4.1
 PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL

- Reread the Remarks at the end of Section 1.1
- Section 2.3 (especially pages 54-58)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equations by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations. Even though the solutions of these equations were in the form of a one-parameter family, this family, with one exception, did not represent the general solution of the differential equation. Only in the case of linear first-order differential equations were we able to obtain general solutions, by paying attention to certain continuity conditions imposed on the coefficients. Recall that a general solution is a family of solutions defined on some interval I that contains all solutions of the DE that are defined on I. Because our primary goal in this chapter is to find general solutions of linear higher-order DEs, we first need to examine some of the theory of linear equations.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

INITIAL-VALUE PROBLEM In Section 1.2 we defined an initial-value problem for a general n th-order differential equation. For a linear differential equation an \boldsymbol{n} th-order initial-value problem is

Solve:

$$
\begin{array}{ll}
\text { Solve: } & a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}\\
\text { Subject to: } & y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
\end{array}
$$

Recall that for a problem such as this one we seek a function defined on some interval I, containing x_{0}, that satisfies the differential equation and the n initial conditions specified at $x_{0}: y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$. We have already seen that in the case of a second-order initial-value problem a solution curve must pass through the point $\left(x_{0}, y_{0}\right)$ and have slope y_{1} at this point.

EXISTENCE AND UNIQUENESS In Section 1.2 we stated a theorem that gave conditions under which the existence and uniqueness of a solution of a first-order initial-value problem were guaranteed. The theorem that follows gives sufficient conditions for the existence of a unique solution of the problem in (1).

THEOREM 4.1.1 Existence of a Unique Solution

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $g(x)$ be continuous on an interval I and let $a_{n}(x) \neq 0$ for every x in this interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the initial-value problem (1) exists on the interval and is unique.

EXAMPLE 1 Unique Solution of an IVP

The initial-value problem

$$
3 y^{\prime \prime \prime}+5 y^{\prime \prime}-y^{\prime}+7 y=0, \quad y(1)=0, \quad y^{\prime}(1)=0, \quad y^{\prime \prime}(1)=0
$$

FIGURE 4.1.1 Solution curves of a BVP that pass through two points
possesses the trivial solution $y=0$. Because the third-order equation is linear with constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled. Hence $y=0$ is the only solution on any interval containing $x=1$.

EXAMPLE 2 Unique Solution of an IVP

You should verify that the function $y=3 e^{2 x}+e^{-2 x}-3 x$ is a solution of the initialvalue problem

$$
y^{\prime \prime}-4 y=12 x, \quad y(0)=4, \quad y^{\prime}(0)=1
$$

Now the differential equation is linear, the coefficients as well as $g(x)=12 x$ are continuous, and $a_{2}(x)=1 \neq 0$ on any interval I containing $x=0$. We conclude from Theorem 4.1.1 that the given function is the unique solution on I.

The requirements in Theorem 4.1.1 that $a_{i}(x), i=0,1,2, \ldots, n$ be continuous and $a_{n}(x) \neq 0$ for every x in I are both important. Specifically, if $a_{n}(x)=0$ for some x in the interval, then the solution of a linear initial-value problem may not be unique or even exist. For example, you should verify that the function $y=c x^{2}+x+3$ is a solution of the initial-value problem

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6, \quad y(0)=3, \quad y^{\prime}(0)=1
$$

on the interval $(-\infty, \infty)$ for any choice of the parameter c. In other words, there is no unique solution of the problem. Although most of the conditions of Theorem 4.1.1 are satisfied, the obvious difficulties are that $a_{2}(x)=x^{2}$ is zero at $x=0$ and that the initial conditions are also imposed at $x=0$.

BOUNDARY-VALUE PROBLEM Another type of problem consists of solving a linear differential equation of order two or greater in which the dependent variable y or its derivatives are specified at different points. A problem such as

$$
\begin{array}{ll}
\text { Solve: } & a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
\text { Subject to: } & y(a)=y_{0}, \quad y(b)=y_{1}
\end{array}
$$

is called a boundary-value problem (BVP). The prescribed values $y(a)=y_{0}$ and $y(b)=y_{1}$ are called boundary conditions. A solution of the foregoing problem is a function satisfying the differential equation on some interval I, containing a and b, whose graph passes through the two points $\left(a, y_{0}\right)$ and $\left(b, y_{1}\right)$. See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions could be

$$
\begin{aligned}
y^{\prime}(a) & =y_{0}, & y(b) & =y_{1} \\
y(a) & =y_{0}, & y^{\prime}(b) & =y_{1} \\
y^{\prime}(a) & =y_{0}, & y^{\prime}(b) & =y_{1},
\end{aligned}
$$

where y_{0} and y_{1} denote arbitrary constants. These three pairs of conditions are just special cases of the general boundary conditions

$$
\begin{aligned}
\alpha_{1} y(a)+\beta_{1} y^{\prime}(a) & =\gamma_{1} \\
\alpha_{2} y(b)+\beta_{2} y^{\prime}(b) & =\gamma_{2}
\end{aligned}
$$

The next example shows that even when the conditions of Theorem 4.1.1 are fulfilled, a boundary-value problem may have several solutions (as suggested in Figure 4.1.1), a unique solution, or no solution at all.

FIGURE 4.1.2 Some solution curves of (3)

EXAMPLE 3 A BVP Can Have Many, One, or No Solutions

In Example 4 of Section 1.1 we saw that the two-parameter family of solutions of the differential equation $x^{\prime \prime}+16 x=0$ is

$$
\begin{equation*}
x=c_{1} \cos 4 t+c_{2} \sin 4 t . \tag{2}
\end{equation*}
$$

