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y � x3 � 2�x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on (�
, 
)?

(c) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say, 
y � x3 � 1�x3, x in some interval I, is the solution?

44. In determining the integrating factor (5), we did not use
a constant of integration in the evaluation of 	P(x) dx.
Explain why using 	P(x) dx � c has no effect on the
solution of (2).

45. Suppose P(x) is continuous on some interval I and a is a
number in I. What can be said about the solution of the
initial-value problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models

46. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

where 	1 and 	2 are constants. Discuss how to solve this
system subject to x(0) � x0, y(0) � y0. Carry out your
ideas.

47. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E0, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage

dy

dt
� �1x � �2y,

dx

dt
� ��1x

E across the heart satisfies the linear differential equation

Solve the DE subject to E(4) � E0.

Computer Lab Assignments

48. (a) Express the solution of the initial-value problem 
y� � 2xy � �1, , in terms of erfc(x).

(b) Use tables or a CAS to find the value of y(2). Use a
CAS to graph the solution curve for the IVP on
(�
, 
).

49. (a) The sine integral function is defined by
, where the integrand is 

defined to be 1 at t � 0. Express the solution y(x) of
the initial-value problem x3y� � 2x2y � 10sin x,
y(1) � 0 in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP
for x � 0.

(c) Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x � 0.

50. (a) The Fresnel sine integral is defined by
. Express the solution y(x)

of the initial-value problem y�� (sin x2)y � 0,
y(0) � 5, in terms of S(x).

(b) Use a CAS to graph the solution curve for the IVP
on (�
, 
).

(c) It is known that S(x) : as x : 
 and S(x) : �
as x : �
 . What does the solution y(x) approach
as x : 
? As x : �
?

(d) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x).

1
2

1
2

S(x) � 	x
0 sin(pt2>2) dt

Si(x) � 	x
0 (sin t>t) dt

y(0) � 1� �2

dE

dt
� �

1

RC
E.

2.4 EXACT EQUATIONS

REVIEW MATERIAL
● Multivariate calculus
● Partial differentiation and partial integration
● Differential of a function of two variables

INTRODUCTION Although the simple first-order equation 

y dx � x dy � 0

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f (x, y) � xy; that is, 

d(xy) � y dx � x dy.

In this section we examine first-order equations in differential form M(x, y) dx � N(x, y) dy � 0. By
applying a simple test to M and N, we can determine whether M(x, y) dx � N(x, y) dy is a differen-
tial of a function f (x, y). If the answer is yes, we can construct f by partial integration.
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�

�N
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3 x3 y3� � x2y3 dx � x3y2 dy

M(x, y) dx � N(x, y) dy � 0

(2x � 5y) dx � (�5x � 3y2) dy � 0
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�x
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DIFFERENTIAL OF A FUNCTION OF TWO VARIABLES If z � f (x, y) is a
function of two variables with continuous first partial derivatives in a region R of the
xy-plane, then its differential is

. (1)

In the special case when f (x, y) � c, where c is a constant, then (1) implies

. (2)

In other words, given a one-parameter family of functions f (x, y) � c, we can generate
a first-order differential equation by computing the differential of both sides of the
equality. For example, if x2 � 5xy � y3 � c, then (2) gives the first-order DE

. (3)

A DEFINITION Of course, not every first-order DE written in differential form
M(x, y) dx � N(x, y) dy � 0 corresponds to a differential of f (x, y) � c. So for our
purposes it is more important to turn the foregoing example around; namely, if
we are given a first-order DE such as (3), is there some way we can recognize
that the differential expression (2x � 5y) dx � (�5x � 3y2) dy is the differential
d(x2 � 5xy � y3)? If there is, then an implicit solution of (3) is x2 � 5xy � y3 � c.
We answer this question after the next definition.

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx � N(x, y) dy is an exact differential in a
region R of the xy-plane if it corresponds to the differential of some function
f (x, y) defined in R. A first-order differential equation of the form

is said to be an exact equation if the expression on the left-hand side is an
exact differential.

For example, x2y3 dx � x3y2 dy � 0 is an exact equation, because its left-hand
side is an exact differential:

.

Notice that if we make the identifications M(x, y) � x2y3 and N(x, y) � x3y2, then
�M��y � 3x2y2 � �N��x. Theorem 2.4.1, given next, shows that the equality of the
partial derivatives �M��y and �N��x is no coincidence.

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a 
 x 
 b, c 
 y 
 d. Then a
necessary and sufficient condition that M(x, y) dx � N(x, y) dy be an exact
differential is

. (4)
�M
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PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and
N(x, y) have continuous first partial derivatives for all (x, y). Now if the expression
M(x, y) dx � N(x, y) dy is exact, there exists some function f such that for all x in R,

.

Therefore ,

and .

