2.1 SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL

- The first derivative as slope of a tangent line
- The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differential equation $d y / d x=f(x, y)$, and let us further imagine that we can neither find nor invent a method for solving it analytically. This is not as bad a predicament as one might think, since the differential equation itself can sometimes "tell" us specifics about how its solutions "behave."

We begin our study of first-order differential equations with two ways of analyzing a DE qualitatively. Both these ways enable us to determine, in an approximate sense, what a solution curve must look like without actually solving the equation.

(a) lineal element at a point

(b) lineal element is tangent to solution curve that passes through the point

FIGURE 2.1.1 A solution curve is tangent to lineal element at $(2,3)$

2.1.1 DIRECTION FIELDS

SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever $f(x, y)$ and $\partial f / \partial y$ satisfy certain continuity conditions, qualitative questions about existence and uniqueness of solutions can be answered. In this section we shall see that other qualitative questions about properties of solutions - How does a solution behave near a certain point? How does a solution behave as $x \rightarrow \infty$? - can often be answered when the function f depends solely on the variable y. We begin, however, with a simple concept from calculus:

A derivative $d y / d x$ of a differentiable function $y=y(x)$ gives slopes of tangent lines at points on its graph.

SLOPE Because a solution $y=y(x)$ of a first-order differential equation

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

is necessarily a differentiable function on its interval I of definition, it must also be continuous on I. Thus the corresponding solution curve on I must have no breaks and must possess a tangent line at each point $(x, y(x))$. The function f in the normal form (1) is called the slope function or rate function. The slope of the tangent line at $(x, y(x))$ on a solution curve is the value of the first derivative $d y / d x$ at this point, and we know from (1) that this is the value of the slope function $f(x, y(x)$). Now suppose that (x, y) represents any point in a region of the $x y$-plane over which the function f is defined. The value $f(x, y)$ that the function f assigns to the point represents the slope of a line or, as we shall envision it, a line segment called a lineal element. For example, consider the equation $d y / d x=0.2 x y$, where $f(x, y)=0.2 x y$. At, say, the point $(2,3)$ the slope of a lineal element is $f(2,3)=0.2(2)(3)=1.2$. Figure 2.1.1(a) shows a line segment with slope 1.2 passing though $(2,3)$. As shown in Figure 2.1.1(b), if a solution curve also passes through the point $(2,3)$, it does so tangent to this line segment; in other words, the lineal element is a miniature tangent line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of points in the $x y$-plane and draw a line element at each point (x, y) of the grid with slope $f(x, y)$, then the collection of all these line elements is called a direction field or a slope field of the differential equation $d y / d x=f(x, y)$. Visually, the direction field suggests the appearance or shape of a family of solution curves of the differential equation, and consequently, it may be possible to see at a glance certain qualitative aspects of the solutions - regions in the plane, for example, in which a

FIGURE 2.1.2 Solution curves following flow of a direction field

(b) some solution curves in the family $y=c e^{0.1 x^{2}}$

FIGURE 2.1.3 Direction field and solution curves
solution exhibits an unusual behavior. A single solution curve that passes through a direction field must follow the flow pattern of the field; it is tangent to a line element when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direction field of the differential equation $d y / d x=\sin (x+y)$ over a region of the $x y$-plane. Note how the three solution curves shown in color follow the flow of the field.