(a) Suppose we now wish to determine the solution of the equation that further satisfies the boundary conditions $x(0)=0, x(\pi / 2)=0$. Observe that the first condition $0=c_{1} \cos 0+c_{2} \sin 0$ implies that $c_{1}=0$, so $x=c_{2} \sin 4 t$. But when $t=\pi / 2,0=c_{2} \sin 2 \pi$ is satisfied for any choice of c_{2}, since $\sin 2 \pi=0$. Hence the boundary-value problem

$$
\begin{equation*}
x^{\prime \prime}+16 x=0, \quad x(0)=0, \quad x\left(\frac{\pi}{2}\right)=0 \tag{3}
\end{equation*}
$$

has infinitely many solutions. Figure 4.1 .2 shows the graphs of some of the members of the one-parameter family $x=c_{2} \sin 4 t$ that pass through the two points $(0,0)$ and $(\pi / 2,0)$.
(b) If the boundary-value problem in (3) is changed to

$$
\begin{equation*}
x^{\prime \prime}+16 x=0, \quad x(0)=0, \quad x\left(\frac{\pi}{8}\right)=0 \tag{4}
\end{equation*}
$$

then $x(0)=0$ still requires $c_{1}=0$ in the solution (2). But applying $x(\pi / 8)=0$ to $x=c_{2} \sin 4 t$ demands that $0=c_{2} \sin (\pi / 2)=c_{2} \cdot 1$. Hence $x=0$ is a solution of this new boundary-value problem. Indeed, it can be proved that $x=0$ is the only solution of (4).
(c) Finally, if we change the problem to

$$
\begin{equation*}
x^{\prime \prime}+16 x=0, \quad x(0)=0, \quad x\left(\frac{\pi}{2}\right)=1 \tag{5}
\end{equation*}
$$

we find again from $x(0)=0$ that $c_{1}=0$, but applying $x(\pi / 2)=1$ to $x=c_{2} \sin 4 t$ leads to the contradiction $1=c_{2} \sin 2 \pi=c_{2} \cdot 0=0$. Hence the boundary-value problem (5) has no solution.

4.1.2 HOMOGENEOUS EQUATIONS

A linear n th-order differential equation of the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{6}
\end{equation*}
$$

is said to be homogeneous, whereas an equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{7}
\end{equation*}
$$

with $g(x)$ not identically zero, is said to be nonhomogeneous. For example, $2 y^{\prime \prime}+3 y^{\prime}-5 y=0$ is a homogeneous linear second-order differential equation, whereas $x^{3} y^{\prime \prime \prime}+6 y^{\prime}+10 y=e^{x}$ is a nonhomogeneous linear third-order differential equation. The word homogeneous in this context does not refer to coefficients that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must first be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we shall, as a matter of course, make the following important assumptions when

- Please remember
these two assumptions.
stating definitions and theorems about linear equations (1). On some common interval I,
- the coefficient functions $a_{i}(x), i=0,1,2, \ldots, n$ and $g(x)$ are continuous;
- $a_{n}(x) \neq 0$ for every x in the interval.

DIFFERENTIAL OPERATORS In calculus differentiation is often denoted by the capital letter D-that is, $d y / d x=D y$. The symbol D is called a differential operator because it transforms a differentiable function into another function. For example, $D(\cos 4 x)=-4 \sin 4 x$ and $D\left(5 x^{3}-6 x^{2}\right)=15 x^{2}-12 x$. Higher-order derivatives can be expressed in terms of D in a natural manner:

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=D(D y)=D^{2} y \quad \text { and, in general, } \quad \frac{d^{n} y}{d x^{n}}=D^{n} y
$$

where y represents a sufficiently differentiable function. Polynomial expressions involving D, such as $D+3, D^{2}+3 D-4$, and $5 x^{3} D^{3}-6 x^{2} D^{2}+4 x D+9$, are also differential operators. In general, we define an \boldsymbol{n} th-order differential operator or polynomial operator to be

$$
\begin{equation*}
L=a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\cdots+a_{1}(x) D+a_{0}(x) \tag{8}
\end{equation*}
$$

As a consequence of two basic properties of differentiation, $D(c f(x))=c D f(x), c$ is a constant, and $D\{f(x)+g(x)\}=D f(x)+D g(x)$, the differential operator L possesses a linearity property; that is, L operating on a linear combination of two differentiable functions is the same as the linear combination of L operating on the individual functions. In symbols this means that

$$
\begin{equation*}
L\{\alpha f(x)+\beta g(x)\}=\alpha L(f(x))+\beta L(g(x)), \tag{9}
\end{equation*}
$$

where α and β are constants. Because of (9) we say that the n th-order differential operator L is a linear operator.

DIFFERENTIAL EQUATIONS Any linear differential equation can be expressed in terms of the D notation. For example, the differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=5 x-3$ can be written as $D^{2} y+5 D y+6 y=5 x-3$ or $\left(D^{2}+5 D+6\right) y=5 x-3$. Using (8), we can write the linear n th-order differential equations (6) and (7) compactly as

$$
L(y)=0 \quad \text { and } \quad L(y)=g(x)
$$

respectively
SUPERPOSITION PRINCIPLE In the next theorem we see that the sum, or superposition, of two or more solutions of a homogeneous linear differential equation is also a solution.

THEOREM 4.1.2 Superposition Principle-Homogeneous Equations

Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions of the homogeneous n th-order differential equation (6) on an interval I. Then the linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

where the $c_{i}, i=1,2, \ldots, k$ are arbitrary constants, is also a solution on the interval.

PROOF We prove the case $k=2$. Let L be the differential operator defined in (8), and let $y_{1}(x)$ and $y_{2}(x)$ be solutions of the homogeneous equation $L(y)=0$. If we define $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, then by linearity of L we have

$$
L(y)=L\left\{c_{1} y_{1}(x)+c_{2} y_{2}(x)\right\}=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)=c_{1} \cdot 0+c_{2} \cdot 0=0 .
$$

FIGURE 4.1.3 Set consisting of f_{1} and f_{2} is linearly independent on $(-\infty, \infty)$

COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple $y=c_{1} y_{1}(x)$ of a solution $y_{1}(x)$ of a homogeneous linear differential equation is also a solution.
(B) A homogeneous linear differential equation always possesses the trivial solution $y=0$.

EXAMPLE 4 Superposition-Homogeneous DE

The functions $y_{1}=x^{2}$ and $y_{2}=x^{2} \ln x$ are both solutions of the homogeneous linear equation $x^{3} y^{\prime \prime \prime}-2 x y^{\prime}+4 y=0$ on the interval $(0, \infty)$. By the superposition principle the linear combination

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

is also a solution of the equation on the interval.
The function $y=e^{7 x}$ is a solution of $y^{\prime \prime}-9 y^{\prime}+14 y=0$. Because the differential equation is linear and homogeneous, the constant multiple $y=c e^{7 x}$ is also a solution. For various values of c we see that $y=9 e^{7 x}, y=0, y=-\sqrt{5} e^{7 x}, \ldots$ are all solutions of the equation.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE The next two concepts are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is said to be linearly dependent on an interval I if there exist constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for every x in the interval. If the set of functions is not linearly dependent on the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval I if the only constants for which