The equality of the mixed partials is a consequence of the continuity of the first par-
tial derivatives of M(x, y) and N(x, y).

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a
function f for which �f ��x � M(x, y) and �f ��y � N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic procedure for solving exact
equations.

METHOD OF SOLUTION Given an equation in the differential form 
M(x, y) dx � N(x, y) dy � 0, determine whether the equality in (4) holds. If it does,
then there exists a function f for which

.

We can find f by integrating M(x, y) with respect to x while holding y constant:

, (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate
(5) with respect to y and assume that �f ��y � N(x, y):

This gives . (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
solution of the equation is f (x, y) � c.

Some observations are in order. First, it is important to realize that the expres-
sion N(x, y) � (���y) 	 M(x, y) dx in (6) is independent of x, because

.

Second, we could just as well start the foregoing procedure with the assumption that
�f ��y � N(x, y). After integrating N with respect to y and then differentiating that
result, we would find the analogues of (5) and (6) to be, respectively,

.

In either case none of these formulas should be memorized.

f (x, y) � �N(x, y) dy � h(x)    and    h�(x) � M(x, y) �
�

�x
� N(x, y) dy

�

�x 
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�
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�
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�y
�

�

�y
� M(x, y) dx � g�(y) � N(x, y).

f (x, y) � �M(x, y) dx � g(y)

�f

�x
� M(x, y)
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�x� �
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M(x, y) dx � N(x, y) dy �
�f

�x
dx �

�f

�y
dy



EXAMPLE 1 Solving an Exact DE

Solve 2xy dx � (x2 � 1) dy � 0.

SOLUTION With M(x, y) � 2xy and N(x, y) � x2 � 1 we have

.

Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f (x, y)
such that

.

From the first of these equations we obtain, after integrating,

.

Taking the partial derivative of the last expression with respect to y and setting the
result equal to N(x, y) gives

. ; N(x, y)

It follows that g�(y) � �1 and g(y) � �y. Hence f (x, y) � x2y � y, so the solution
of the equation in implicit form is x2y � y � c. The explicit form of the solution is
easily seen to be y � c�(1 � x2) and is defined on any interval not containing either
x � 1 or x � �1.

NOTE The solution of the DE in Example 1 is not f (x, y) � x2y � y. Rather, it is
f (x, y) � c; if a constant is used in the integration of g�(y), we can then write the so-
lution as f (x, y) � 0. Note, too, that the equation could be solved by separation of
variables.

EXAMPLE 2 Solving an Exact DE

Solve (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUTION The equation is exact because

.

Hence a function f (x, y) exists for which

.

Now for variety we shall start with the assumption that �f ��y � N(x, y); that is,

.f (x, y) � 2x � e2y dy � x � cos xy dy � 2 � y dy

�f

�y
� 2xe2y � x cos xy � 2y

M(x, y) �
�f

�x
    and   N(x, y) �

�f

�y

�M

�y
� 2e2y � xy sin xy � cos xy �

�N

�x

�f

�y
� x2 � g�(y) � x2 � 1

f (x, y) � x2y � g(y)

�f

�x
� 2xy    and    

�f

�y
� x2 � 1

�M

�y
� 2x �

�N

�x
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Remember, the reason x can come out in front of the symbol 	 is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that

, ;M(x, y)

and so h�(x) � 0 or h(x) � c. Hence a family of solutions is

xe2y � sin xy � y2 � c � 0.

EXAMPLE 3 An Initial-Value Problem

Solve  .

SOLUTION By writing the differential equation in the form

(cos x sin x � xy2) dx � y(1 � x2) dy � 0,

we recognize that the equation is exact because

.

Now

The last equation implies that h�(x) � cos x sin x. Integrating gives

.

Thus , (7)

where 2c1 has been replaced by c. The initial condition y � 2 when x � 0 demands
that 4(1) � cos2 (0) � c, and so c � 3. An implicit solution of the problem is then
y2(1 � x2) � cos2 x � 3.

The solution curve of the IVP is the curve drawn in dark blue in Figure 2.4.1;
it is part of an interesting family of curves. The graphs of the members of the one-
parameter family of solutions given in (7) can be obtained in several ways, two of
which are using software to graph level curves (as discussed in Section 2.2) and
using a graphing utility to carefully graph the explicit functions obtained for var-
ious values of c by solving y2 � (c � cos2 x)�(1 � x2) for y.