EXAMPLE 1 Direction Field

The direction field for the differential equation $d y / d x=0.2 x y$ shown in Figure 2.1.3(a) was obtained by using computer software in which a 5×5 grid of points ($m h, n h$), m and n integers, was defined by letting $-5 \leq m \leq 5,-5 \leq n \leq 5$, and $h=1$. Notice in Figure 2.1.3(a) that at any point along the x-axis $(y=0)$ and the y-axis $(x=0)$, the slopes are $f(x, 0)=0$ and $f(0, y)=0$, respectively, so the lineal elements are horizontal. Moreover, observe in the first quadrant that for a fixed value of x the values of $f(x, y)=0.2 x y$ increase as y increases; similarly, for a fixed y the values of $f(x, y)=0.2 x y$ increase as x increases. This means that as both x and y increase, the lineal elements almost become vertical and have positive slope $(f(x, y)=$ $0.2 x y>0$ for $x>0, y>0$). In the second quadrant, $|f(x, y)|$ increases as $|x|$ and y increase, so the lineal elements again become almost vertical but this time have negative slope $(f(x, y)=0.2 x y<0$ for $x<0, y>0)$. Reading from left to right, imagine a solution curve that starts at a point in the second quadrant, moves steeply downward, becomes flat as it passes through the y-axis, and then, as it enters the first quadrant, moves steeply upward-in other words, its shape would be concave upward and similar to a horseshoe. From this it could be surmised that $y \rightarrow \infty$ as $x \rightarrow \pm \infty$. Now in the third and fourth quadrants, since $f(x, y)=0.2 x y>0$ and $f(x, y)=0.2 x y<0$, respectively, the situation is reversed: A solution curve increases and then decreases as we move from left to right. We saw in (1) of Section 1.1 that $y=e^{0.1 x^{2}}$ is an explicit solution of the differential equation $d y / d x=0.2 x y$; you should verify that a one-parameter family of solutions of the same equation is given by $y=c e^{0.1 x^{2}}$. For purposes of comparison with Figure 2.1.3(a) some representative graphs of members of this family are shown in Figure 2.1.3(b).

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value problem $d y / d x=\sin y, y(0)=-\frac{3}{2}$.

SOLUTION Before proceeding, recall that from the continuity of $f(x, y)=\sin y$ and $\partial f / \partial y=\cos y$, Theorem 1.2.1 guarantees the existence of a unique solution curve passing through any specified point $\left(x_{0}, y_{0}\right)$ in the plane. Now we set our computer software again for a 5×5 rectangular region and specify (because of the initial condition) points in that region with vertical and horizontal separation of $\frac{1}{2}$ unit-that is, at points $(m h, n h), h=\frac{1}{2}, m$ and n integers such that $-10 \leq m \leq 10,-10 \leq n \leq 10$. The result is shown in Figure 2.1.4. Because the right-hand side of $d y / d x=\sin y$ is 0 at $y=0$, and at $y=-\pi$, the lineal elements are horizontal at all points whose second coordinates are $y=0$ or $y=-\pi$. It makes sense then that a solution curve passing through the initial point $\left(0,-\frac{3}{2}\right)$ has the shape shown in the figure.

INCREASING/DECREASING Interpretation of the derivative $d y / d x$ as a function that gives slope plays the key role in the construction of a direction field. Another telling property of the first derivative will be used next, namely, if $d y / d x>0$ (or $d y / d x<0$) for all x in an interval I, then a differentiable function $y=y(x)$ is increasing (or decreasing) on I.

FIGURE 2.1.4 Direction field for Example 2

REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is probably one of those tasks about which an argument can be made for doing it once or twice in a lifetime, but it is overall most efficiently carried out by means of computer software. Before calculators, PCs, and software the method of isoclines was used to facilitate sketching a direction field by hand. For the DE $d y / d x=f(x, y)$, any member of the family of curves $f(x, y)=c, c$ a constant, is called an isocline. Lineal elements drawn through points on a specific isocline, say, $f(x, y)=c_{1}$ all have the same slope c_{1}. In Problem 15 in Exercises 2.1 you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

AUTONOMOUS FIRST-ORDER DEs In Section 1.1 we divided the class of ordinary differential equations into two types: linear and nonlinear. We now consider briefly another kind of classification of ordinary differential equations, a classification that is of particular importance in the qualitative investigation of differential equations. An ordinary differential equation in which the independent variable does not appear explicitly is said to be autonomous. If the symbol x denotes the independent variable, then an autonomous first-order differential equation can be written as $f\left(y, y^{\prime}\right)=0$ or in normal form as

$$
\begin{equation*}
\frac{d y}{d x}=f(y) . \tag{2}
\end{equation*}
$$

We shall assume throughout that the function f in (2) and its derivative f^{\prime} are continuous functions of y on some interval I. The first-order equations

$$
\frac{d y}{d x}=\stackrel{\substack{f(y) \\ \downarrow}}{1+y^{2} \quad \text { and } \quad \frac{d y}{d x}=0.2 x y}
$$

