
In Problems 27–34 find linearly independent functions that
are annihilated by the given differential operator.

27. D5 28. D2 � 4D

29. (D � 6)(2D � 3) 30. D2 � 9D � 36

31. D2 � 5 32. D2 � 6D � 10

33. D3 � 10D2 � 25D 34. D2(D � 5)(D � 7)

In Problems 35–64 solve the given differential equation by
undetermined coefficients.

35. y	 � 9y � 54 36. 2y	 � 7y� � 5y � �29

37. y	 � y� � 3 38. y� � 2y	 � y� � 10

39. y	 � 4y� � 4y � 2x � 6

40. y	 � 3y� � 4x � 5

41. y� � y	 � 8x2 42. y 	 � 2y� � y � x3 � 4x

43. y	 � y� � 12y � e4x 44. y	 � 2y� � 2y � 5e6x

45. y	 � 2y� � 3y � 4ex � 9

46. y	 � 6y� � 8y � 3e�2x � 2x

47. y	 � 25y � 6 sin x

48. y	 � 4y � 4 cos x � 3 sin x � 8

49. y	 � 6y� � 9y � �xe4x

50. y	 � 3y� � 10y � x(ex � 1)

51. y	 � y � x2ex � 5

52. y	 � 2y� � y � x2e�x

53. y	 � 2y� � 5y � ex sin x

54. y	 � y� �
1

4
y � ex(sin 3x � cos 3x)
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55. y	 � 25y � 20 sin 5x 56. y	 � y � 4 cos x � sin x

57. y	 � y� � y � x sin x 58. y	 � 4y � cos2x

59. y� � 8y	 � �6x2 � 9x � 2

60. y� � y	 � y� � y � xex � e�x � 7

61. y� � 3y	 � 3y� � y � ex � x � 16

62. 2y� � 3y	 � 3y� � 2y � (ex � e�x)2

63. y(4) � 2y� � y	 � ex � 1

64. y(4) � 4y	 � 5x2 � e2x

In Problems 65–72 solve the given initial-value problem.

65. y	 � 64y � 16, y(0) � 1, y�(0) � 0

66. y	 � y� � x, y(0) � 1, y�(0) � 0

67. y	 � 5y� � x � 2, y(0) � 0, y�(0) � 2

68. y	 � 5y� � 6y � 10e2x, y(0) � 1, y�(0) � 1

69. y	 � y � 8 cos 2x � 4 sin x,

70. y� � 2y	 � y� � xex � 5, y(0) � 2, y�(0) � 2,
y	(0) � �1

71. y	 � 4y� � 8y � x3, y(0) � 2, y�(0) � 4

72. y(4) � y� � x � ex, y(0) � 0, y�(0) � 0, y	(0) � 0,
y�(0) � 0

Discussion Problems

73. Suppose L is a linear differential operator that factors
but has variable coefficients. Do the factors of L com-
mute? Defend your answer.

y��

2�� �1, y���

2�� 0

VARIATION OF PARAMETERS

REVIEW MATERIAL
● Variation of parameters was first introduced in Section 2.3 and used again in Section 4.2.

A review of those sections is recommended. 

INTRODUCTION The procedure that we used to find a particular solution yp of a linear first-order
differential equation on an interval is applicable to linear higher-order DEs as well. To adapt the
method of variation of parameters to a linear second-order differential equation

(1)

we begin by putting the equation into the standard form

(2)

by dividing through by the lead coefficient a2(x). Equation (2) is the second-order analogue of the
standard form of a linear first-order equation: dy�dx � P(x)y � f (x). In (2) we suppose that P(x),
Q(x), and f (x) are continuous on some common interval I. As we have already seen in Section 4.3,
there is no difficulty in obtaining the complementary function yc, the general solution of the asso-
ciated homogeneous equation of (2), when the coefficients are constant.

y	 � P(x)y� � Q(x)y � f (x)

a2(x)y	 � a1(x)y� � a0(x)y � g(x),

4.6



ASSUMPTIONS Corresponding to the assumption yp � u1(x)y1(x) that we used in
Section 2.3 to find a particular solution yp of dy�dx � P(x)y � f (x), for the linear
second-order equation (2) we seek a solution of the form

(3)

where y1 and y2 form a fundamental set of solutions on I of the associated homoge-
neous form of (1). Using the Product Rule to differentiate yp twice, we get

Substituting (3) and the foregoing derivatives into (2) and grouping terms yields

zero zero

y	p � u1y	1 � y�1u�1 � y1u 	1 � u�1y�1 � u2y	2 � y�2u�2 � y2u 	2 � u�2y�2.

y�p � u1y�1 � y1u�1 � u2y�2 � y2u�2

yp � u1(x)y1(x) � u2(x)y2(x),
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(4)�
d

dx
 [y1u�1 � y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2 � f (x).

