
PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL
● Reread the Remarks at the end of Section 1.1
● Section 2.3 (especially pages 54–58)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equations
by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations. Even
though the solutions of these equations were in the form of a one-parameter family, this family,
with one exception, did not represent the general solution of the differential equation. Only in the
case of linear first-order differential equations were we able to obtain general solutions, by paying
attention to certain continuity conditions imposed on the coefficients. Recall that a general solution
is a family of solutions defined on some interval I that contains all solutions of the DE that are
defined on I. Because our primary goal in this chapter is to find general solutions of linear higher-order
DEs, we first need to examine some of the theory of linear equations.
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4.1

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

INITIAL-VALUE PROBLEM In Section 1.2 we defined an initial-value problem
for a general nth-order differential equation. For a linear differential equation an
nth-order initial-value problem is

Solve:

Subject to: .

(1)

Recall that for a problem such as this one we seek a function defined on some interval
I, containing x0, that satisfies the differential equation and the n initial conditions
specified at x0: y(x0) � y0, y�(x0) � y1, . . . , y(n�1)(x0) � yn�1. We have already seen
that in the case of a second-order initial-value problem a solution curve must pass
through the point (x0, y0) and have slope y1 at this point.

EXISTENCE AND UNIQUENESS In Section 1.2 we stated a theorem that gave
conditions under which the existence and uniqueness of a solution of a first-order
initial-value problem were guaranteed. The theorem that follows gives sufficient
conditions for the existence of a unique solution of the problem in (1).

THEOREM 4.1.1 Existence of a Unique Solution

Let an(x), an�1(x), . . . , a1(x), a0(x) and g(x) be continuous on an interval I
and let an(x) � 0 for every x in this interval. If x � x0 is any point in this
interval, then a solution y(x) of the initial-value problem (1) exists on the
interval and is unique.

EXAMPLE 1 Unique Solution of an IVP

The initial-value problem

3y� � 5y	 � y� � 7y � 0, y(1) � 0, y�(1) � 0, y	(1) � 0

y(x0) � y0, y�(x0) � y1 , . . . ,  y(n�1)(x0) � yn�1

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � g(x)



possesses the trivial solution y � 0. Because the third-order equation is linear with
constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled.
Hence y � 0 is the only solution on any interval containing x � 1.

EXAMPLE 2 Unique Solution of an IVP

You should verify that the function y � 3e2x � e�2x � 3x is a solution of the initial-
value problem

Now the differential equation is linear, the coefficients as well as g(x) � 12x are
continuous, and a2(x) � 1 � 0 on any interval I containing x � 0. We conclude from
Theorem 4.1.1 that the given function is the unique solution on I.

The requirements in Theorem 4.1.1 that ai(x), i � 0, 1, 2, . . . , n be continuous
and an(x) � 0 for every x in I are both important. Specifically, if an(x) � 0 for some x
in the interval, then the solution of a linear initial-value problem may not be unique
or even exist. For example, you should verify that the function y � cx2 � x � 3 is a
solution of the initial-value problem

on the interval (�
, 
) for any choice of the parameter c. In other words, there is no
unique solution of the problem. Although most of the conditions of Theorem 4.1.1
are satisfied, the obvious difficulties are that a2(x) � x2 is zero at x � 0 and that the
initial conditions are also imposed at x � 0.

BOUNDARY-VALUE PROBLEM Another type of problem consists of solving a
linear differential equation of order two or greater in which the dependent variable y
or its derivatives are specified at different points. A problem such as

Solve:

Subject to:

is called a boundary-value problem (BVP). The prescribed values y(a) � y0 and
y(b) � y1 are called boundary conditions. A solution of the foregoing problem is a
function satisfying the differential equation on some interval I, containing a and b,
whose graph passes through the two points (a, y0) and (b, y1). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions
could be

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just
special cases of the general boundary conditions

The next example shows that even when the conditions of Theorem 4.1.1 are
fulfilled, a boundary-value problem may have several solutions (as suggested in
Figure 4.1.1), a unique solution, or no solution at all.

�2y(b) � �2y�(b) � �2.

�1y(a) � �1y�(a) � �1

y�(a) � y0,    y�(b) � y1,

y(a) � y0,    y�(b) � y1

y�(a) � y0,    y(b) � y1

y(a) � y0,  y(b) � y1

a2(x)
d 2y

dx2 � a1(x)
dy

dx
� a0(x)y � g(x)

x2y	 � 2xy� � 2y � 6,  y(0) � 3,  y�(0) � 1

y	 � 4y � 12x,  y(0) � 4,  y�(0) � 1.
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FIGURE 4.1.1 Solution curves of a
BVP that pass through two points
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EXAMPLE 3 A BVP Can Have Many, One, or No Solutions

In Example 4 of Section 1.1 we saw that the two-parameter family of solutions of the
differential equation x	 � 16x � 0 is

(2)

(a) Suppose we now wish to determine the solution of the equation that further
satisfies the boundary conditions x(0) � 0, x(p�2) � 0. Observe that the first
condition 0 � c1 cos 0 � c2 sin 0 implies that c1 � 0, so x � c2 sin 4t. But when
t � p�2, 0 � c2 sin 2p is satisfied for any choice of c2, since sin 2p � 0. Hence
the boundary-value problem

(3)

has infinitely many solutions. Figure 4.1.2 shows the graphs of some of the
members of the one-parameter family x � c2 sin 4t that pass through the two
points (0, 0) and (p�2, 0).