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are models of physical laws that do not change over time are autonomous. As we have already seen in Section 1.3, in an applied context, symbols other than y and x are routinely used to represent the dependent and independent variables. For example, if t represents time then inspection of
$\frac{d A}{d t}=k A, \quad \frac{d x}{d t}=k x(n+1-x), \quad \frac{d T}{d t}=k\left(T-T_{m}\right), \quad \frac{d A}{d t}=6-\frac{1}{100} A$,
where k, n, and T_{m} are constants, shows that each equation is time independent. Indeed, all of the first-order differential equations introduced in Section 1.3 are time independent and so are autonomous.

CRITICAL POINTS The zeros of the function f in (2) are of special importance. We say that a real number c is a critical point of the autonomous differential equation (2) if it is a zero of f-that is, $f(c)=0$. A critical point is also called an equilibrium point or stationary point. Now observe that if we substitute the constant function $y(x)=c$ into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then $y(x)=c$ is a constant solution of the autonomous differential equation.

A constant solution $y(x)=c$ of (2) is called an equilibrium solution; equilibria are the only constant solutions of (2).

FIGURE 2.1.7 Phase portrait and solution curves in each of the three subregions

- Since $d y / d x=f(y(x))$ is either positive or negative in a subregion $R_{i}, i=1$, 2,3 , a solution $y(x)$ is strictly monotonic - that is, $y(x)$ is either increasing or decreasing in the subregion R_{i}. Therefore $y(x)$ cannot be oscillatory, nor can it have a relative extremum (maximum or minimum). See Problem 33 in Exercises 2.1.
- If $y(x)$ is bounded above by a critical point c_{1} (as in subregion R_{1} where $y(x)<c_{1}$ for all x), then the graph of $y(x)$ must approach the graph of the equilibrium solution $y(x)=c_{1}$ either as $x \rightarrow \infty$ or as $x \rightarrow-\infty$. If $y(x)$ is bounded - that is, bounded above and below by two consecutive critical points (as in subregion R_{2} where $c_{1}<y(x)<c_{2}$ for all x) - then the graph of $y(x)$ must approach the graphs of the equilibrium solutions $y(x)=c_{1}$ and $y(x)=c_{2}$, one as $x \rightarrow \infty$ and the other as $x \rightarrow-\infty$. If $y(x)$ is bounded below by a critical point (as in subregion R_{3} where $c_{2}<y(x)$ for all x), then the graph of $y(x)$ must approach the graph of the equilibrium solution $y(x)=c_{2}$ either as $x \rightarrow \infty$ or as $x \rightarrow-\infty$. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points $P=0$ and $P=a / b$ now correspond in the $t P$-plane to three subregions defined by:

$$
R_{1}:-\infty<P<0, \quad R_{2}: 0<P<a / b, \quad \text { and } \quad R_{3}: a / b<P<\infty,
$$