�
d

dx
 [y1u�1] �

d

dx
 [y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

� y2u 	2 � u�2y�2 � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

y	p � P(x)y�p � Q(x)yp � u1[y	1 � Py�1 � Qy1] � u2[y	2 � Py�2 � Qy2] � y1u 	1 � u�1y�1

Because we seek to determine two unknown functions u1 and u2, reason dictates that
we need two equations. We can obtain these equations by making the further assump-
tion that the functions u1 and u2 satisfy This assumption does not
come out of the blue but is prompted by the first two terms in (4), since if we demand
that , then (4) reduces to . We now have our
desired two equations, albeit two equations for determining the derivatives and

By Cramer’s Rule, the solution of the system

can be expressed in terms of determinants:

, (5)

where . (6)

The functions u1 and u2 are found by integrating the results in (5). The determinant
W is recognized as the Wronskian of y1 and y2. By linear independence of y1 and y2

on I, we know that W(y1(x), y2(x)) � 0 for every x in the interval.

SUMMARY OF THE METHOD Usually, it is not a good idea to memorize for-
mulas in lieu of understanding a procedure. However, the foregoing procedure is
too long and complicated to use each time we wish to solve a differential equation.
In this case it is more efficient to simply use the formulas in (5). Thus to solve
a2y	 � a1y� � a0y � g(x), first find the complementary function yc � c1y1 � c2y2

and then compute the Wronskian W( y1(x), y2(x)). By dividing by a2, we put the
equation into the standard form y	 � Py� � Qy � f (x) to determine f (x). We find
u1 and u2 by integrating and , where W1 and W2 are defined
as in (6). A particular solution is yp � u1y1 � u2y2. The general solution of the
equation is then y � yc � yp.

u�2 � W2>Wu�1 � W1>W

W � �y1

y�1

y2

y�2�,    W1 � � 0

f (x)

y2

y�2�,    W2 � �y1

y�1

0

f (x)�

u�1 �
W1

W
� �

y2 f (x)

W
    and    u�2 �

W2

W
�

y1 f (x)

W

y�1u�1 � y�2u�2 � f (x)

y1u�1 � y2u�2 � 0

u�2.
u�1

y�1u�1 � y�2u�2 � f (x)y1u�1 � y2u�2 � 0

y1u�1 � y2u�2 � 0.



EXAMPLE 1 General Solution Using Variation of Parameters

Solve y	 � 4y� � 4y � (x � 1)e2x.

SOLUTION From the auxiliary equation m2 � 4m � 4 � (m � 2)2 � 0 we have
yc � c1e2x � c2xe2x. With the identifications y1 � e2x and y2 � xe2x, we next com-
pute the Wronskian:

Since the given differential equation is already in form (2) (that is, the coefficient of
y	 is 1), we identify f (x) � (x � 1)e2x. From (6) we obtain

W(e2x, xe2x) � � e2x

2e2x

xe2x

2xe2x � e2x� � e4x.
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W1 � �         0(x � 1)e2x

xe2x

2xe2x � e2x � � �(x � 1)xe4x,    W2 � � e2x

2e2x

  0

(x � 1)e2x � � (x � 1)e4x,

and so from (5)

It follows that and . Hence

and

EXAMPLE 2 General Solution Using Variation of Parameters

Solve 4y	 � 36y � csc 3x.

SOLUTION We first put the equation in the standard form (2) by dividing by 4:

Because the roots of the auxiliary equation m2 � 9 � 0 are m1 � 3i and m2 � �3i, the
complementary function is yc � c1 cos 3x � c2 sin 3x. Using y1 � cos 3x, y2 � sin 3x,
and , we obtain

Integrating

gives ln�sin 3x �. Thus a particular solution is

The general solution of the equation is

yp � �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.

u1 � � 1
12 x and u2 � 1

36

u�1 �
W1

W
� �

1

12
    and    u�2 �

W2

W
�

1

12

cos 3x

sin 3x

W1 � � 0
1
4 csc 3x

   sin 3x

3 cos 3x� � �
1

4
,    W2 � �      cos 3x

�3 sin 3x

0
1
4 csc 3x� �

1

4

cos 3x

sin 3x
.