(b) If the boundary-value problem in (3) is changed to

, (4)

then x(0) � 0 still requires c1 � 0 in the solution (2). But applying x(p�8) � 0 to 
x � c2 sin 4t demands that 0 � c2 sin(p�2) � c2 �1. Hence x � 0 is a solution of
this new boundary-value problem. Indeed, it can be proved that x � 0 is the only
solution of (4).

(c) Finally, if we change the problem to

, (5)

we find again from x(0) � 0 that c1 � 0, but applying x(p�2) � 1 to 
x � c2 sin 4t leads to the contradiction 1 � c2 sin 2p � c2 � 0 � 0. Hence 
the boundary-value problem (5) has no solution.

4.1.2 HOMOGENEOUS EQUATIONS

A linear nth-order differential equation of the form

(6)

is said to be homogeneous, whereas an equation

(7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 
2y	 � 3y� � 5y � 0 is a homogeneous linear second-order differential equation,
whereas x3y� � 6y� � 10y � ex is a nonhomogeneous linear third-order differen-
tial equation. The word homogeneous in this context does not refer to coefficients
that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must first
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we
shall, as a matter of course, make the following important assumptions when

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � g(x),

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 1

x	 � 16x � 0,  x(0) � 0,  x ��

8� � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 0

x � c1 cos 4t � c2 sin 4t.
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FIGURE 4.1.2 Some solution curves
of (3)
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stating definitions and theorems about linear equations (1). On some common
interval I,

• the coefficient functions ai(x), i � 0, 1, 2, . . . , n and g(x) are continuous;
• an(x) � 0 for every x in the interval.

DIFFERENTIAL OPERATORS In calculus differentiation is often denoted by
the capital letter D—that is, dy�dx � Dy. The symbol D is called a differential
operator because it transforms a differentiable function into another function. For
example, D(cos 4x) � �4 sin 4x and D(5x3 � 6x2) � 15x2 � 12x. Higher-order
derivatives can be expressed in terms of D in a natural manner:

where y represents a sufficiently differentiable function. Polynomial expressions
involving D, such as D � 3, D2 � 3D � 4, and 5x3D3 � 6x2D2 � 4xD � 9, are
also differential operators. In general, we define an nth-order differential opera-
tor or polynomial operator to be

L � an(x)Dn � an�1(x)Dn�1 �    � a1(x)D � a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) � cDf (x), c is a
constant, and D{ f (x) � g(x)} � Df (x) � Dg(x), the differential operator L possesses
a linearity property; that is, L operating on a linear combination of two differentiable
functions is the same as the linear combination of L operating on the individual func-
tions. In symbols this means that

L{a f (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

where a and b are constants. Because of (9) we say that the nth-order differential
operator L is a linear operator.

DIFFERENTIAL EQUATIONS Any linear differential equation can be expressed in
terms of the D notation. For example, the differential equation y	 � 5y� � 6y � 5x � 3
can be written as D2y � 5Dy � 6y � 5x � 3 or (D2 � 5D � 6)y � 5x � 3. Using (8),
we can write the linear nth-order differential equations (6) and (7) compactly as

respectively.

SUPERPOSITION PRINCIPLE In the next theorem we see that the sum, or
superposition, of two or more solutions of a homogeneous linear differential equa-
tion is also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous nth-order differential
equation (6) on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

PROOF We prove the case k � 2. Let L be the differential operator defined in
(8), and let y1(x) and y2(x) be solutions of the homogeneous equation L( y) � 0. If
we define y � c1y1(x) � c2y2(x), then by linearity of L we have

L( y) � L{c1y1(x) � c2y2(x)} � c1 L(y1) � c2 L(y2) � c1 � 0 � c2 � 0 � 0.

y � c1y1(x) � c2y2(x) �    � ckyk(x),

L(y) � 0    and    L(y) � g(x),

d

dx �
dy

dx� �
d 2y

dx2 � D(Dy) � D2y    and, in general,    
dny

dxn � Dny,
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■ Please remember
these two
assumptions.



COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y � c1y1(x) of a solution y1(x) of a homogeneous
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial
solution y � 0.

EXAMPLE 4 Superposition—Homogeneous DE

The functions y1 � x2 and y2 � x2 ln x are both solutions of the homogeneous linear
equation x3y� � 2xy� � 4y � 0 on the interval (0, 
). By the superposition principle
the linear combination

is also a solution of the equation on the interval.

