
2.3 LINEAR EQUATIONS

REVIEW MATERIAL
● Review the definition of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order DEs by next examining lin-
ear equations. Linear differential equations are an especially “friendly” family of differential equa-
tions in that, given a linear equation, whether first order or a higher-order kin, there is always a good
possibility that we can find some sort of solution of the equation that we can examine.

A DEFINITION The form of a linear first-order DE was given in (7) of Section 1.1.
This form, the case when n � 1 in (6) of that section, is reproduced here for
convenience.

DEFINITION 2.3.1 Linear Equation

A first-order differential equation of the form

(1)

is said to be a linear equation in the dependent variable y.

When g(x) � 0, the linear equation (1) is said to be homogeneous; otherwise, it
is nonhomogeneous.

STANDARD FORM By dividing both sides of (1) by the lead coefficient a1(x), we
obtain a more useful form, the standard form, of a linear equation:

(2)

We seek a solution of (2) on an interval I for which both coefficient functions P and
f are continuous.

In the discussion that follows we illustrate a property and a procedure and end
up with a formula representing the form that every solution of (2) must have. But
more than the formula, the property and the procedure are important, because these
two concepts carry over to linear equations of higher order.

THE PROPERTY The differential equation (2) has the property that its solution is
the sum of the two solutions: y � yc � yp, where yc is a solution of the associated
homogeneous equation

(3)

and yp is a particular solution of the nonhomogeneous equation (2). To see this,
observe that

d
–––
dx

[yc � yp] � P(x)[yc � yp] � [ � P(x)yc] � [ � P(x)yp] � f (x).

f (x)0

dyc–––
dx

dyp–––
dx

dy

dx
� P(x)y � 0

dy

dx
� P(x)y � f(x).

a1(x)
dy

dx
� a0(x)y � g(x)
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Now the homogeneous equation (3) is also separable. This fact enables us to find yc

by writing (3) as

and integrating. Solving for y gives yc � ce�	P(x)dx. For convenience let us write
yc � cy1(x), where y1 � e�	P(x)dx. The fact that dy1�dx � P(x)y1 � 0 will be used
next to determine yp.

THE PROCEDURE We can now find a particular solution of equation (2) by a pro-
cedure known as variation of parameters. The basic idea here is to find a function
u so that yp � u(x)y1(x) � u(x)e�	P(x)dx is a solution of (2). In other words, our as-
sumption for yp is the same as yc � cy1(x) except that c is replaced by the “variable
parameter” u. Substituting yp � uy1 into (2) gives

so

Separating variables and integrating then gives

.

Since y1(x) � e�	P(x)dx, we see that 1�y1(x) � e	P(x)dx. Therefore

,

and (4)

Hence if (2) has a solution, it must be of form (4). Conversely, it is a straightforward
exercise in differentiation to verify that (4) constitutes a one-parameter family of
solutions of equation (2).

You should not memorize the formula given in (4). However, you should
remember the special term

(5)

because it is used in an equivalent but easier way of solving (2). If equation (4) is
multiplied by (5),

(6)

and then (6) is differentiated,

, (7)

we get . (8)

Dividing the last result by e	P(x)dx gives (2).

e	P(x)dx dy

dx
� P(x)e	P(x)dxy � e	P(x)dx f(x)

d

dx
[e	P(x)dxy] � e	P(x)dxf (x)

e	P(x)dxy � c � � e	P(x)dxf (x) dx,

e∫P(x)dx

y � ce�	P(x)dx � e�	P(x)dx� e	P (x)dxf (x) dx.

ypyc

yp � uy1 � �� f (x)

y1(x)
dx�e�	P(x)dx � e�	P(x)dx � e	P(x)dxf (x) dx

du �
f (x)

y1(x)
dx  and  u � � f (x)

y1(x)
dx

y1
du

dx
� f (x).

� y1 � P(x)uy1 � f (x) oru
dy1–––
dx

du
–––
dx

� f (x)u[ � P(x)y1] � y1
dy1–––
dx

du
–––
dx

Product Rule zero

dy

y
� P(x) dx � 0



METHOD OF SOLUTION The recommended method of solving (2) actually
consists of (6)–(8) worked in reverse order. In other words, if (2) is multiplied by
(5), we get (8). The left-hand side of (8) is recognized as the derivative of the prod-
uct of e	P(x)dx and y. This gets us to (7). We then integrate both sides of (7) to get the
solution (6). Because we can solve (2) by integration after multiplication by e	P(x)dx,
we call this function an integrating factor for the differential equation. For conve-
nience we summarize these results. We again emphasize that you should not mem-
orize formula (4) but work through the following procedure each time.