W(cos 3x, sin 3x) � � cos 3x

�3 sin 3x

sin 3x

3 cos 3x� � 3,

f (x) � 1
4 csc 3x

y	 � 9y �
1

4
 csc 3x.

y � yc � yp � c1e
2x � c2xe2x �

1

6
x3e2x �

1

2
x2e2x.

yp � ��
1

3
x3 �

1

2
x2�e2x � �1

2
x2 � x�xe2x �

1

6
x3e2x �

1

2
x2e2x

u2 � 1
2 x2 � xu1 � �1

3 x3 � 1
2 x2

u�1 � �
(x � 1)xe4x

e4x � �x2 � x,    u�2 �
(x � 1)e4x

e4x � x � 1.

(7)y � yc � yp � c1 cos 3x � c2 sin 3x �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.



Equation (7) represents the general solution of the differential equation on, say,
the interval (0, p�6).

CONSTANTS OF INTEGRATION When computing the indefinite integrals of 
and , we need not introduce any constants. This is because

EXAMPLE 3 General Solution Using Variation of Parameters

Solve 

SOLUTION The auxiliary equation m2 � 1 � 0 yields m1 � �1 and m2 � 1.
Therefore yc � c1ex � c2e�x. Now W(ex, e�x) � �2, and

Since the foregoing integrals are nonelementary, we are forced to write

and so (8)

In Example 3 we can integrate on any interval [x0, x] that does not contain the
origin.

HIGHER-ORDER EQUATIONS The method that we have just examined for
nonhomogeneous second-order differential equations can be generalized to linear
nth-order equations that have been put into the standard form

(9)

If yc � c1y1 � c2y2 � 
 
 
 � cnyn is the complementary function for (9), then a
particular solution is

where the , k � 1, 2, . . . , n are determined by the n equations

(10)

y1
(n�1)u�1 � y2

(n�1)u�2 � 
 
 
 � yn
(n�1)u�n � f (x).
















y�1u�1 � y�2u�2 � 
 
 
 � y�nu�n � 0

y1u�1 � y2u�2 � 
 
 
 � ynu�n � 0

u�k

yp � u1(x)y1(x) � u2(x)y2(x) � 
 
 
 � un(x)yn(x),

y(n) � Pn�1(x)y(n�1) � 
 
 
 � P1(x)y� � P0(x)y � f (x).

y � yc � yp � c1ex � c2e�x �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt.

yp �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt,

u�2 �
ex(1>x)

�2
, u2 � �

1

2
�x

x0

et

t
dt.

u�1 � �
e�x(1>x)

�2
,    u1 �

1

2
�x

x0

e�t

t
dt,

y	 � y �
1

x
.

� C1y1 � C2y2 � u1y1 � u2y2.

� (c1 � a1)y1 � (c2 � b1)y2 � u1y1 � u2y2

y � yc � yp � c1y1 � c2y2 � (u1 � a1)y1 � (u2 � b1)y2

u�2

u�1
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The first n � 1 equations in this system, like in (4), are assumptions
that are made to simplify the resulting equation after yp � u1(x)y1(x) � 
 
 
 �
un(x)yn(x) is substituted in (9). In this case Cramer’s rule gives

where W is the Wronskian of y1, y2, . . . , yn and Wk is the determinant obtained by
replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (10) —that is, the column consisting of (0, 0, . . . , f (x)). When n � 2,
we get (5). When n � 3, the particular solution is yp � u1y1 � u2y2 � u3y3, where
y1, y2, and y3 constitute a linearly independent set of solutions of the associated
homogeneous DE and u1, u2, u3 are determined from

(11)u�1 �
W1

W
,    u�2 �

W2

W
,    u�3 �

W3

W
,

u�k �
Wk

W
, k � 1, 2, . . . , n,

y1u�1 � y2u�2 � 0
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W1 � p 0

0

f (x)

y2

y�2
y	2

y3

y�3
y	3

p ,  W2 � p y1

y�1
y	1

0

0

f (x)

y3

y�3
y	3

p ,  W3 � p y1

y�1
y	1

y2

y�2
y	2

0

0

f (x)
p ,  and  W � p y1

y�1
y	1

y2

y�2
y	2

y3

y�3
y	3

p .
See Problems 25 and 26 in Exercises 4.6.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will always yield a particular solution yp

provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function f (x) that is a combination of the four
types listed on page 141. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients.