The function y � e7x is a solution of y	 � 9y� � 14y � 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y � ce7x is also a
solution. For various values of c we see that y � 9e7x, y � 0, , . . . are all
solutions of the equation.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE The next two con-
cepts are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions f1(x), f2(x), . . . , fn(x) is said to be linearly dependent on an
interval I if there exist constants c1, c2, . . . , cn, not all zero, such that

for every x in the interval. If the set of functions is not linearly dependent on
the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval I if the only
constants for which

for every x in the interval are .
It is easy to understand these definitions for a set consisting of two functions 

f1(x) and f2(x). If the set of functions is linearly dependent on an interval, then
there exist constants c1 and c2 that are not both zero such that for every x in the
interval, c1 f1(x) � c2 f2(x) � 0. Therefore if we assume that c1 � 0, it follows that
f1(x) � (�c2�c1) f2(x); that is, if a set of two functions is linearly dependent, then one
function is simply a constant multiple of the other. Conversely, if f1(x) � c2 f2(x)
for some constant c2, then (�1) � f1(x) � c2 f2(x) � 0 for every x in the interval.
Hence the set of functions is linearly dependent because at least one of the constants
(namely, c1 � �1) is not zero. We conclude that a set of two functions f1(x) and f2(x)
is linearly independent when neither function is a constant multiple of the other on
the interval. For example, the set of functions f1(x) � sin 2x, f2(x) � sin x cos x is
linearly dependent on (�
, 
) because f1(x) is a constant multiple of f2(x). Recall
from the double-angle formula for the sine that sin 2x � 2 sin x cos x. On the other
hand, the set of functions f1(x) � x, f2(x) � �x � is linearly independent on (�
, 
).
Inspection of Figure 4.1.3 should convince you that neither function is a constant
multiple of the other on the interval.

c1 � c2 �    � cn � 0

c1 f1(x) � c2 f2(x) �    � cn fn(x) � 0

c1 f1(x) � c2 f2(x) �    � cn fn(x) � 0

y � �15e7x

y � c1x
2 � c2x2 ln x
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FIGURE 4.1.3 Set consisting of f1 and
f2 is linearly independent on (�
, 
)
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It follows from the preceding discussion that the quotient f2(x)�f1(x) is not a con-
stant on an interval on which the set f1(x), f2(x) is linearly independent. This little fact
will be used in the next section.

EXAMPLE 5 Linearly Dependent Set of Functions

The set of functions f1(x) � cos2x, f2(x) � sin2x, f3(x) � sec2x, f4(x) � tan2x is
linearly dependent on the interval (�p�2, p�2) because

when c1 � c2 � 1, c3 � �1, c4 � 1. We used here cos2x � sin2x � 1 and
1 � tan2x � sec2x.

A set of functions f1(x), f2(x), . . . , fn(x) is linearly dependent on an interval if
at least one function can be expressed as a linear combination of the remaining
functions.

EXAMPLE 6 Linearly Dependent Set of Functions

The set of functions , f3(x) � x � 1, f4(x) � x2 is
linearly dependent on the interval (0, 
) because f2 can be written as a linear combi-
nation of f1, f3, and f4. Observe that

for every x in the interval (0, 
).

SOLUTIONS OF DIFFERENTIAL EQUATIONS We are primarily interested in
linearly independent functions or, more to the point, linearly independent solutions
of a linear differential equation. Although we could always appeal directly to
Definition 4.1.1, it turns out that the question of whether the set of n solutions
y1, y2, . . . , yn of a homogeneous linear nth-order differential equation (6) is linearly
independent can be settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions f1(x), f2(x), . . . , fn(x) possesses at least n � 1
derivatives. The determinant

where the primes denote derivatives, is called the Wronskian of the
functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order
differential equation (6) on an interval I. Then the set of solutions is linearly
independent on I if and only if W(y1, y2, . . . , yn ) � 0 for every x in the
interval.

W( f1, f2, . . . , fn ) � �
f1

f 1�





f1

(n�1)

f2

f 2�





f2

(n�1)

  

  

  

fn

f n�





fn

(n�1)
�,

f2(x) � 1 � f1(x) � 5 � f3(x) � 0 � f4(x)

f1(x) � 1x � 5, f2(x) � 1x � 5x

c1 cos2x � c2 sin2x � c3 sec2x � c4 tan2x � 0
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It follows from Theorem 4.1.3 that when y1, y2, . . . , yn are n solutions of (6) on
an interval I, the Wronskian W( y1, y2, . . . , yn) is either identically zero or never zero
on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order
differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y1, y2, . . . , yn of n linearly independent solutions of the homoge-
neous linear nth-order differential equation (6) on an interval I is said to be a
fundamental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear
equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order
differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a
linear combination of the linearly independent vectors i, j, k, any solution of an nth-
order homogeneous linear differential equation on an interval I can be expressed as a
linear combination of n linearly independent solutions on I. In other words, n linearly
independent solutions y1, y2, . . . , yn are the basic building blocks for the general
solution of the equation.

THEOREM 4.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous linear
nth-order differential equation (6) on an interval I. Then the general solution of
the equation on the interval is

where ci, i � 1, 2, . . . , n are arbitrary constants.

Theorem 4.1.5 states that if Y(x) is any solution of (6) on the interval, then con-
stants C1, C2, . . . , Cn can always be found so that

We will prove the case when n � 2.