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for every x in the interval are $c_{1}=c_{2}=\cdots=c_{n}=0$.
It is easy to understand these definitions for a set consisting of two functions $f_{1}(x)$ and $f_{2}(x)$. If the set of functions is linearly dependent on an interval, then there exist constants c_{1} and c_{2} that are not both zero such that for every x in the interval, $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$. Therefore if we assume that $c_{1} \neq 0$, it follows that $f_{1}(x)=\left(-c_{2} / c_{1}\right) f_{2}(x)$; that is, if a set of two functions is linearly dependent, then one function is simply a constant multiple of the other. Conversely, if $f_{1}(x)=c_{2} f_{2}(x)$ for some constant c_{2}, then $(-1) \cdot f_{1}(x)+c_{2} f_{2}(x)=0$ for every x in the interval. Hence the set of functions is linearly dependent because at least one of the constants (namely, $c_{1}=-1$) is not zero. We conclude that a set of two functions $f_{1}(x)$ and $f_{2}(x)$ is linearly independent when neither function is a constant multiple of the other on the interval. For example, the set of functions $f_{1}(x)=\sin 2 x, f_{2}(x)=\sin x \cos x$ is linearly dependent on $(-\infty, \infty)$ because $f_{1}(x)$ is a constant multiple of $f_{2}(x)$. Recall from the double-angle formula for the sine that $\sin 2 x=2 \sin x \cos x$. On the other hand, the set of functions $f_{1}(x)=x, f_{2}(x)=|x|$ is linearly independent on $(-\infty, \infty)$. Inspection of Figure 4.1 .3 should convince you that neither function is a constant multiple of the other on the interval.

It follows from the preceding discussion that the quotient $f_{2}(x) / f_{1}(x)$ is not a constant on an interval on which the set $f_{1}(x), f_{2}(x)$ is linearly independent. This little fact will be used in the next section.

EXAMPLE 5 Linearly Dependent Set of Functions

The set of functions $f_{1}(x)=\cos ^{2} x, f_{2}(x)=\sin ^{2} x, f_{3}(x)=\sec ^{2} x, f_{4}(x)=\tan ^{2} x$ is linearly dependent on the interval $(-\pi / 2, \pi / 2)$ because

$$
c_{1} \cos ^{2} x+c_{2} \sin ^{2} x+c_{3} \sec ^{2} x+c_{4} \tan ^{2} x=0
$$

when $c_{1}=c_{2}=1, c_{3}=-1, c_{4}=1$. We used here $\cos ^{2} x+\sin ^{2} x=1$ and $1+\tan ^{2} x=\sec ^{2} x$.

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is linearly dependent on an interval if at least one function can be expressed as a linear combination of the remaining functions.

EXAMPLE 6 Linearly Dependent Set of Functions

The set of functions $f_{1}(x)=\sqrt{x}+5, f_{2}(x)=\sqrt{x}+5 x, f_{3}(x)=x-1, f_{4}(x)=x^{2}$ is linearly dependent on the interval $(0, \infty)$ because f_{2} can be written as a linear combination of f_{1}, f_{3}, and f_{4}. Observe that

$$
f_{2}(x)=1 \cdot f_{1}(x)+5 \cdot f_{3}(x)+0 \cdot f_{4}(x)
$$

for every x in the interval $(0, \infty)$.
SOLUTIONS OF DIFFERENTIAL EQUATIONS We are primarily interested in linearly independent functions or, more to the point, linearly independent solutions of a linear differential equation. Although we could always appeal directly to Definition 4.1.1, it turns out that the question of whether the set of n solutions $y_{1}, y_{2}, \ldots, y_{n}$ of a homogeneous linear n th-order differential equation (6) is linearly independent can be settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possesses at least $n-1$ derivatives. The determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

where the primes denote derivatives, is called the Wronskian of the functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions of the homogeneous linear n th-order differential equation (6) on an interval I. Then the set of solutions is linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

It follows from Theorem 4.1.3 that when $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of (6) on an interval I, the Wronskian $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is either identically zero or never zero on the interval.

A set of n linearly independent solutions of a homogeneous linear n th-order differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set $y_{1}, y_{2}, \ldots, y_{n}$ of n linearly independent solutions of the homogeneous linear n th-order differential equation (6) on an interval I is said to be a fundamental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear n th-order differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a linear combination of the linearly independent vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, any solution of an n thorder homogeneous linear differential equation on an interval I can be expressed as a linear combination of n linearly independent solutions on I. In other words, n linearly independent solutions $y_{1}, y_{2}, \ldots, y_{n}$ are the basic building blocks for the general solution of the equation.

THEOREM 4.1.5 General Solution-Homogeneous Equations

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the homogeneous linear n th-order differential equation (6) on an interval I. Then the general solution of the equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x),
$$

where $c_{i}, i=1,2, \ldots, n$ are arbitrary constants.

Theorem 4.1.5 states that if $Y(x)$ is any solution of (6) on the interval, then constants $C_{1}, C_{2}, \ldots, C_{n}$ can always be found so that

$$
Y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+\cdots+C_{n} y_{n}(x) .
$$

We will prove the case when $n=2$.

PROOF Let Y be a solution and let y_{1} and y_{2} be linearly independent solutions of $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ on an interval I. Suppose that $x=t$ is a point in I for which $W\left(y_{1}(t), y_{2}(t)\right) \neq 0$. Suppose also that $Y(t)=k_{1}$ and $Y^{\prime}(t)=k_{2}$. If we now examine the equations

$$
\begin{aligned}
& C_{1} y_{1}(t)+C_{2} y_{2}(t)=k_{1} \\
& C_{1} y_{1}^{\prime}(t)+C_{2} y_{2}^{\prime}(t)=k_{2},
\end{aligned}
$$

it follows that we can determine C_{1} and C_{2} uniquely, provided that the determinant of the coefficients satisfies

$$
\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \neq 0 .
$$

But this determinant is simply the Wronskian evaluated at $x=t$, and by assumption, $W \neq 0$. If we define $G(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)$, we observe that $G(x)$ satisfies the differential equation since it is a superposition of two known solutions; $G(x)$ satisfies the initial conditions

$$
G(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)=k_{1} \quad \text { and } \quad G^{\prime}(t)=C_{1} y_{1}^{\prime}(t)+C_{2} y_{2}^{\prime}(t)=k_{2}
$$

and $Y(x)$ satisfies the same linear equation and the same initial conditions. Because the solution of this linear initial-value problem is unique (Theorem 4.1.1), we have $Y(x)=G(x)$ or $Y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)$.