SOLVING A LINEAR FIRST-ORDER EQUATION

(i) Put a linear equation of form (1) into the standard form (2).

(ii) From the standard form identify P(x) and then find the integrating
factor e	P(x)dx.

(iii) Multiply the standard form of the equation by the integrating factor.
The left-hand side of the resulting equation is automatically the
derivative of the integrating factor and y:

(iv) Integrate both sides of this last equation.

EXAMPLE 1 Solving a Homogeneous Linear DE

Solve .

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the equation is already in the standard form (2), we see that 
P(x) � �3, and so the integrating factor is e	(�3)dx � e�3x. We multiply the equation
by this factor and recognize that

Integrating both sides of the last equation gives e�3xy � c. Solving for y gives us the
explicit solution y � ce3x, �
 � x � 
.

EXAMPLE 2 Solving a Nonhomogeneous Linear DE

Solve .

SOLUTION The associated homogeneous equation for this DE was solved in
Example 1. Again the equation is already in the standard form (2), and the integrat-
ing factor is still e	(�3)dx � e�3x. This time multiplying the given equation by this
factor gives

Integrating both sides of the last equation gives e�3xy � �2e�3x � c or
y � �2 � ce3x, �
 � x � 
.

e�3x dy

dx
� 3e�3xy � 6e�3x,    which is the same as    

d

dx
 [e�3xy] � 6e�3x.

dy

dx
� 3y � 6

e�3x dy

dx
� 3e�3xy � 0    is the same as    

d

dx
 [e�3xy] � 0.

dy

dx
� 3y � 0

d

dx
[e	P(x)dxy] � e	P(x)dx f(x).
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FIGURE 2.3.1 Some solutions of 
y� � 3y � 6
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The final solution in Example 2 is the sum of two solutions: y � yc � yp, where
yc � ce3x is the solution of the homogeneous equation in Example 1 and yp � �2 is
a particular solution of the nonhomogeneous equation y� � 3y � 6. You need not
be concerned about whether a linear first-order equation is homogeneous or nonho-
mogeneous; when you follow the solution procedure outlined above, a solution of a
nonhomogeneous equation necessarily turns out to be y � yc � yp. However, the
distinction between solving a homogeneous DE and solving a nonhomogeneous
DE becomes more important in Chapter 4, where we solve linear higher-order
equations.

When a1, a0, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy�dx � 3(y � 2) that �2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an
initial point either above or below the graph of the equilibrium solution 
y � �2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y � �2 along with some addi-
tional solution curves.

CONSTANT OF INTEGRATION Notice that in the general discussion and in
Examples 1 and 2 we disregarded a constant of integration in the evaluation of the
indefinite integral in the exponent of e	P(x)dx. If you think about the laws of exponents
and the fact that the integrating factor multiplies both sides of the differential equa-
tion, you should be able to explain why writing 	P(x)dx � c is unnecessary. See
Problem 44 in Exercises 2.3.

GENERAL SOLUTION Suppose again that the functions P and f in (2) are con-
tinuous on a common interval I. In the steps leading to (4) we showed that if (2) has
a solution on I, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on I. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on I
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval I. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y� � F (x, y), we can identify 
F (x, y) � �P(x)y � f (x) and �F��y � �P(x). From the continuity of P and f on the
interval I we see that F and �F��y are also continuous on I. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

(9)

defined on some interval I0 containing x0. But when x0 is in I, finding a solution of (9)
is just a matter of finding an appropriate value of c in (4)—that is, to each x0 in I there
corresponds a distinct c. In other words, the interval I0 of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (9) is the entire interval I.

EXAMPLE 3 General Solution

Solve .

SOLUTION Dividing by x, we get the standard form

. (10)
dy

dx
�

4

x
y � x5ex

x
dy

dx
� 4y � x 6ex

dy

dx
� P(x)y � f(x),  y(x0) � y0



From this form we identify P(x) � �4�x and f (x) � x5ex and further observe that P
and f are continuous on (0, 
). Hence the integrating factor is

Here we have used the basic identity . Now we multiply (10) by
x�4 and rewrite

It follows from integration by parts that the general solution defined on the interval
(0, 
) is x�4y � xex � ex � c or y � x5ex � x4ex � cx4.

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a1(x). Values of x for which
a1(x) � 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing a0(x) by a1(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.

EXAMPLE 4 General Solution

Find the general solution of .

SOLUTION We write the differential equation in standard form

(11)

and identify P(x) � x�(x2 � 9). Although P is continuous on (�
, �3), (�3, 3), and
(3, 
), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

.