PROOF Let Y be a solution and let y1 and y2 be linearly independent solutions of
a2y	 � a1y� � a0y � 0 on an interval I. Suppose that x � t is a point in I for which
W(y1(t), y2(t)) � 0. Suppose also that Y(t) � k1 and Y�(t) � k2. If we now examine
the equations

it follows that we can determine C1 and C2 uniquely, provided that the determinant of
the coefficients satisfies

�y1(t)

y1�(t)

y2(t)

y2�(t)
� � 0.

C1y�1(t) � C2y�2(t) � k2,

C1y1(t) � C2y2(t) � k1

Y(x) � C1y1(x) � C2y2(x) �    � Cnyn(x).

y � c1y1(x) � c2y2(x) �    � cnyn(x),
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But this determinant is simply the Wronskian evaluated at x � t, and by assumption,
W � 0. If we define G(x) � C1y1(x) � C2y2(x), we observe that G(x) satisfies the
differential equation since it is a superposition of two known solutions; G(x) satisfies
the initial conditions

and Y(x) satisfies the same linear equation and the same initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have Y(x) � G(x) or Y(x) � C1y1(x) � C2y2(x).

EXAMPLE 7 General Solution of a Homogeneous DE

The functions y1 � e3x and y2 � e�3x are both solutions of the homogeneous linear
equation y	 � 9y � 0 on the interval (�
, 
). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the
Wronskian

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and
consequently, y � c1e3x � c2e�3x is the general solution of the equation on the
interval.

EXAMPLE 8 A Solution Obtained from a General Solution

The function y � 4sinh 3x � 5e3x is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution y � c1e3x � c2e�3x. Observe that if we choose 
c1 � 2 and c2 � �7, then y � 2e3x � 7e�3x can be rewritten as

The last expression is recognized as y � 4 sinh 3x � 5e�3x.

EXAMPLE 9 General Solution of a Homogeneous DE

The functions y1 � ex, y2 � e2x, and y3 � e3x satisfy the third-order equation
y� � 6y	 � 11y� � 6y � 0. Since

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solu-
tions on (�
, 
). We conclude that y � c1ex � c2e2x � c3e3x is the general solution
of the differential equation on the interval.

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function yp, free of arbitrary parameters, that satisfies (7) is said to be a particular
solution or particular integral of the equation. For example, it is a straightforward
task to show that the constant function yp � 3 is a particular solution of the
nonhomogeneous equation y	 � 9y � 27.

W(ex, e2x, e3x) � p ex

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x
p � 2e6x � 0

y � 2e3x � 2e�3x � 5e�3x � 4�e3x � e�3x

2 � � 5e�3x.

W(e3x, e�3x) � � e3x

3e3x

e�3x

�3e�3x � � �6 � 0

G(t) � C1y1(t) � C2y2(t) � k1    and    G�(t) � C1y�1(t) � C2y�2(t) � k2;
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Now if y1, y2, . . . , yk are solutions of (6) on an interval I and yp is any particular
solution of (7) on I, then the linear combination

(10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes
sense, because the linear combination c1y1(x) � c2y2(x) �  � ckyk(x) is trans-
formed into 0 by the operator L � anDn � an�1Dn�1 �    � a1D � a0, whereas yp

is transformed into g(x). If we use k � n linearly independent solutions of the nth-order
equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let yp be any particular solution of the nonhomogeneous linear nth-order differ-
ential equation (7) on an interval I, and let y1, y2, . . . , yn be a fundamental set of
solutions of the associated homogeneous differential equation (6) on I. Then the
general solution of the equation on the interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

PROOF Let L be the differential operator defined in (8) and let Y(x) and yp(x)
be particular solutions of the nonhomogeneous equation L(y) � g(x). If we define
u(x) � Y(x) � yp(x), then by linearity of L we have

L(u) � L{Y(x) � yp(x)} � L(Y(x)) � L(yp(x)) � g(x) � g(x) � 0.

This shows that u(x) is a solution of the homogeneous equation L(y) � 0. Hence
by Theorem 4.1.5, , and so

or

COMPLEMENTARY FUNCTION We see in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

The linear combination , which is the
general solution of (6), is called the complementary function for equation (7). In
other words, to solve a nonhomogeneous linear differential equation, we first solve
the associated homogeneous equation and then find any particular solution of the
nonhomogeneous equation. The general solution of the nonhomogeneous equation
is then

y � complementary function � any particular solution
� yc � yp.

EXAMPLE 10 General Solution of a Nonhomogeneous DE

By substitution the function is readily shown to be a particular solu-
tion of the nonhomogeneous equation

(11)y� � 6y	 � 11y� � 6y � 3x.

yp � �11
12 � 1

2 x

yc(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

y � c1y1(x) � c2y2(x) �    � cnyn(x) � yp(x) � yc(x) � yp(x).

Y(x) � c1y1(x) � c2y2(x) �    � cnyn(x) � yp(x).