where $-\infty<t<\infty$. The phase portrait in Figure 2.1.7 tells us that $P(t)$ is decreasing in R_{1}, increasing in R_{2}, and decreasing in R_{3}. If $P(0)=P_{0}$ is an initial value, then in R_{1}, R_{2}, and R_{3} we have, respectively, the following:
(i) For $P_{0}<0, P(t)$ is bounded above. Since $P(t)$ is decreasing, $P(t)$ decreases without bound for increasing t, and so $P(t) \rightarrow 0$ as $t \rightarrow-\infty$. This means that the negative t-axis, the graph of the equilibrium solution $P(t)=0$, is a horizontal asymptote for a solution curve.
(ii) For $0<P_{0}<a / b, P(t)$ is bounded. Since $P(t)$ is increasing, $P(t) \rightarrow a / b$ as $t \rightarrow \infty$ and $P(t) \rightarrow 0$ as $t \rightarrow-\infty$. The graphs of the two equilibrium solutions, $P(t)=0$ and $P(t)=a / b$, are horizontal lines that are horizontal asymptotes for any solution curve starting in this subregion.
(iii) For $P_{0}>a / b, P(t)$ is bounded below. Since $P(t)$ is decreasing, $P(t) \rightarrow a / b$ as $t \rightarrow \infty$. The graph of the equilibrium solution $P(t)=a / b$ is a horizontal asymptote for a solution curve.
In Figure 2.1 .7 the phase line is the P-axis in the $t P$-plane. For clarity the original phase line from Figure 2.1.5 is reproduced to the left of the plane in which the subregions R_{1}, R_{2}, and R_{3} are shaded. The graphs of the equilibrium solutions $P(t)=a / b$ and $P(t)=0$ (the t-axis) are shown in the figure as blue dashed lines; the solid graphs represent typical graphs of $P(t)$ illustrating the three cases just discussed.

In a subregion such as R_{1} in Example 4, where $P(t)$ is decreasing and unbounded below, we must necessarily have $P(t) \rightarrow-\infty$. Do not interpret this last statement to mean $P(t) \rightarrow-\infty$ as $t \rightarrow \infty$; we could have $P(t) \rightarrow-\infty$ as $t \rightarrow T$, where $T>0$ is a finite number that depends on the initial condition $P\left(t_{0}\right)=P_{0}$. Thinking in dynamic terms, $P(t)$ could "blow up" in finite time; thinking graphically, $P(t)$ could have a vertical asymptote at $t=T>0$. A similar remark holds for the subregion R_{3}.

The differential equation $d y / d x=\sin y$ in Example 2 is autonomous and has an infinite number of critical points, since $\sin y=0$ at $y=n \pi, n$ an integer. Moreover, we now know that because the solution $y(x)$ that passes through $\left(0,-\frac{3}{2}\right)$ is bounded

FIGURE 2.1.10 Direction field for an autonomous DE
asymptotically stable. Using a physical analogy, a solution that starts near c is like a charged particle that, over time, is drawn to a particle of opposite charge, and so c is also referred to as an attractor. When both arrowheads on either side of the dot labeled c point away from c, as in Figure 2.1.9(b), all solutions $y(x)$ of (1) that start from an initial point $\left(x_{0}, y_{0}\right)$ move away from c as x increases. In this case the critical point c is said to be unstable. An unstable critical point is also called a repeller, for obvious reasons. The critical point c illustrated in Figures 2.1.9(c) and 2.1.9(d) is neither an attractor nor a repeller. But since c exhibits characteristics of both an attractor and a repeller-that is, a solution starting from an initial point $\left(x_{0}, y_{0}\right)$ sufficiently near c is attracted to c from one side and repelled from the other side-we say that the critical point c is semi-stable. In Example 3 the critical point a / b is asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller). The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DEs AND DIRECTION FIELDS If a first-order differential equation is autonomous, then we see from the right-hand side of its normal form $d y / d x=f(y)$ that slopes of lineal elements through points in the rectangular grid used to construct a direction field for the DE depend solely on the y-coordinate of the points. Put another way, lineal elements passing through points on any horizontal line must all have the same slope; slopes of lineal elements along any vertical line will, of course, vary. These facts are apparent from inspection of the horizontal gold strip and vertical blue strip in Figure 2.1.10. The figure exhibits a direction field for the autonomous equation $d y / d x=2 y-2$. With these facts in mind, reexamine Figure 2.1.4.

2.1.1 DIRECTION FIELDS

In Problems 1-4 reproduce the given computer-generated direction field. Then sketch, by hand, an approximate solution curve that passes through each of the indicated points. Use different colored pencils for each solution curve.