After multiplying the standard form (11) by this factor, we get

.

Integrating both sides of the last equation gives Thus for either

x � 3 or x � �3 the general solution of the equation is .

Notice in Example 4 that x � 3 and x � �3 are singular points of the equation
and that every function in the general solution is discontinuous at
these points. On the other hand, x � 0 is a singular point of the differential equation
in Example 3, but the general solution y � x5ex � x4ex � cx4 is noteworthy in that
every function in this one-parameter family is continuous at x � 0 and is defined
on the interval (�
, 
) and not just on (0, 
), as stated in the solution. However,
the family y � x5ex � x4ex � cx4 defined on (�
, 
) cannot be considered the gen-
eral solution of the DE, since the singular point x � 0 still causes a problem. See
Problem 39 in Exercises 2.3.

y � c�1x2 � 9

y �
c

1x2 � 9

1x2 � 9 y � c.

d

dx 
1x2 � 9 y� � 0

e	x dx/(x2�9) � e
1
2 	2x dx/(x2�9) � e

1
2 ln�x2�9� � 1x2 � 9

dy

dx
�

x

x2 � 9
y � 0

(x 2 � 9)
dy

dx
� xy � 0

x�4 dy

dx
� 4x�5y � xex    as    

d

dx
 [x�4y] � xex.

blogbN � N, N � 0

e�4	dx/x � e�4ln x � eln x�4
� x�4.

we can use ln x instead of ln �x� since x � 0
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EXAMPLE 5 An Initial-Value Problem

Solve .

SOLUTION The equation is in standard form, and P(x) � 1 and f (x) � x are contin-
uous on (�
, 
). The integrating factor is e	dx � ex, so integrating

gives exy � xex � ex � c. Solving this last equation for y yields the general solution
y � x � 1 � ce�x. But from the initial condition we know that y � 4 when x � 0.
Substituting these values into the general solution implies that c � 5. Hence the
solution of the problem is

y � x � 1 � 5e�x, �
 � x � 
. (12)

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of (12)
in dark blue, along with the graphs of other representative solutions in the one-
parameter family y � x � 1 � ce�x. In this general solution we identify yc � ce�x

and yp � x � 1. It is interesting to observe that as x increases, the graphs of all mem-
bers of the family are close to the graph of the particular solution yp � x � 1, which
is shown in solid green in Figure 2.3.2. This is because the contribution of yc � ce�x

to the values of a solution becomes negligible for increasing values of x. We say that
yc � ce�x is a transient term, since yc : 0 as x : 
. While this behavior is not a
characteristic of all general solutions of linear equations (see Example 2), the notion
of a transient is often important in applied problems.

DISCONTINUOUS COEFFICIENTS In applications the coefficients P(x) and
f (x) in (2) may be piecewise continuous. In the next example f (x) is piecewise con-
tinuous on [0, 
) with a single discontinuity, namely, a (finite) jump discontinuity at
x � 1. We solve the problem in two parts corresponding to the two intervals over
which f is defined. It is then possible to piece together the two solutions at x � 1 so
that y(x) is continuous on [0, 
).

EXAMPLE 6 An Initial-Value Problem

Solve 

SOLUTION The graph of the discontinuous function f is shown in Figure 2.3.3. We
solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, 
). For
0 � x � 1 we have

.

Integrating this last equation and solving for y gives y � 1 � c1e�x. Since y(0) � 0,
we must have c1 � �1, and therefore y � 1 � e�x, 0 � x � 1. Then for x � 1 the
equation

dy

dx
� y � 0

dy

dx
� y � 1  or, equivalently,   

d

dx
 [exy] � ex

dy

dx
� y � f (x), y(0) � 0 where f (x) � �1,

0,

0 � x � 1,

  x � 1.

d

dx
 [exy] � xex

dy

dx
� y � x, y(0) � 4

x

y

4_4
_4
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FIGURE 2.3.2 Some solutions of 
y� � y � x

FIGURE 2.3.3 Discontinuous f(x)
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leads to y � c2e�x. Hence we can write

By appealing to the definition of continuity at a point, it is possible to determine c2

so that the foregoing function is continuous at x � 1. The requirement that
implies that c2e�1 � 1 � e�1 or c2 � e � 1. As seen in

Figure 2.3.4, the function

(13)

is continuous on (0, 
).

It is worthwhile to think about (13) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 42 in Exercises 2.3.