Y(x) � yp(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

u(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

y � c1y1(x) � c2y2(x) �    � cn yn(x) � yp ,

y � c1y1(x) � c2y2(x) �    � ckyk(x) � yp
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To write the general solution of (11), we must also be able to solve the associated
homogeneous equation

But in Example 9 we saw that the general solution of this latter equation on the in-
terval (�
, 
) was yc � c1ex � c2e2x � c3e3x. Hence the general solution of (11)
on the interval is

ANOTHER SUPERPOSITION PRINCIPLE The last theorem of this discussion
will be useful in Section 4.4 when we consider a method for finding particular solu-
tions of nonhomogeneous equations.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous 

Equations

Let , , . . . , be k particular solutions of the nonhomogeneous linear
nth-order differential equation (7) on an interval I corresponding, in turn, to k
distinct functions g1, g2, . . . , gk. That is, suppose denotes a particular solu-
tion of the corresponding differential equation

(12)

where i � 1, 2, . . . , k. Then

(13)

is a particular solution of

(14)

PROOF We prove the case k � 2. Let L be the differential operator defined in (8)
and let and be particular solutions of the nonhomogeneous equations
L( y) � g1(x) and L( y) � g2(x), respectively. If we define , we
want to show that yp is a particular solution of L( y) � g1(x) � g2(x). The result
follows again by the linearity of the operator L:

EXAMPLE 11 Superposition—Nonhomogeneous DE

You should verify that

It follows from (13) of Theorem 4.1.7 that the superposition of , and ,

is a solution of

y 	 � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.

g1(x) g3(x)g2(x)

y � yp1
� yp2

� yp3
� �4x2 � e2x � xex,

yp3
yp1

, yp2

yp3
� xex  is a particular solution of  y	 � 3y� � 4y � 2xex � ex.

yp2
� e2x  is a particular solution of  y	 � 3y� � 4y � 2e2x,

yp1
� �4x2  is a particular solution of  y	 � 3y� � 4y � �16x2 � 24x � 8,

L(yp) � L{yp1
(x) � yp2

(x)} � L( yp1
(x)) � L( yp2

(x)) � g1(x) � g2(x).

yp � yp1
(x) � yp2

(x)
yp2

(x)yp1
(x)

� g1(x) � g2(x) �    � gk(x).

an(x)y(n) � an�1(x)y(n�1) �    � a1(x)y� � a0(x)y

yp � yp1
(x) � yp2

(x) �    � ypk
(x)

an(x)y(n) � an�1(x)y(n�1) �    � a1(x)y� � a0(x)y � gi(x),

ypi

ypk
yp2

yp1

y � yc � yp � c1e
x � c2e

2x � c3e
3x �

11

12
�

1

2
x.

y� � 6y	 � 11y� � 6y � 0.
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NOTE If the are particular solutions of (12) for i � 1, 2, . . . , k, then the linear
combination

where the ci are constants, is also a particular solution of (14) when the right-hand
member of the equation is the linear combination

Before we actually start solving homogeneous and nonhomogeneous linear
differential equations, we need one additional bit of theory, which is presented in the
next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order
differential equation

is said to be an nth-order linear system. The n time-dependent functions y(t),
y�(t), . . . , y(n�1)(t) are the state variables of the system. Recall that their val-
ues at some time t give the state of the system. The function g is variously
called the input function, forcing function, or excitation function. A solu-
tion y(t) of the differential equation is said to be the output or response of the
system. Under the conditions stated in Theorem 4.1.1, the output or response
y(t) is uniquely determined by the input and the state of the system prescribed
at a time t0 —that is, by the initial conditions y(t0), y�(t0), . . . , y(n�1)(t0).

For a dynamical system to be a linear system, it is necessary that the super-
position principle (Theorem 4.1.7) holds in the system; that is, the response of
the system to a superposition of inputs is a superposition of outputs. We have
already examined some simple linear systems in Section 3.1 (linear first-order
equations); in Section 5.1 we examine linear systems in which the mathe-
matical models are second-order differential equations.

an(t)y(n) � an�1(t)y(n�1) �    � a1(t)y� � a0(t)y � g(t)

c1g1(x) � c2g2(x) �    � ckgk(x).

yp � c1yp1
� c2yp2

�    � ckypk
,

ypi
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EXERCISES 4.1 Answers to selected odd-numbered problems begin on page ANS-4.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

In Problems 1–4 the given family of functions is the general
solution of the differential equation on the indicated interval.
Find a member of the family that is a solution of the initial-
value problem.

1. y � c1ex � c2e�x, (�
, 
);
y	 � y � 0, y(0) � 0, y�(0) � 1

2. y � c1e4x � c2e�x, (�
, 
);
y	 � 3y� � 4y � 0, y(0) � 1, y�(0) � 2

3. y � c1x � c2x ln x, (0, 
);
x2y	 � xy� � y � 0, y(1) � 3, y�(1) � �1

4. y � c1 � c2 cos x � c3 sin x, (�
, 
);
y� � y� � 0, y(p) � 0, y�(p) � 2, y	(p) � �1

5. Given that y � c1 � c2x2 is a two-parameter family of
solutions of xy	 � y� � 0 on the interval (�
, 
),
show that constants c1 and c2 cannot be found so that a
member of the family satisfies the initial conditions
y(0) � 0, y�(0) � 1. Explain why this does not violate
Theorem 4.1.1.