EXAMPLE 7 General Solution of a Homogeneous DE

The functions $y_{1}=e^{3 x}$ and $y_{2}=e^{-3 x}$ are both solutions of the homogeneous linear equation $y^{\prime \prime}-9 y=0$ on the interval $(-\infty, \infty)$. By inspection the solutions are linearly independent on the x-axis. This fact can be corroborated by observing that the Wronskian

$$
W\left(e^{3 x}, e^{-3 x}\right)=\left|\begin{array}{rr}
e^{3 x} & e^{-3 x} \\
3 e^{3 x} & -3 e^{-3 x}
\end{array}\right|=-6 \neq 0
$$

for every x. We conclude that y_{1} and y_{2} form a fundamental set of solutions, and consequently, $y=c_{1} e^{3 x}+c_{2} e^{-3 x}$ is the general solution of the equation on the interval.

EXAMPLE 8 A Solution Obtained from a General Solution

The function $y=4 \sinh 3 x-5 e^{3 x}$ is a solution of the differential equation in Example 7. (Verify this.) In view of Theorem 4.1 .5 we must be able to obtain this solution from the general solution $y=c_{1} e^{3 x}+c_{2} e^{-3 x}$. Observe that if we choose $c_{1}=2$ and $c_{2}=-7$, then $y=2 e^{3 x}-7 e^{-3 x}$ can be rewritten as

$$
y=2 e^{3 x}-2 e^{-3 x}-5 e^{-3 x}=4\left(\frac{e^{3 x}-e^{-3 x}}{2}\right)-5 e^{-3 x}
$$

The last expression is recognized as $y=4 \sinh 3 x-5 e^{-3 x}$.

EXAMPLE 9 General Solution of a Homogeneous DE

The functions $y_{1}=e^{x}, y_{2}=e^{2 x}$, and $y_{3}=e^{3 x}$ satisfy the third-order equation $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$. Since

$$
W\left(e^{x}, e^{2 x}, e^{3 x}\right)=\left|\begin{array}{rrr}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right|=2 e^{6 x} \neq 0
$$

for every real value of x, the functions y_{1}, y_{2}, and y_{3} form a fundamental set of solutions on $(-\infty, \infty)$. We conclude that $y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$ is the general solution of the differential equation on the interval.

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function y_{p}, free of arbitrary parameters, that satisfies (7) is said to be a particular solution or particular integral of the equation. For example, it is a straightforward task to show that the constant function $y_{p}=3$ is a particular solution of the nonhomogeneous equation $y^{\prime \prime}+9 y=27$.

Now if $y_{1}, y_{2}, \ldots, y_{k}$ are solutions of (6) on an interval I and y_{p} is any particular solution of (7) on I, then the linear combination

$$
\begin{equation*}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)+y_{p} \tag{10}
\end{equation*}
$$

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes sense, because the linear combination $c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)$ is transformed into 0 by the operator $L=a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}$, whereas y_{p} is transformed into $g(x)$. If we use $k=n$ linearly independent solutions of the n th-order equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution-Nonhomogeneous Equations

Let y_{p} be any particular solution of the nonhomogeneous linear n th-order differential equation (7) on an interval I, and let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the associated homogeneous differential equation (6) on I. Then the general solution of the equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p},
$$

where the $c_{i}, i=1,2, \ldots, n$ are arbitrary constants.

PROOF Let L be the differential operator defined in (8) and let $Y(x)$ and $y_{p}(x)$ be particular solutions of the nonhomogeneous equation $L(y)=g(x)$. If we define $u(x)=Y(x)-y_{p}(x)$, then by linearity of L we have

$$
L(u)=L\left\{Y(x)-y_{p}(x)\right\}=L(Y(x))-L\left(y_{p}(x)\right)=g(x)-g(x)=0 .
$$

This shows that $u(x)$ is a solution of the homogeneous equation $L(y)=0$. Hence by Theorem 4.1.5, $u(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)$, and so
or

$$
\begin{aligned}
Y(x)-y_{p}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x) \\
Y(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) .
\end{aligned}
$$

COMPLEMENTARY FUNCTION We see in Theorem 4.1.6 that the general solution of a nonhomogeneous linear equation consists of the sum of two functions:

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)=y_{c}(x)+y_{p}(x) .
$$

The linear combination $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)$, which is the general solution of (6), is called the complementary function for equation (7). In other words, to solve a nonhomogeneous linear differential equation, we first solve the associated homogeneous equation and then find any particular solution of the nonhomogeneous equation. The general solution of the nonhomogeneous equation is then

$$
\begin{aligned}
y & =\text { complementary function }+ \text { any particular solution } \\
& =y_{c}+y_{p} .
\end{aligned}
$$

EXAMPLE 10 General Solution of a Nonhomogeneous DE

By substitution the function $y_{p}=-\frac{11}{12}-\frac{1}{2} x$ is readily shown to be a particular solution of the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=3 x . \tag{11}
\end{equation*}
$$

To write the general solution of (11), we must also be able to solve the associated homogeneous equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
$$

But in Example 9 we saw that the general solution of this latter equation on the interval $(-\infty, \infty)$ was $y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$. Hence the general solution of (11) on the interval is

$$
y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}-\frac{11}{12}-\frac{1}{2} x .
$$

ANOTHER SUPERPOSITION PRINCIPLE The last theorem of this discussion will be useful in Section 4.4 when we consider a method for finding particular solutions of nonhomogeneous equations.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous

Equations

Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions of the nonhomogeneous linear n th-order differential equation (7) on an interval I corresponding, in turn, to k distinct functions $g_{1}, g_{2}, \ldots, g_{k}$. That is, suppose $y_{p_{i}}$ denotes a particular solution of the corresponding differential equation

$$
\begin{equation*}
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g_{i}(x) \tag{12}
\end{equation*}
$$

where $i=1,2, \ldots, k$. Then

$$
\begin{equation*}
y_{p}=y_{p_{1}}(x)+y_{p_{2}}(x)+\cdots+y_{p_{k}}(x) \tag{13}
\end{equation*}
$$

is a particular solution of

$$
\begin{align*}
& a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y \\
& \quad=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) . \tag{14}
\end{align*}
$$

PROOF We prove the case $k=2$. Let L be the differential operator defined in (8) and let $y_{p_{1}}(x)$ and $y_{p_{2}}(x)$ be particular solutions of the nonhomogeneous equations $L(y)=g_{1}(x)$ and $L(y)=g_{2}(x)$, respectively. If we define $y_{p}=y_{p_{1}}(x)+y_{p_{2}}(x)$, we want to show that y_{p} is a particular solution of $L(y)=g_{1}(x)+g_{2}(x)$. The result follows again by the linearity of the operator L :

$$
L\left(y_{p}\right)=L\left\{y_{p_{1}}(x)+y_{p_{2}}(x)\right\}=L\left(y_{p_{1}}(x)\right)+L\left(y_{p_{2}}(x)\right)=g_{1}(x)+g_{2}(x) .
$$