INTEGRATING FACTORS Recall from Section 2.3 that the left-hand side of
the linear equation y� � P(x)y � f (x) can be transformed into a derivative when
we multiply the equation by an integrating factor. The same basic idea sometimes
works for a nonexact differential equation M(x, y) dx � N(x, y) dy � 0. That is, it is

y2

2
 (1 � x2) �

1

2
 cos2 x � c1    or    y2(1 � x2) � cos2 x � c

h(x) � �� (cos x)(�sin x dx) � �
1

2
 cos2 x

�f

�x
� �xy2 � h�(x) � cos x sin x � xy2.

f(x, y) �
y2

2
 (1 � x2) � h(x)

�f

�y
� y(1 � x2)

�M

�y
� �2xy �

�N

�x

dy

dx
�

xy2 � cos x sin x

y(1 � x2)
, y(0) � 2

�f

�x
� e2y � y cos xy � h�(x) � e2y � y cos xy

f(x, y) � xe2y � sin xy � y2 � h(x)

x

y

FIGURE 2.4.1 Some graphs
of members of the family 
y2(1 � x2) � cos2x � c



sometimes possible to find an integrating factor 
(x, y) so that after multiplying, the
left-hand side of


(x, y)M(x, y) dx � 
(x, y)N(x, y) dy � 0 (8)

is an exact differential. In an attempt to find 
, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (
M)y � (
N )x, where the subscripts
denote partial derivatives. By the Product Rule of differentiation the last equation is
the same as 
My � 
yM � 
Nx � 
xN or


xN � 
yM � (My � Nx)
. (9)

Although M, N, My, and Nx are known functions of x and y, the difficulty here in
determining the unknown 
(x, y) from (9) is that we must solve a partial differential
equation. Since we are not prepared to do that, we make a simplifying assumption.
Suppose 
 is a function of one variable; for example, say that 
 depends only on x. In
this case, 
x � d
�dx and 
y � 0, so (9) can be written as

. (10)

We are still at an impasse if the quotient (My � Nx)�N depends on both x and y.
However, if after all obvious algebraic simplifications are made, the quotient
(My � Nx)�N turns out to depend solely on the variable x, then (10) is a first-order
ordinary differential equation. We can finally determine 
 because (10) is separa-
ble as well as linear. It follows from either Section 2.2 or Section 2.3 that 

(x) � e	(( � )/N )dx. In like manner, it follows from (9) that if 
 depends only on
the variable y, then

. (11)

In this case, if (Nx � My)�M is a function of y only, then we can solve (11) for 
.
We summarize the results for the differential equation

M(x, y) dx � N(x, y) dy � 0. (12)

• If (My � Nx)�N is a function of x alone, then an integrating factor for (12) is

. (13)

• If (Nx � My)�M is a function of y alone, then an integrating factor for (12) is

. (14)

EXAMPLE 4 A Nonexact DE Made Exact

The nonlinear first-order differential equation

xy dx � (2x2 � 3y2 � 20) dy � 0

is not exact. With the identifications M � xy, N � 2x2 � 3y2 � 20, we find the partial
derivatives My � x and Nx � 4x. The first quotient from (13) gets us nowhere, since

depends on x and y. However, (14) yields a quotient that depends only on y:

.
Nx � My

M
�

4x � x

xy
�

3x

xy
�

3

y

My � Nx

N
�

x � 4x

2x2 � 3y2 � 20
�

�3x

2x2 � 3y2 � 20

�(y) � e
�Nx�My

M
dy

�(x) � e
�My�Nx

N
dx

d�

dy
�

Nx � My

M
�

NxMy

d�

dx
�

My � Nx

N
�
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The integrating factor is then e	3dy/y � e3lny � eln � y3. After we multiply the given
DE by 
(y) � y3, the resulting equation is

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the
method of this section, that a family of solutions is .

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x, y) dx � N(x, y) dy � 0. Sometimes a differential equation 
is written G(x, y) dx � H(x, y) dy. In this case, first rewrite it as 
G(x, y) dx � H(x, y) dy � 0 and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).

(ii) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for 
y� � P(x)y � f (x). By rewriting the last equation in the differential form
(P(x)y � f (x)) dx � dy � 0, we see that

.

From (13) we arrive at the already familiar integrating factor e	P(x)dx, used in
Section 2.3.

My � Nx

N
� P(x)

1
2 x2y4 � 1

2 y6 � 5y4 � c

y3

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential
equation is exact. If it is exact, solve it.

1. (2x � 1) dx � (3y � 7) dy � 0

2. (2x � y) dx � (x � 6y) dy � 0

3. (5x � 4y) dx � (4x � 8y3) dy � 0

4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

6.

7. (x2 � y2) dx � (x2 � 2xy) dy � 0

8.

9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11. (y ln y � e�xy) dx � �1

y
� x ln y� dy � 0

�1 � ln x �
y

x� dx � (1 � ln x) dy

�2y �
1

x
� cos 3x� dy

dx
�

y

x2 � 4x3 � 3y sin 3x � 0

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13.

14.

15.

16. (5y � 2x)y� � 2y � 0

17. (tan x � sin x sin y) dx � cos x cos y dy � 0

18.