FUNCTIONS DEFINED BY INTEGRALS At the end of Section 2.2 we dis-
cussed the fact that some simple continuous functions do not possess antiderivatives
that are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that and
	sin x2 dx are nonelementary integrals. In applied mathematics some important func-
tions are defined in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

. (14)

From the known result * we can write 
Then from it is seen from (14) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) � erfc(x) � 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) � 0 is one obvious function
value. Values of erf(x) can also be found by using a CAS. 

EXAMPLE 7 The Error Function

Solve the initial-value problem .

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is , so from

. (15)

Applying y(0) � 1 to the last expression then gives c � 1. Hence the solution of the
problem is

The graph of this solution on the interval (�
, 
), shown in dark blue in Figure 2.3.5
among other members of the family defined in (15), was obtained with the aid of a
computer algebra system.

y � 2ex2 �x

0

e�t2
dt � ex2

 or y � ex2
[1 � 1� erf(x)].

d

dx
 [e�x2

y] � 2e�x2    we get    y � 2ex2 �x

0

e�t2
dt � cex2

e�x2
dx

dy

dx
� 2xy � 2,  y(0) � 1

	

0 � 	x

0 � 	

x

(2�1�) 	

0 e�t2

dt � 1.	

0 e�t2

dt � 1��2

erf(x) �
2

1�
�x

0
e�t2

dt    and    erfc(x) �
2

1�
�


x
e�t2

dt

	e�x2
dx

y � �1 � e�x,

(e � 1)e�x,

0 � x � 1,

  x � 1

limx:1� y(x) � y(1)

y � �1 � e�x,

c2e�x,

0 � x � 1,

  x � 1.

1 x

y

FIGURE 2.3.4 Graph of function
in (13)

*This result is usually proved in the third semester of calculus.

FIGURE 2.3.5 Some solutions of 
y� � 2xy � 2

x

y

2.3 LINEAR EQUATIONS ● 59



60 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.*

REMARKS

(i) In general, a linear DE of any order is said to be homogeneous when 
g(x) � 0 in (6) of Section 1.1. For example, the linear second-order DE 
y	 � 2y� � 6y � 0 is homogeneous. As can be seen in this example and in the
special case (3) of this section, the trivial solution y � 0 is always a solution of
a homogeneous linear DE.

(ii) Occasionally, a first-order differential equation is not linear in one variable
but is linear in the other variable. For example, the differential equation

is not linear in the variable y. But its reciprocal

is recognized as linear in the variable x. You should verify that the integrating
factor e	(�1)dy � e�y and integration by parts yield the explicit solution
x � �y2 � 2y � 2 � cey for the second equation. This expression is, then,
an implicit solution of the first equation.

(iii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used
earlier, is one of these terms. In future discussions the words input and output
will occasionally pop up. The function f in (2) is called the input or driving
function; a solution y(x) of the differential equation for a given input is called
the output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 49 and 50 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.3.

dx

dy
� x � y2    or    

dx

dy
� x � y2

dy

dx
�

1

x � y2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval I over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1. 2.

3. 4. 3
dy

dx
� 12y � 4

dy

dx
� y � e3x

dy

dx
� 2y � 0

dy

dx
� 5y

5. y� � 3x2y � x2 6. y� � 2xy � x3

7. x2y� � xy � 1 8. y� � 2y � x2 � 5

9. 10.

11. 12.

13. x2y� � x(x � 2)y � ex

(1 � x)
dy

dx
� xy � x � x2x

dy

dx
� 4y � x3 � x

x
dy

dx
� 2y � 3x

dy

dx
� y � x2 sin x

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(Dsolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource and Solutions Manual for the complete input commands used to solve a linear first-order DE.



14. xy� � (1 � x)y � e�x sin 2x

15. y dx � 4(x � y6) dy � 0

16. y dx � (yey � 2x) dy

17.

18.

19.

20.

21.

22.

23.

24.

In Problems 25–30 solve the given initial-value problem.
Give the largest interval I over which the solution is defined.

25. xy� � y � ex, y(1) � 2

26.

27.

L, R, E, and i0 constants

28.

k, Tm, and T0 constants

29.

30. y� � (tan x)y � cos2x, y(0) � �1

In Problems 31–34 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

31. where

32. where

f (x) � �1,

�1, 
0 � x � 1

x � 1

dy

dx
� y � f (x), y(0) � 1,

f (x) � �1,

0,

0 � x � 3

x � 3

dy

dx
� 2y � f (x), y(0) � 0,

(x � 1)
dy

dx
� y � ln x, y(1) � 10

dT

dt
� k(T � Tm ); T(0) � T0,

L
di

dt
� Ri � E, i(0) � i0,

y
dx

dy
� x � 2y2,  y(1) � 5

(x2 � 1)
dy

dx
� 2y � (x � 1)2

x
dy

dx
� (3x � 1)y � e�3x

dP

dt
� 2tP � P � 4t � 2

dr

d�
� r sec � � cos �

(x � 2)2 dy

dx
� 5 � 8y � 4xy

(x � 1)
dy

dx
� (x � 2)y � 2xe�x

cos2x sin x
dy

dx
� (cos3x)y � 1

cos x
dy

dx
� (sin x)y � 1

33. where

34. where

35. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

Use a graphing utility to graph the continuous function
y(x).

