0 V,
q(0) � 4 C, and i(0) � 0 A. Is the charge on the capaci-
tor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and
the current in the given LRC series circuit. Find the maxi-
mum charge on the capacitor.

47. , R � 10 ", , E(t) � 300 V, q(0) � 0 C,
i(0) � 0 A

48. L � 1 h, R � 100 ", C � 0.0004 f, E(t) � 30 V, 
q(0) � 0 C, i(0) � 2 A

49. Find the steady-state charge and the steady-state current
in an LRC series circuit when L � 1 h, R � 2 ",
C � 0.25 f, and E(t) � 50 cos t V.

50. Show that the amplitude of the steady-state current in
the LRC series circuit in Example 10 is given by E0�Z,
where Z is the impedance of the circuit.

51. Use Problem 50 to show that the steady-state current
in an LRC series circuit when , R � 20 ",
C � 0.001 f, and E(t) � 100 sin 60t V, is given by
ip(t) � 4.160 sin(60t � 0.588).

52. Find the steady-state current in an LRC series
circuit when , R � 20 ", C � 0.001 f, and 
E(t) � 100 sin 60t � 200 cos 40t V.

53. Find the charge on the capacitor in an LRC series circuit
when , R � 10 ", C � 0.01 f, E(t) � 150 V,
q(0) � 1 C, and i(0) � 0 A. What is the charge on the
capacitor after a long time?

54. Show that if L, R, C, and E0 are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when . What is the maximum
amplitude?

55. Show that if L, R, E0, and g are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when the capacitance is C � 1�Lg2.

56. Find the charge on the capacitor and the current in an LC
circuit when L � 0.1 h, C � 0.1 f, E(t) � 100 sin gt V,
q(0) � 0 C, and i(0) � 0 A.

57. Find the charge on the capacitor and the current in an
LC circuit when E(t) � E0 cos gt V, q(0) � q0 C, and
i(0) � i0 A.

58. In Problem 57 find the current when the circuit is in
resonance.

� � 1>1LC

L � 1
2 h

L � 1
2 h

L � 1
2 h

C � 1
30 fL � 5

3 h

C � 1
300 fL � 1

4 h
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