EXAMPLE 11 Superposition-Nonhomogeneous DE

You should verify that

$$
\begin{array}{ll}
y_{p_{1}}=-4 x^{2} & \text { is a particular solution of } \quad y^{\prime \prime}-3 y^{\prime}+4 y=-16 x^{2}+24 x-8, \\
y_{p_{2}}=e^{2 x} & \text { is a particular solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=2 e^{2 x}, \\
y_{p_{3}}=x e^{x} & \text { is a particular solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=2 x e^{x}-e^{x} .
\end{array}
$$

It follows from (13) of Theorem 4.1.7 that the superposition of $y_{p_{1}}, y_{p_{2}}$, and $y_{p_{3}}$,

$$
y=y_{p_{1}}+y_{p_{2}}+y_{p_{3}}=-4 x^{2}+e^{2 x}+x e^{x},
$$

is a solution of

$$
y^{\prime \prime}-3 y^{\prime}+4 y=\underbrace{-16 x^{2}+24 x-8}_{g_{1}(x)}+\underbrace{2 e^{2 x}}_{g_{2}(x)}+\underbrace{2 x e^{x}-e^{x}}_{g_{3}(x)} .
$$

NOTE If the $y_{p_{i}}$ are particular solutions of (12) for $i=1,2, \ldots, k$, then the linear combination

$$
y_{p}=c_{1} y_{p_{1}}+c_{2} y_{p_{2}}+\cdots+c_{k} y_{p_{k}}
$$

where the c_{i} are constants, is also a particular solution of (14) when the right-hand member of the equation is the linear combination

$$
c_{1} g_{1}(x)+c_{2} g_{2}(x)+\cdots+c_{k} g_{k}(x) .
$$

Before we actually start solving homogeneous and nonhomogeneous linear differential equations, we need one additional bit of theory, which is presented in the next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear n th-order differential equation

$$
a_{n}(t) y^{(n)}+a_{n-1}(t) y^{(n-1)}+\cdots+a_{1}(t) y^{\prime}+a_{0}(t) y=g(t)
$$

is said to be an n th-order linear system. The n time-dependent functions $y(t)$, $y^{\prime}(t), \ldots, y^{(n-1)}(t)$ are the state variables of the system. Recall that their values at some time t give the state of the system. The function g is variously called the input function, forcing function, or excitation function. A solution $y(t)$ of the differential equation is said to be the output or response of the system. Under the conditions stated in Theorem 4.1.1, the output or response $y(t)$ is uniquely determined by the input and the state of the system prescribed at a time t_{0}-that is, by the initial conditions $y\left(t_{0}\right), y^{\prime}\left(t_{0}\right), \ldots, y^{(n-1)}\left(t_{0}\right)$.

For a dynamical system to be a linear system, it is necessary that the superposition principle (Theorem 4.1.7) holds in the system; that is, the response of the system to a superposition of inputs is a superposition of outputs. We have already examined some simple linear systems in Section 3.1 (linear first-order equations); in Section 5.1 we examine linear systems in which the mathematical models are second-order differential equations.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

In Problems 1-4 the given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initialvalue problem.

1. $y=c_{1} e^{x}+c_{2} e^{-x},(-\infty, \infty)$;
$y^{\prime \prime}-y=0, \quad y(0)=0, \quad y^{\prime}(0)=1$
2. $y=c_{1} e^{4 x}+c_{2} e^{-x},(-\infty, \infty)$; $y^{\prime \prime}-3 y^{\prime}-4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=2$
3. $y=c_{1} x+c_{2} x \ln x,(0, \infty)$;
$x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad y(1)=3, \quad y^{\prime}(1)=-1$
4. $y=c_{1}+c_{2} \cos x+c_{3} \sin x,(-\infty, \infty)$;
$y^{\prime \prime \prime}+y^{\prime}=0, \quad y(\pi)=0, \quad y^{\prime}(\pi)=2, \quad y^{\prime \prime}(\pi)=-1$
5. Given that $y=c_{1}+c_{2} x^{2}$ is a two-parameter family of solutions of $x y^{\prime \prime}-y^{\prime}=0$ on the interval $(-\infty, \infty)$, show that constants c_{1} and c_{2} cannot be found so that a member of the family satisfies the initial conditions $y(0)=0, y^{\prime}(0)=1$. Explain why this does not violate Theorem 4.1.1.
6. Find two members of the family of solutions in Problem 5 that satisfy the initial conditions $y(0)=0$, $y^{\prime}(0)=0$.
7. Given that $x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t$ is the general solution of $x^{\prime \prime}+\omega^{2} x=0$ on the interval $(-\infty, \infty)$, show that a solution satisfying the initial conditions $x(0)=x_{0}, x^{\prime}(0)=x_{1}$ is given by

$$
x(t)=x_{0} \cos \omega t+\frac{x_{1}}{\omega} \sin \omega t .
$$

8. Use the general solution of $x^{\prime \prime}+\omega^{2} x=0$ given in Problem 7 to show that a solution satisfying the initial conditions $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=x_{1}$ is the solution given in Problem 7 shifted by an amount t_{0} :

$$
x(t)=x_{0} \cos \omega\left(t-t_{0}\right)+\frac{x_{1}}{\omega} \sin \omega\left(t-t_{0}\right)
$$

In Problems 9 and 10 find an interval centered about $x=0$ for which the given initial-value problem has a unique solution.
9. $(x-2) y^{\prime \prime}+3 y=x, \quad y(0)=0, \quad y^{\prime}(0)=1$
10. $y^{\prime \prime}+(\tan x) y=e^{x}, \quad y(0)=1, \quad y^{\prime}(0)=0$
11. (a) Use the family in Problem 1 to find a solution of $y^{\prime \prime}-y=0$ that satisfies the boundary conditions $y(0)=0, y(1)=1$.
(b) The DE in part (a) has the alternative general solution $y=c_{3} \cosh x+c_{4} \sinh x$ on $(-\infty, \infty)$. Use this family to find a solution that satisfies the boundary conditions in part (a).
(c) Show that the solutions in parts (a) and (b) are equivalent
12. Use the family in Problem 5 to find a solution of $x y^{\prime \prime}-y^{\prime}=0$ that satisfies the boundary conditions $y(0)=1, y^{\prime}(1)=6$.