1. $\frac{d y}{d x}=x^{2}-y^{2}$
(a) $y(-2)=1$
(b) $y(3)=0$
(c) $y(0)=2$
(d) $y(0)=0$

FIGURE 2.1.11 Direction field for Problem 1
2. $\frac{d y}{d x}=e^{-0.01 x y^{2}}$
(a) $y(-6)=0$
(b) $y(0)=1$
(c) $y(0)=-4$
(d) $y(8)=-4$

FIGURE 2.1.12 Direction field for Problem 2
3. $\frac{d y}{d x}=1-x y$
(a) $y(0)=0$
(b) $y(-1)=0$
(c) $y(2)=2$
(d) $y(0)=-4$

FIGURE 2.1.13 Direction field for Problem 3
4. $\frac{d y}{d x}=(\sin x) \cos y$
(a) $y(0)=1$
(b) $y(1)=0$
(c) $y(3)=3$
(d) $y(0)=-\frac{5}{2}$

FIGURE 2.1.14 Direction field for Problem 4

In Problems 5-12 use computer software to obtain a direction field for the given differential equation. By hand, sketch an approximate solution curve passing through each of the given points.
5. $y^{\prime}=x$
(a) $y(0)=0$
(b) $y(0)=-3$
7. $y \frac{d y}{d x}=-x$
(a) $y(1)=1$
(b) $y(0)=4$
9. $\frac{d y}{d x}=0.2 x^{2}+y$
(a) $y(0)=\frac{1}{2}$
(b) $y(2)=-1$
11. $y^{\prime}=y-\cos \frac{\pi}{2} x$
(a) $y(2)=2$
(b) $y(-1)=0$
(a) $y\left(-\frac{1}{2}\right)=2$
(b) $y\left(\frac{3}{2}\right)=0$
10. $\frac{d y}{d x}=x e^{y}$
(a) $y(0)=-2$
(b) $y(1)=2.5$
12. $\frac{d y}{d x}=1-\frac{y}{x}$

In Problems 13 and 14 the given figure represents the graph of $f(y)$ and $f(x)$, respectively. By hand, sketch a direction field over an appropriate grid for $d y / d x=f(y)$ (Problem 13) and then for $d y / d x=f(x)$ (Problem 14).
13.

FIGURE 2.1.15 Graph for Problem 13
14.

FIGURE 2.1.16 Graph for Problem 14
15. In parts (a) and (b) sketch isoclines $f(x, y)=c$ (see the Remarks on page 37) for the given differential equation using the indicated values of c. Construct a direction field over a grid by carefully drawing lineal elements with the appropriate slope at chosen points on each isocline. In each case, use this rough direction field to sketch an approximate solution curve for the IVP consisting of the DE and the initial condition $y(0)=1$.
(a) $d y / d x=x+y ; c$ an integer satisfying $-5 \leq c \leq 5$
(b) $d y / d x=x^{2}+y^{2} ; c=\frac{1}{4}, c=1, c=\frac{9}{4}, c=4$