6. Find two members of the family of solutions in
Problem 5 that satisfy the initial conditions y(0) � 0,
y�(0) � 0.

7. Given that x(t) � c1 cos vt � c2 sin vt is the general
solution of x	 � v2x � 0 on the interval (�
, 
),
show that a solution satisfying the initial conditions
x(0) � x0, x�(0) � x1 is given by

x(t) � x0 cos �t �
x1

�
 sin �t.



8. Use the general solution of x	 � v2x � 0 given in
Problem 7 to show that a solution satisfying the initial
conditions x(t0) � x0, x�(t0) � x1 is the solution given in
Problem 7 shifted by an amount t0:

In Problems 9 and 10 find an interval centered about x � 0 for
which the given initial-value problem has a unique solution.

9. (x � 2)y	 � 3y � x, y(0) � 0, y�(0) � 1

10. y	 � (tan x)y � ex, y(0) � 1, y�(0) � 0

11. (a) Use the family in Problem 1 to find a solution of
y	 � y � 0 that satisfies the boundary conditions
y(0) � 0, y(1) � 1.

(b) The DE in part (a) has the alternative general solu-
tion y � c3 cosh x � c4 sinh x on (�
, 
). Use this
family to find a solution that satisfies the boundary
conditions in part (a).

(c) Show that the solutions in parts (a) and (b) are
equivalent

12. Use the family in Problem 5 to find a solution of
xy	 � y� � 0 that satisfies the boundary conditions
y(0) � 1, y�(1) � 6.

In Problems 13 and 14 the given two-parameter family is a
solution of the indicated differential equation on the interval
(�
, 
). Determine whether a member of the family can be
found that satisfies the boundary conditions.

13. y � c1ex cos x � c2ex sin x; y	 � 2y� � 2y � 0

(a) y(0) � 1, y�(p) � 0 (b) y(0) � 1, y(p) � �1

(c) y(0) � 1, (d) y(0) � 0, y(p) � 0.

14. y � c1x2 � c2x4 � 3; x2y	 � 5xy� � 8y � 24

(a) y(�1) � 0, y(1) � 4 (b) y(0) � 1, y(1) � 2
(c) y(0) � 3, y(1) � 0 (d) y(1) � 3, y(2) � 15

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15–22 determine whether the given set of func-
tions is linearly independent on the interval (�
, 
).

15. f1(x) � x, f2(x) � x2, f3(x) � 4x � 3x2

16. f1(x) � 0, f2(x) � x, f3(x) � ex

17. f1(x) � 5, f2(x) � cos2x, f3(x) � sin2x

18. f1(x) � cos 2x, f2(x) � 1, f3(x) � cos2x

19. f1(x) � x, f2(x) � x � 1, f3(x) � x � 3

20. f1(x) � 2 � x, f2(x) � 2 � �x �

y��

2� � 1

x(t) � x0 cos �(t � t0 ) �
x1

�
 sin �(t � t0 ).
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21. f1(x) � 1 � x, f2(x) � x, f3(x) � x2

22. f1(x) � ex, f2(x) � e�x, f3(x) � sinh x

In Problems 23–30 verify that the given functions form a
fundamental set of solutions of the differential equation on
the indicated interval. Form the general solution.

23. y	 � y� � 12y � 0; e�3x, e4x, (�
, 
)

24. y	 � 4y � 0; cosh 2x, sinh 2x, (�
, 
)

25. y	 � 2y� � 5y � 0; ex cos 2x, ex sin 2x, (�
, 
)

26. 4y	 � 4y� � y � 0; ex/2, xex/2, (�
, 
)

27. x2y	 � 6xy� � 12y � 0; x3, x4, (0, 
)

28. x2y	 � xy� � y � 0; cos(ln x), sin(ln x), (0, 
)

29. x3y� � 6x2y	 � 4xy� � 4y � 0; x, x�2, x�2 ln x, (0, 
)

30. y(4) � y	 � 0; 1, x, cos x, sin x, (�
, 
)

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31–34 verify that the given two-parameter fam-
ily of functions is the general solution of the nonhomoge-
neous differential equation on the indicated interval.

31. y	 � 7y� � 10y � 24ex;
y � c1e2x � c2e5x � 6ex, (�
, 
)

32. y	 � y � sec x;
y � c1 cos x � c2 sin x � x sin x � (cos x) ln(cos x),
(�p�2, p�2)

33. y	 � 4y� � 4y � 2e2x � 4x � 12;
y � c1e2x � c2xe2x � x2e2x � x � 2, (�
, 
)

34. 2x2y	 � 5xy� � y � x2 � x;

35. (a) Verify that and are, respec-
tively, particular solutions of

and

(b) Use part (a) to find particular solutions of

and

36. (a) By inspection find a particular solution of 

y	 � 2y � 10.

(b) By inspection find a particular solution of 

y	 � 2y � �4x.