In Problems 13 and 14 the given two-parameter family is a solution of the indicated differential equation on the interval $(-\infty, \infty)$. Determine whether a member of the family can be found that satisfies the boundary conditions.
13. $y=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x ; \quad y^{\prime \prime}-2 y^{\prime}+2 y=0$
(a) $y(0)=1, \quad y^{\prime}(\pi)=0$
(b) $y(0)=1, \quad y(\pi)=-1$
(c) $y(0)=1, \quad y\left(\frac{\pi}{2}\right)=1$
(d) $y(0)=0, \quad y(\pi)=0$.
14. $y=c_{1} x^{2}+c_{2} x^{4}+3 ; \quad x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=24$
(a) $y(-1)=0, \quad y(1)=4$
(b) $y(0)=1, \quad y(1)=2$
(c) $y(0)=3, \quad y(1)=0$
(d) $y(1)=3, \quad y(2)=15$

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15-22 determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.
15. $f_{1}(x)=x, \quad f_{2}(x)=x^{2}, \quad f_{3}(x)=4 x-3 x^{2}$
16. $f_{1}(x)=0, \quad f_{2}(x)=x, \quad f_{3}(x)=e^{x}$
17. $f_{1}(x)=5, \quad f_{2}(x)=\cos ^{2} x, \quad f_{3}(x)=\sin ^{2} x$
18. $f_{1}(x)=\cos 2 x, \quad f_{2}(x)=1, \quad f_{3}(x)=\cos ^{2} x$
19. $f_{1}(x)=x, \quad f_{2}(x)=x-1, \quad f_{3}(x)=x+3$
20. $f_{1}(x)=2+x, \quad f_{2}(x)=2+|x|$
21. $f_{1}(x)=1+x, \quad f_{2}(x)=x, \quad f_{3}(x)=x^{2}$
22. $f_{1}(x)=e^{x}, \quad f_{2}(x)=e^{-x}, \quad f_{3}(x)=\sinh x$

In Problems 23-30 verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Form the general solution.
23. $y^{\prime \prime}-y^{\prime}-12 y=0 ; \quad e^{-3 x}, e^{4 x},(-\infty, \infty)$
24. $y^{\prime \prime}-4 y=0 ; \quad \cosh 2 x, \sinh 2 x,(-\infty, \infty)$
25. $y^{\prime \prime}-2 y^{\prime}+5 y=0 ; \quad e^{x} \cos 2 x, e^{x} \sin 2 x,(-\infty, \infty)$
26. $4 y^{\prime \prime}-4 y^{\prime}+y=0 ; \quad e^{x / 2}, x e^{x / 2},(-\infty, \infty)$
27. $x^{2} y^{\prime \prime}-6 x y^{\prime}+12 y=0 ; \quad x^{3}, x^{4},(0, \infty)$
28. $x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \quad \cos (\ln x), \sin (\ln x),(0, \infty)$
29. $x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0 ; \quad x, x^{-2}, x^{-2} \ln x,(0, \infty)$
30. $y^{(4)}+y^{\prime \prime}=0 ; \quad 1, x, \cos x, \sin x,(-\infty, \infty)$

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31-34 verify that the given two-parameter family of functions is the general solution of the nonhomogeneous differential equation on the indicated interval.
31. $y^{\prime \prime}-7 y^{\prime}+10 y=24 e^{x}$; $y=c_{1} e^{2 x}+c_{2} e^{5 x}+6 e^{x},(-\infty, \infty)$
32. $y^{\prime \prime}+y=\sec x$; $y=c_{1} \cos x+c_{2} \sin x+x \sin x+(\cos x) \ln (\cos x)$, $(-\pi / 2, \pi / 2)$
33. $y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}+4 x-12$; $y=c_{1} e^{2 x}+c_{2} x e^{2 x}+x^{2} e^{2 x}+x-2,(-\infty, \infty)$
34. $2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}-x$; $y=c_{1} x^{-1 / 2}+c_{2} x^{-1}+\frac{1}{15} x^{2}-\frac{1}{6} x,(0, \infty)$
35. (a) Verify that $y_{p_{1}}=3 e^{2 x}$ and $y_{p_{2}}=x^{2}+3 x$ are, respectively, particular solutions of

$$
y^{\prime \prime}-6 y^{\prime}+5 y=-9 e^{2 x}
$$

and $\quad y^{\prime \prime}-6 y^{\prime}+5 y=5 x^{2}+3 x-16$.
(b) Use part (a) to find particular solutions of

$$
\begin{aligned}
y^{\prime \prime}-6 y^{\prime}+5 y & =5 x^{2}+3 x-16-9 e^{2 x} \\
\text { and } \quad y^{\prime \prime}-6 y^{\prime}+5 y & =-10 x^{2}-6 x+32+e^{2 x}
\end{aligned}
$$

36. (a) By inspection find a particular solution of

$$
y^{\prime \prime}+2 y=10
$$

(b) By inspection find a particular solution of

$$
y^{\prime \prime}+2 y=-4 x
$$

(c) Find a particular solution of $y^{\prime \prime}+2 y=-4 x+10$.
(d) Find a particular solution of $y^{\prime \prime}+2 y=8 x+5$.

Discussion Problems

37. Let $n=1,2,3, \ldots$. Discuss how the observations $D^{n} x^{n-1}=0$ and $D^{n} x^{n}=n!$ can be used to find the general solutions of the given differential equations.
(a) $y^{\prime \prime}=0$
(b) $y^{\prime \prime \prime}=0$
(c) $y^{(4)}=0$
(d) $y^{\prime \prime}=2$
(e) $y^{\prime \prime \prime}=6$
(f) $y^{(4)}=24$
38. Suppose that $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ are two solutions of a homogeneous linear differential equation. Explain why $y_{3}=\cosh x$ and $y_{4}=\sinh x$ are also solutions of the equation.
39. (a) Verify that $y_{1}=x^{3}$ and $y_{2}=|x|^{3}$ are linearly independent solutions of the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ on the interval $(-\infty, \infty)$.
(b) Show that $W\left(y_{1}, y_{2}\right)=0$ for every real number x. Does this result violate Theorem 4.1.3? Explain.
(c) Verify that $Y_{1}=x^{3}$ and $Y_{2}=x^{2}$ are also linearly independent solutions of the differential equation in part (a) on the interval $(-\infty, \infty)$.
(d) Find a solution of the differential equation satisfying $y(0)=0, y^{\prime}(0)=0$.
(e) By the superposition principle, Theorem 4.1.2, both linear combinations $y=c_{1} y_{1}+c_{2} y_{2}$ and $Y=c_{1} Y_{1}+c_{2} Y_{2}$ are solutions of the differential equation. Discuss whether one, both, or neither of the linear combinations is a general solution of the differential equation on the interval $(-\infty, \infty)$.
40. Is the set of functions $f_{1}(x)=e^{x+2}, f_{2}(x)=e^{x-3}$ linearly dependent or linearly independent on $(-\infty, \infty)$? Discuss.
41. Suppose $y_{1}, y_{2}, \ldots, y_{k}$ are k linearly independent solutions on $(-\infty, \infty)$ of a homogeneous linear n th-order differential equation with constant coefficients. By Theorem 4.1.2 it follows that $y_{k+1}=0$ is also a solution of the differential equation. Is the set of solutions $y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}$ linearly dependent or linearly independent on $(-\infty, \infty)$? Discuss.
42. Suppose that $y_{1}, y_{2}, \ldots, y_{k}$ are k nontrivial solutions of a homogeneous linear n th-order differential equation with constant coefficients and that $k=n+1$. Is the set of solutions $y_{1}, y_{2}, \ldots, y_{k}$ linearly dependent or linearly independent on $(-\infty, \infty)$? Discuss.