36. Consider the initial-value problem y� � exy � f (x),
y(0) � 1. Express the solution of the IVP for x � 0 as a
nonelementary integral when f (x) � 1. What is the so-
lution when f (x) � 0? When f (x) � ex?

37. Express the solution of the initial-value problem 
y� � 2xy � 1, y(1) � 1, in terms of erf(x).

Discussion Problems

38. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
tote y � 4 as x : 
.

39. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of 
xy� � 4y � x6ex and the given initial condition.

(a) y(0) � 0 (b) y(0) � y0, y0 � 0

(c) y(x0) � y0, x0 � 0, y0 � 0

40. Reread Example 4 and then find the general solution of
the differential equation on the interval (�3, 3).

41. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y � 3x � 5 as x : 
.

42. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (13) is a “solution”
of the IVP on the interval [0, 
).

43. (a) Construct a linear first-order differential equation of
the form xy� � a0(x)y � g(x) for which yc � c�x3

and yp � x3. Give an interval on which 
y � x3 � c�x3 is the general solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE
found in part (a) so that the solution of the IVP 
is y � x3 � 1�x3. Repeat if the solution is 

P(x) � � 2,

�2>x,
 0 � x � 1,

x � 1.

f (x) � �x,

�x, 
0 � x � 1

x � 1

(1 � x2)
dy

dx
� 2xy � f (x), y(0) � 0,

f (x) � �x,

0, 
0 � x � 1

x � 1

dy

dx
� 2xy � f (x), y(0) � 2,
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y � x3 � 2�x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on (�
, 
)?

(c) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say, 
y � x3 � 1�x3, x in some interval I, is the solution?

44. In determining the integrating factor (5), we did not use
a constant of integration in the evaluation of 	P(x) dx.
Explain why using 	P(x) dx � c has no effect on the
solution of (2).

45. Suppose P(x) is continuous on some interval I and a is a
number in I. What can be said about the solution of the
initial-value problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models

46. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

where 	1 and 	2 are constants. Discuss how to solve this
system subject to x(0) � x0, y(0) � y0. Carry out your
ideas.

47. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E0, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage

dy

dt
� �1x � �2y,

dx

dt
� ��1x

E across the heart satisfies the linear differential equation

Solve the DE subject to E(4) � E0.

Computer Lab Assignments

48. (a) Express the solution of the initial-value problem 
y� � 2xy � �1, , in terms of erfc(x).

(b) Use tables or a CAS to find the value of y(2). Use a
CAS to graph the solution curve for the IVP on
(�
, 
).

49. (a) The sine integral function is defined by
, where the integrand is 

defined to be 1 at t � 0. Express the solution y(x) of
the initial-value problem x3y� � 2x2y � 10sin x,
y(1) � 0 in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP
for x � 0.

(c) Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x � 0.

50. (a) The Fresnel sine integral is defined by
. Express the solution y(x)

of the initial-value problem y�� (sin x2)y � 0,
y(0) � 5, in terms of S(x).

(b) Use a CAS to graph the solution curve for the IVP
on (�
, 
).

(c) It is known that S(x) : as x : 
 and S(x) : �
as x : �
 . What does the solution y(x) approach
as x : 
? As x : �
?

(d) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x).

1
2

1
2

S(x) � 	x
0 sin(pt2>2) dt

Si(x) � 	x
0 (sin t>t) dt

y(0) � 1� �2

dE

dt
� �

1

RC
E.

2.4 EXACT EQUATIONS

REVIEW MATERIAL
● Multivariate calculus
● Partial differentiation and partial integration
● Differential of a function of two variables

INTRODUCTION Although the simple first-order equation 

y dx � x dy � 0

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f (x, y) � xy; that is, 

d(xy) � y dx � x dy.

In this section we examine first-order equations in differential form M(x, y) dx � N(x, y) dy � 0. By
applying a simple test to M and N, we can determine whether M(x, y) dx � N(x, y) dy is a differen-
tial of a function f (x, y). If the answer is yes, we can construct f by partial integration.