(c) Find a particular solution of y	 � 2y � �4x � 10.
(d) Find a particular solution of y	 � 2y � 8x � 5.

y	 � 6y� � 5y � �10x2 � 6x � 32 � e2x.

y	 � 6y� � 5y � 5x2 � 3x � 16 � 9e2x

y	 � 6y� � 5y � 5x2 � 3x � 16.

y	 � 6y� � 5y � �9e2x

yp2
� x2 � 3xyp1

� 3e2x

y � c1x�1/2 � c2x�1 � 1
15 x2 � 1

6 x, (0, 
)



Discussion Problems

37. Let n � 1, 2, 3, . . . . Discuss how the observations
Dnxn�1 � 0 and Dnxn � n! can be used to find the gen-
eral solutions of the given differential equations.

(a) y	 � 0 (b) y� � 0 (c) y(4) � 0

(d) y	 � 2 (e) y� � 6 (f) y(4) � 24

38. Suppose that y1 � ex and y2 � e�x are two solutions of
a homogeneous linear differential equation. Explain
why y3 � cosh x and y4 � sinh x are also solutions of
the equation.

39. (a) Verify that y1 � x3 and y2 � �x �3 are linearly
independent solutions of the differential equation
x2y	 � 4xy� � 6y � 0 on the interval (�
, 
).

(b) Show that W( y1, y2) � 0 for every real number x.
Does this result violate Theorem 4.1.3? Explain.

(c) Verify that Y1 � x3 and Y2 � x2 are also linearly
independent solutions of the differential equation
in part (a) on the interval (�
, 
).

(d) Find a solution of the differential equation satisfy-
ing y(0) � 0, y�(0) � 0.
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(e) By the superposition principle, Theorem 4.1.2,
both linear combinations y � c1y1 � c2y2 and
Y � c1Y1 � c2Y2 are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (�
, 
).

40. Is the set of functions f1(x) � ex�2, f2(x) � ex�3 lin-
early dependent or linearly independent on (�
, 
)?
Discuss.

41. Suppose y1, y2, . . . , yk are k linearly independent solu-
tions on (�
, 
) of a homogeneous linear nth-order
differential equation with constant coefficients. By
Theorem 4.1.2 it follows that yk�1 � 0 is also a solution
of the differential equation. Is the set of solutions
y1, y2, . . . , yk, yk�1 linearly dependent or linearly inde-
pendent on (�
, 
)? Discuss.

42. Suppose that y1, y2, . . . , yk are k nontrivial solutions of
a homogeneous linear nth-order differential equation
with constant coefficients and that k � n � 1. Is the set
of solutions y1, y2, . . . , yk linearly dependent or linearly
independent on (�
, 
)? Discuss.

REDUCTION OF ORDER

REVIEW MATERIAL
● Section 2.5 (using a substitution)
● Section 4.1

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous
linear second-order differential equation

(1)

is a linear combination y � c1y1 � c2y2, where y1 and y2 are solutions that constitute a linearly inde-
pendent set on some interval I. Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution y1 of the DE. It turns out that we can construct a second solution y2 of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution
y1 of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear
first-order DE by means of a substitution involving the known solution y1. A second solution y2 of
(1) is apparent after this first-order differential equation is solved.

a2(x)y	 � a1(x)y� � a0(x)y � 0

4.2

REDUCTION OF ORDER Suppose that y1 denotes a nontrivial solution of (1) and
that y1 is defined on an interval I. We seek a second solution y2 so that the set consist-
ing of y1 and y2 is linearly independent on I. Recall from Section 4.1 that if y1 and
y2 are linearly independent, then their quotient y2�y1 is nonconstant on I—that is,
y2(x)�y1(x) � u(x) or y2(x) � u(x)y1(x). The function u(x) can be found by substituting
y2(x) � u(x)y1(x) into the given differential equation. This method is called reduction
of order because we must solve a linear first-order differential equation to find u.



EXAMPLE 1 A Second Solution by Reduction of Order

Given that y1 � ex is a solution of y	 � y � 0 on the interval (�
, 
), use reduction
of order to find a second solution y2.

SOLUTION If y � u(x)y1(x) � u(x)ex, then the Product Rule gives

and so

Since ex � 0, the last equation requires u	 � 2u� � 0. If we make the substitution
w � u�, this linear second-order equation in u becomes w� � 2w � 0, which is a
linear first-order equation in w. Using the integrating factor e2x, we can write

. After integrating, we get w � c1e�2x or u� � c1e�2x. Integrating

again then yields Thus

. (2)

By picking c2 � 0 and c1 � �2, we obtain the desired second solution, y2 � e�x.
Because W(ex, e�x) � 0 for every x, the solutions are linearly independent on
(�
, 
).

Since we have shown that y1 � ex and y2 � e�x are linearly independent solu-
tions of a linear second-order equation, the expression in (2) is actually the general
solution of y	 � y � 0 on (�
, 
).

GENERAL CASE Suppose we divide by a2(x) to put equation (1) in the standard
form

(3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that
y1(x) is a known solution of (3) on I and that y1(x) � 0 for every x in the interval. If
we define y � u(x)y1(x), it follows that

This implies that we must have

(4)

where we have let w � u�. Observe that the last equation in (4) is both linear and
separable. Separating variables and integrating, we obtain

.