4.2 REDUCTION OF ORDER

REVIEW MATERIAL

- Section 2.5 (using a substitution)
- Section 4.1

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous linear second-order differential equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

is a linear combination $y=c_{1} y_{1}+c_{2} y_{2}$, where y_{1} and y_{2} are solutions that constitute a linearly independent set on some interval I. Beginning in the next section, we examine a method for determining these solutions when the coefficients of the differential equation in (1) are constants. This method, which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single solution y_{1} of the DE. It turns out that we can construct a second solution y_{2} of a homogeneous equation (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution y_{1} of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear first-order DE by means of a substitution involving the known solution y_{1}. A second solution y_{2} of (1) is apparent after this first-order differential equation is solved.

REDUCTION OF ORDER Suppose that y_{1} denotes a nontrivial solution of (1) and that y_{1} is defined on an interval I. We seek a second solution y_{2} so that the set consisting of y_{1} and y_{2} is linearly independent on I. Recall from Section 4.1 that if y_{1} and y_{2} are linearly independent, then their quotient y_{2} / y_{1} is nonconstant on I-that is, $y_{2}(x) / y_{1}(x)=u(x)$ or $y_{2}(x)=u(x) y_{1}(x)$. The function $u(x)$ can be found by substituting $y_{2}(x)=u(x) y_{1}(x)$ into the given differential equation. This method is called reduction of order because we must solve a linear first-order differential equation to find u.

EXAMPLE 1 A Second Solution by Reduction of Order

Given that $y_{1}=e^{x}$ is a solution of $y^{\prime \prime}-y=0$ on the interval $(-\infty, \infty)$, use reduction of order to find a second solution y_{2}.

SOLUTION If $y=u(x) y_{1}(x)=u(x) e^{x}$, then the Product Rule gives

$$
y^{\prime}=u e^{x}+e^{x} u^{\prime}, \quad y^{\prime \prime}=u e^{x}+2 e^{x} u^{\prime}+e^{x} u^{\prime \prime}
$$

and so

$$
y^{\prime \prime}-y=e^{x}\left(u^{\prime \prime}+2 u^{\prime}\right)=0 .
$$

Since $e^{x} \neq 0$, the last equation requires $u^{\prime \prime}+2 u^{\prime}=0$. If we make the substitution $w=u^{\prime}$, this linear second-order equation in u becomes $w^{\prime}+2 w=0$, which is a linear first-order equation in w. Using the integrating factor $e^{2 x}$, we can write $\frac{d}{d x}\left[e^{2 x} w\right]=0$. After integrating, we get $w=c_{1} e^{-2 x}$ or $u^{\prime}=c_{1} e^{-2 x}$. Integrating again then yields $u=-\frac{1}{2} c_{1} e^{-2 x}+c_{2}$. Thus

$$
\begin{equation*}
y=u(x) e^{x}=-\frac{c_{1}}{2} e^{-x}+c_{2} e^{x} . \tag{2}
\end{equation*}
$$

By picking $c_{2}=0$ and $c_{1}=-2$, we obtain the desired second solution, $y_{2}=e^{-x}$. Because $W\left(e^{x}, e^{-x}\right) \neq 0$ for every x, the solutions are linearly independent on $(-\infty, \infty)$.

Since we have shown that $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ are linearly independent solutions of a linear second-order equation, the expression in (2) is actually the general solution of $y^{\prime \prime}-y=0$ on $(-\infty, \infty)$.

GENERAL CASE Suppose we divide by $a_{2}(x)$ to put equation (1) in the standard form

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{3}
\end{equation*}
$$

where $P(x)$ and $Q(x)$ are continuous on some interval I. Let us suppose further that $y_{1}(x)$ is a known solution of (3) on I and that $y_{1}(x) \neq 0$ for every x in the interval. If we define $y=u(x) y_{1}(x)$, it follows that

$$
\begin{aligned}
y^{\prime} & =u y_{1}^{\prime}+y_{1} u^{\prime}, \quad y^{\prime \prime}=u y_{1}^{\prime \prime}+2 y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime} \\
y^{\prime \prime}+P y^{\prime}+Q y & =u[\underbrace{y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}}_{\text {zero }}]+y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0 .
\end{aligned}
$$

This implies that we must have

$$
\begin{equation*}
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0 \quad \text { or } \quad y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) w=0 \tag{4}
\end{equation*}
$$

where we have let $w=u^{\prime}$. Observe that the last equation in (4) is both linear and separable. Separating variables and integrating, we obtain

$$
\begin{gathered}
\frac{d w}{w}+2 \frac{y_{1}^{\prime}}{y_{1}} d x+P d x=0 \\
\ln \left|w y_{1}^{2}\right|=-\int P d x+c \quad \text { or } \quad w y_{1}^{2}=c_{1} e^{-\int P d x} .
\end{gathered}
$$

We solve the last equation for w, use $w=u^{\prime}$, and integrate again:

$$
u=c_{1} \int \frac{e^{-\int P d x}}{y_{1}^{2}} d x+c_{2}
$$

By choosing $c_{1}=1$ and $c_{2}=0$, we find from $y=u(x) y_{1}(x)$ that a second solution of equation (3) is

$$
\begin{equation*}
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x \tag{5}
\end{equation*}
$$

It makes a good review of differentiation to verify that the function $y_{2}(x)$ defined in (5) satisfies equation (3) and that y_{1} and y_{2} are linearly independent on any interval on which $y_{1}(x)$ is not zero.

EXAMPLE 2 A Second Solution by Formula (5)

The function $y_{1}=x^{2}$ is a solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Find the general solution of the differential equation on the interval $(0, \infty)$.