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20. �1

t
�

1

t 2 �
y

t 2 � y2� dt � �yey �
t

t 2 � y2� dy � 0

� (x � sin2 x � 4xyexy2
) dy

(2y sin x cos x � y � 2y2exy2
) dx

�x2y3 �
1

1 � 9x2� dx

dy
� x3y2 � 0

�1 �
3

y
� x� dy

dx
� y �

3

x
� 1

x
dy

dx
� 2xex � y � 6x2



In Problems 21–26 solve the given initial-value problem.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0, y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0, y(�1) � 2

24.

25. (y2 cos x � 3x2y � 2x) dx
� (2y sin x � x3 � ln y) dy � 0, y(0) � e

26. ,

In Problems 27 and 28 find the value of k so that the given
differential equation is exact.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30 verify that the given differential equa-
tion is not exact. Multiply the given differential equation
by the indicated integrating factor 
(x, y) and verify that the
new equation is exact. Solve.

29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0;

(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;

(x, y) � (x � y)�2

In Problems 31–36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

33. 6xy dx � (4y � 9x2) dy � 0

34.

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38 solve the given initial-value problem
by finding, as in Example 4, an appropriate integrating factor.

37. x dx � (x2y � 4y) dy � 0, y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy � 3x2) dx � (2y � 2x2) dy � 0

is x3 � 2x2y � y2 � c.

cos x dx � �1 �
2

y� sin x dy � 0

y(0) � 1� 1

1 � y2 � cos x � 2xy� dy

dx
� y(y � sin x)

�3y2 � t 2

y5 � dy

dt
�

t

2y4 � 0, y(1) � 1

(b) Show that the initial conditions y(0) � �2 and 
y(1) � 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the dif-
ferential equation in part (a) such that y1(0) � �2
and y2(1) � 1. Use a graphing utility to graph y1(x)
and y2(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29–38. Are the two equations M dx � N dy � 0
and 
M dx � 
N dy � 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is
(�1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

(a)

(b)

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation 
(x � ) dx � y dy � 0 is not exact, show how
the rearrangement (x dx � y dy) � dx and
the observation d(x2 � y2) � x dx � y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy�dx � g(x)h(y) is exact.

Mathematical Model

45. Falling Chain A portion of a uniform chain of length
8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 lb/ft, and that
the positive direction is downward. Starting at t � 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floor. If x(t) denotes the length of the chain over-
hanging the table at time t � 0, then v � dx�dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is

1
2

�1x2 � y2
1x2 � y2

�x�1/2y1/2 �
x

x2 � y� dx � N(x, y) dy � 0

M(x, y) dx � �xexy � 2xy �
1

x� dy � 0
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given by

.

(a) Rewrite this model in differential form. Proceed as
in Problems 31–36 and solve the DE for v in terms
of x by finding an appropriate integrating factor.
Find an explicit solution v(x).

(b) Determine the velocity with which the chain leaves
the platform.

xv
dv

dx
� v2 � 32x

Computer Lab Assignments

46. Streamlines

(a) The solution of the differential equation

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular object
whose boundary is described by the equation
x2 � y2 � 1. Solve this DE and note the solution
f (x, y) � c for c � 0.

(b) Use a CAS to plot the streamlines for
c � 0, �0.2, �0.4, �0.6, and �0.8 in three
different ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y. Plot
the resulting two functions of y for the given values
of c, and then combine the graphs. Third, use the
CAS to solve a cubic equation for y in terms of x.

2xy

(x2 � y2)2 dx � 
1 �
y2 � x2

(x2 � y2)2 � dy � 0

SUBSTITUTIONS Often the first step in solving a differential equation consists
of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first-order differential equation
dy�dx � f (x, y) by the substitution y � g(x, u), where u is regarded as a function of
the variable x. If g possesses first-partial derivatives, then the Chain Rule

.

If we replace dy�dx by the foregoing derivative and replace y in f (x, y) by g (x, u), then

the DE dy�dx � f (x, y) becomes gx(x, u) � gu(x, u) � f (x, g(x, u)), which, solved

for du�dx, has the form � F(x, u). If we can determine a solution u � �(x) of this 

last equation, then a solution of the original differential equation is y � g(x, �(x)).
In the discussion that follows we examine three different kinds of first-order

differential equations that are solvable by means of a substitution.
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dx

du

dx
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dx
�
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dx
� gx(x, u) � gu(x, u)
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FIGURE 2.4.2 Uncoiling chain in Problem 45

2.5 SOLUTIONS BY SUBSTITUTIONS

REVIEW MATERIAL
● Techniques of integration
● Separation of variables
● Solution of linear DEs

INTRODUCTION We usually solve a differential equation by recognizing it as a certain kind of
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a solution of the equation. But it is not uncommon to be
stumped by a differential equation because it does not fall into one of the classes of equations that
we know how to solve. The procedures that are discussed in this section may be helpful in this
situation.