We solve the last equation for w, use w � u�, and integrate again:

.u � c1 � e�	P dx

y1
2 dx � c2

ln� wy1
2 � � �� P dx � c    or    wy1

2 � c1e�	P dx

dw

w
� 2

y�1
y1

dx � P dx � 0

y1u 	 � (2y�1 � Py1)u� � 0    or    y1w� � (2y�1 � Py1)w � 0,

y 	 � Py� � Qy � u[y1 � Py1 � Qy1] � y1u	 � (2y1 � Py1)u� � 0.	 � �

zero

y� � uy�1 � y1u�, y	 � uy	1 � 2y�1u� � y1u 	

y	 � P(x)y� � Q(x)y � 0,

y � u(x)ex � �
c1

2
e�x � c2ex

u � �1
2 c1e�2x � c2.

d

dx
 [e2xw] � 0

y	 � y � ex(u 	 � 2u�) � 0.

y� � uex � exu�, y	 � uex � 2exu� � exu 	,
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By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function y2(x) defined in
(5) satisfies equation (3) and that y1 and y2 are linearly independent on any interval
on which y1(x) is not zero.

EXAMPLE 2 A Second Solution by Formula (5)

The function y1 � x2 is a solution of x2y	 � 3xy� � 4y � 0. Find the general solu-
tion of the differential equation on the interval (0, 
).

SOLUTION From the standard form of the equation,

we find from (5)

.

The general solution on the interval (0, 
) is given by y � c1y1 � c2y2; that is,
y � c1x2 � c2x2 ln x.

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.2. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.

(ii) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation a2(x)y	 � a1(x)y� � a0(x)y � g(x) whenever a solution y1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

� x2 � dx

x
� x2 ln x

; e3	d x /x � eln x3
� x3y2 � x2 � e3	dx /x

x4 dx

y	 �
3

x
y� �

4

x2 y � 0,

y2 � y1(x) � e�	P(x) dx

y1
2(x)

dx.
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EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–16 the indicated function y1(x) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y2(x).

1. y	 � 4y� � 4y � 0; y1 � e2x

2. y	 � 2y� � y � 0; y1 � xe�x

3. y	 � 16y � 0; y1 � cos 4x

4. y	 � 9y � 0; y1 � sin 3x

5. y	 � y � 0; y1 � cosh x

6. y	 � 25y � 0; y1 � e5x

7. 9y	 � 12y� � 4y � 0; y1 � e2x/3

8. 6y	 � y� � y � 0; y1 � ex/3

9. x2y	 � 7xy� � 16y � 0; y1 � x4

10. x2y	 � 2xy� � 6y � 0; y1 � x2

11. xy	 � y� � 0; y1 � ln x

12. 4x2y	 � y � 0; y1 � x1/2 ln x

13. x2y	 � xy� � 2y � 0; y1 � x sin(ln x)

14. x2y	 � 3xy� � 5y � 0; y1 � x2 cos(ln x)



15. (1 � 2x � x2)y	 � 2(1 � x)y� � 2y � 0; y1 � x � 1

16. (1 � x2)y	 � 2xy� � 0; y1 � 1

In Problems 17–20 the indicated function y1(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y2(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y	 � 4y � 2; y1 � e�2x

18. y	 � y� � 1; y1 � 1

19. y	 � 3y� � 2y � 5e3x; y1 � ex

20. y	 � 4y� � 3y � x; y1 � ex

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay	 � by� � cy � 0, a, b, and c con-
stants, always possesses at least one solution of the
form , m1 a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

y1 � em1x
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or of the form , m1 and m2

constants.

(c) Reexamine Problems 1–8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3–5?

22. Verify that y1(x) � x is a solution of xy	 � xy� � y � 0.
Use reduction of order to find a second solution y2(x) in
the form of an infinite series. Conjecture an interval of
definition for y2(x).

Computer Lab Assignments

23. (a) Verify that y1(x) � ex is a solution of 

xy	 � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to
carry out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

.y2(x) � �
10

n�0

1

n!
xn

y2 � xem1xy2 � em2 x

HOMOGENEOUS LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL
● Review Problem 27 in Exercises 1.1 and Theorem 4.1.5
● Review the algebra of solving polynomial equations (see the Student Resource 

and Solutions Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-
order differential equations—more specifically, to homogeneous linear equations ay� � by � 0,
where the coefficients a � 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay� � by � 0 for y� yields y� � ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function emx. Now the new solution method: If we substi-
tute y � emx and y� � memx into ay� � by � 0, we get

Since emx is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am � b � 0. For this single value of m, y � emx is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y� � 5y � 0. It is not
necessary to go through the differentiation and substitution of y � emx into the DE; we merely have
to form the equation 2m � 5 � 0 and solve it for m. From we conclude that is a
solution of 2y� � 5y � 0, and its general solution on the interval (�
, 
) is 

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

(1)

where the coefficients ai, i � 0, 1, . . . , n are real constants and an � 0.

any(n) � an�1y(n�1) �    � a2y	 � a1y� � a0y � 0,

y � c1e�5x/2.
y � e�5x/2m � �5

2

amemx � bemx � 0    or    emx (am � b) � 0.

4.3