(ii) In the problems that follow, do not hesitate to simplify the form of yp.
Depending on how the antiderivatives of and are found, you might not
obtain the same yp as given in the answer section. For example, in Problem 3
in Exercises 4.6 both yp � sin x � x cos x and yp � sin x � x cos x
are valid answers. In either case the general solution y � yc � yp simplifies to
y � c1 cos x � c2 sin x � x cos x. Why?1

2

1
2

1
4

1
2

1
2

u�2u�1

EXERCISES 4.6 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

1. y	 � y � sec x 2. y	 � y � tan x

3. y	 � y � sin x 4. y	 � y � sec u tan u

5. y	 � y � cos2x 6. y	 � y � sec2x

7. y	 � y � cosh x 8. y	 � y � sinh 2x

9. 10. y	 � 9y �
9x

e3xy	 � 4y �
e2x

x

11.

12.

13. y	 � 3y� � 2y � sin ex

14. y	 � 2y� � y � et arctan t

15. y	 � 2y� � y � e�t ln t 16.

17. 3y	 � 6y� � 6y � ex sec x

18. 4y	 � 4y� � y � ex/211 � x2

2y	 � 2y� � y � 41x

y	 � 2y� � y �
ex

1 � x2

y	 � 3y� � 2y �
1

1 � ex



In Problems 19–22 solve each differential equation by
variation of parameters, subject to the initial conditions
y(0) � 1, y�(0) � 0.

19. 4y	 � y � xex/2

20. 2y	 � y� � y � x � 1

21. y	 � 2y� � 8y � 2e�2x � e�x

22. y	 � 4y� � 4y � (12x2 � 6x)e2x

In Problems 23 and 24 the indicated functions are known lin-
early independent solutions of the associated homogeneous
differential equation on (0, 
). Find the general solution of
the given nonhomogeneous equation.

23. ;

y1 � x�1/2 cos x, y2 � x�1/2 sin x

24. x2y	 � xy� � y � sec(ln x);

y1 � cos(ln x), y2 � sin(ln x)

In Problems 25 and 26 solve the given third-order differen-
tial equation by variation of parameters.

25. y� � y� � tan x 26. y� � 4y� � sec 2x

Discussion Problems

In Problems 27 and 28 discuss how the methods of unde-
termined coefficients and variation of parameters can be
combined to solve the given differential equation. Carry out
your ideas.

27. 3y	 � 6y� � 30y � 15 sin x � ex tan 3x

28. y	 � 2y� � y � 4x2 � 3 � x�1ex

29. What are the intervals of definition of the general solu-
tions in Problems 1, 7, 9, and 18? Discuss why the inter-
val of definition of the general solution in Problem 24 is
not (0, 
).

x2y	 � xy� � (x2 � 1
4)y � x3/2
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30. Find the general solution of x4y	 � x3y� � 4x2y � 1
given that y1 � x2 is a solution of the associated homo-
geneous equation.

31. Suppose yp(x) � u1(x)y1(x) � u2(x)y2(x), where u1 and
u2 are defined by (5) is a particular solution of (2) on an
interval I for which P, Q, and f are continuous. Show
that yp can be written as

(12)

where x and x0 are in I,

(13)

and W(t) � W(y1(t), y2(t)) is the Wronskian. The func-
tion G(x, t) in (13) is called the Green’s function for the
differential equation (2).

32. Use (13) to construct the Green’s function for the differ-
ential equation in Example 3. Express the general solu-
tion given in (8) in terms of the particular solution (12).

33. Verify that (12) is a solution of the initial-value problem

on the interval I. [Hint: Look up Leibniz’s Rule for
differentiation under an integral sign.]

34. Use the results of Problems 31 and 33 and the Green’s
function found in Problem 32 to find a solution of the
initial-value problem

using (12). Evaluate the integral.

y	 � y � e2x,  y(0) � 0,  y�(0) � 0

d 2y

dx2 � P
dy

dx
� Qy � f(x),  y(x0) � 0,  y�(x0) � 0.

G(x, t) �
y1(t)y2(x) � y1(x)y2(t)

W(t)
,

yp(x) � �x

x0

G(x, t) f(t) dt,

CAUCHY-EULER EQUATION

REVIEW MATERIAL
● Review the concept of the auxiliary equation in Section 4.3.

INTRODUCTION The same relative ease with which we were able to find explicit solutions of
higher-order linear differential equations with constant coefficients in the preceding sections does
not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6
that when a linear DE has variable coefficients, the best that we can usually expect is to find a
solution in the form of an infinite series. However, the type of differential equation that we consider
in this section is an exception to this rule; it is a linear equation with variable coefficients whose
general solution can always be expressed in terms of powers of x, sines, cosines, and logarithmic
functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations
in that an auxiliary equation must be solved.

4.7