SOLUTION From the standard form of the equation,
we find from (5)

$$
\begin{aligned}
y^{\prime \prime} & -\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
y_{2} & =x^{2} \int \frac{e^{3 \int d x / x}}{x^{4}} d x \quad \leftarrow e^{3 / d x / x}=e^{\ln x^{3}}=x^{3} \\
& =x^{2} \int \frac{d x}{x}=x^{2} \ln x .
\end{aligned}
$$

The general solution on the interval $(0, \infty)$ is given by $y=c_{1} y_{1}+c_{2} y_{2}$; that is, $y=c_{1} x^{2}+c_{2} x^{2} \ln x$.

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this formula appears again in the next section and in Sections 4.7 and 6.2. We use (5) simply to save time in obtaining a desired result. Your instructor will tell you whether you should memorize (5) or whether you should know the first principles of reduction of order.
(ii) Reduction of order can be used to find the general solution of a nonhomogeneous equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)$ whenever a solution y_{1} of the associated homogeneous equation is known. See Problems 17-20 in Exercises 4.2.

In Problems $1-16$ the indicated function $y_{1}(x)$ is a solution of the given differential equation. Use reduction of order or formula (5), as instructed, to find a second solution $y_{2}(x)$.

1. $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x}$
2. $y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y_{1}=x e^{-x}$
3. $y^{\prime \prime}+16 y=0 ; \quad y_{1}=\cos 4 x$
4. $y^{\prime \prime}+9 y=0 ; \quad y_{1}=\sin 3 x$
5. $y^{\prime \prime}-y=0 ; \quad y_{1}=\cosh x$
6. $y^{\prime \prime}-25 y=0 ; \quad y_{1}=e^{5 x}$
7. $9 y^{\prime \prime}-12 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x / 3}$
8. $6 y^{\prime \prime}+y^{\prime}-y=0 ; \quad y_{1}=e^{x / 3}$
9. $x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0 ; \quad y_{1}=x^{4}$
10. $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 ; \quad y_{1}=x^{2}$
11. $x y^{\prime \prime}+y^{\prime}=0 ; \quad y_{1}=\ln x$
12. $4 x^{2} y^{\prime \prime}+y=0 ; \quad y_{1}=x^{1 / 2} \ln x$
13. $x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0 ; \quad y_{1}=x \sin (\ln x)$
14. $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 ; \quad y_{1}=x^{2} \cos (\ln x)$
15. $\left(1-2 x-x^{2}\right) y^{\prime \prime}+2(1+x) y^{\prime}-2 y=0 ; \quad y_{1}=x+1$
16. $\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0 ; \quad y_{1}=1$

In Problems 17-20 the indicated function $y_{1}(x)$ is a solution of the associated homogeneous equation. Use the method of reduction of order to find a second solution $y_{2}(x)$ of the homogeneous equation and a particular solution of the given nonhomogeneous equation.
17. $y^{\prime \prime}-4 y=2 ; \quad y_{1}=e^{-2 x}$
18. $y^{\prime \prime}+y^{\prime}=1 ; \quad y_{1}=1$
19. $y^{\prime \prime}-3 y^{\prime}+2 y=5 e^{3 x} ; \quad y_{1}=e^{x}$
20. $y^{\prime \prime}-4 y^{\prime}+3 y=x ; \quad y_{1}=e^{x}$

Discussion Problems

21. (a) Give a convincing demonstration that the secondorder equation $a y^{\prime \prime}+b y^{\prime}+c y=0, a, b$, and c constants, always possesses at least one solution of the form $y_{1}=e^{m_{1} x}, m_{1}$ a constant.
(b) Explain why the differential equation in part (a) must then have a second solution either of the form
$y_{2}=e^{m_{2} x}$ or of the form $y_{2}=x e^{m_{1} x}, m_{1}$ and m_{2} constants.
(c) Reexamine Problems 1-8. Can you explain why the statements in parts (a) and (b) above are not contradicted by the answers to Problems 3-5?
22. Verify that $y_{1}(x)=x$ is a solution of $x y^{\prime \prime}-x y^{\prime}+y=0$. Use reduction of order to find a second solution $y_{2}(x)$ in the form of an infinite series. Conjecture an interval of definition for $y_{2}(x)$.

Computer Lab Assignments

23. (a) Verify that $y_{1}(x)=e^{x}$ is a solution of

$$
x y^{\prime \prime}-(x+10) y^{\prime}+10 y=0
$$

(b) Use (5) to find a second solution $y_{2}(x)$. Use a CAS to carry out the required integration.
(c) Explain, using Corollary (A) of Theorem 4.1.2, why the second solution can be written compactly as

$$
y_{2}(x)=\sum_{n=0}^{10} \frac{1}{n!} x^{n}
$$

WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL

- Review Problem 27 in Exercises 1.1 and Theorem 4.1.5
- Review the algebra of solving polynomial equations (see the Student Resource and Solutions Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to firstorder differential equations-more specifically, to homogeneous linear equations $a y^{\prime}+b y=0$, where the coefficients $a \neq 0$ and b are constants. This type of equation can be solved either by separation of variables or with the aid of an integrating factor, but there is another solution method, one that uses only algebra. Before illustrating this alternative method, we make one observation: Solving $a y^{\prime}+b y=0$ for y^{\prime} yields $y^{\prime}=k y$, where k is a constant. This observation reveals the nature of the unknown solution y; the only nontrivial elementary function whose derivative is a constant multiple of itself is an exponential function $e^{m x}$. Now the new solution method: If we substitute $y=e^{m x}$ and $y^{\prime}=m e^{m x}$ into $a y^{\prime}+b y=0$, we get

$$
a m e^{m x}+b e^{m x}=0 \quad \text { or } \quad e^{m x}(a m+b)=0
$$

Since $e^{m x}$ is never zero for real values of x, the last equation is satisfied only when m is a solution or root of the first-degree polynomial equation $a m+b=0$. For this single value of $m, y=e^{m x}$ is a solution of the DE . To illustrate, consider the constant-coefficient equation $2 y^{\prime}+5 y=0$. It is not necessary to go through the differentiation and substitution of $y=e^{m x}$ into the DE ; we merely have to form the equation $2 m+5=0$ and solve it for m. From $m=-\frac{5}{2}$ we conclude that $y=e^{-5 x / 2}$ is a solution of $2 y^{\prime}+5 y=0$, and its general solution on the interval $(-\infty, \infty)$ is $y=c_{1} e^{-5 x / 2}$.

In this section we will see that the foregoing procedure can produce exponential solutions for homogeneous linear higher-order DEs,

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

where the coefficients $a_{i}, i=0,1, \ldots, n$ are real constants and $a_{n} \neq 0$.