Discussion Problems

16. (a) Consider the direction field of the differential equation $d y / d x=x(y-4)^{2}-2$, but do not use technology to obtain it. Describe the slopes of the lineal elements on the lines $x=0, y=3, y=4$, and $y=5$.
(b) Consider the IVP $d y / d x=x(y-4)^{2}-2, y(0)=y_{0}$, where $y_{0}<4$. Can a solution $y(x) \rightarrow \infty$ as $x \rightarrow \infty$? Based on the information in part (a), discuss.
17. For a first-order $\mathrm{DE} d y / d x=f(x, y)$ a curve in the plane defined by $f(x, y)=0$ is called a nullcline of the equation, since a lineal element at a point on the curve has zero slope. Use computer software to obtain a direction field over a rectangular grid of points for $d y / d x=x^{2}-2 y$,
and then superimpose the graph of the nullcline $y=\frac{1}{2} x^{2}$ over the direction field. Discuss the behavior of solution curves in regions of the plane defined by $y<\frac{1}{2} x^{2}$ and by $y>\frac{1}{2} x^{2}$. Sketch some approximate solution curves. Try to generalize your observations.
18. (a) Identify the nullclines (see Problem 17) in Problems 1, 3, and 4. With a colored pencil, circle any lineal elements in Figures 2.1.11, 2.1.13, and 2.1.14 that you think may be a lineal element at a point on a nullcline.
(b) What are the nullclines of an autonomous first-order DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equation $d y / d x=y-y^{3}$ and the initial condition $y(0)=y_{0}$. By hand, sketch the graph of a typical solution $y(x)$ when y_{0} has the given values.
(a) $y_{0}>1$
(b) $0<y_{0}<1$
(c) $-1<y_{0}<0$
(d) $y_{0}<-1$
20. Consider the autonomous first-order differential equation $d y / d x=y^{2}-y^{4}$ and the initial condition $y(0)=y_{0}$. By hand, sketch the graph of a typical solution $y(x)$ when y_{0} has the given values.
(a) $y_{0}>1$
(b) $0<y_{0}<1$
(c) $-1<y_{0}<0$
(d) $y_{0}<-1$

In Problems 21-28 find the critical points and phase portrait of the given autonomous first-order differential equation. Classify each critical point as asymptotically stable, unstable, or semi-stable. By hand, sketch typical solution curves in the regions in the $x y$-plane determined by the graphs of the equilibrium solutions.
21. $\frac{d y}{d x}=y^{2}-3 y$
22. $\frac{d y}{d x}=y^{2}-y^{3}$
23. $\frac{d y}{d x}=(y-2)^{4}$
24. $\frac{d y}{d x}=10+3 y-y^{2}$
25. $\frac{d y}{d x}=y^{2}\left(4-y^{2}\right)$
26. $\frac{d y}{d x}=y(2-y)(4-y)$
27. $\frac{d y}{d x}=y \ln (y+2)$
28. $\frac{d y}{d x}=\frac{y e^{y}-9 y}{e^{y}}$

In Problems 29 and 30 consider the autonomous differential equation $d y / d x=f(y)$, where the graph of f is given. Use the graph to locate the critical points of each differential equation. Sketch a phase portrait of each differential equation. By hand, sketch typical solution curves in the subregions in the $x y$-plane determined by the graphs of the equilibrium solutions.
29.

FIGURE 2.1.17 Graph for Problem 29
30.

FIGURE 2.1.18 Graph for Problem 30

Discussion Problems

31. Consider the autonomous $\mathrm{DE} d y / d x=(2 / \pi) y-\sin y$. Determine the critical points of the equation. Discuss a way of obtaining a phase portrait of the equation. Classify the critical points as asymptotically stable, unstable, or semi-stable.
32. A critical point c of an autonomous first-order $D E$ is said to be isolated if there exists some open interval that contains c but no other critical point. Can there exist an autonomous DE of the form given in (1) for which every critical point is nonisolated? Discuss; do not think profound thoughts.
33. Suppose that $y(x)$ is a nonconstant solution of the autonomous equation $d y / d x=f(y)$ and that c is a critical point of the DE. Discuss. Why can't the graph of $y(x)$ cross the graph of the equilibrium solution $y=c$? Why can't $f(y)$ change signs in one of the subregions discussed on page 38 ? Why can't $y(x)$ be oscillatory or have a relative extremum (maximum or minimum)?
34. Suppose that $y(x)$ is a solution of the autonomous equation $d y / d x=f(y)$ and is bounded above and below by two consecutive critical points $c_{1}<c_{2}$, as in subregion R_{2} of Figure 2.1.6(b). If $f(y)>0$ in the region, then $\lim _{x \rightarrow \infty} y(x)=c_{2}$. Discuss why there cannot exist a number $L<c_{2}$ such that $\lim _{x \rightarrow \infty} y(x)=L$. As part of your discussion, consider what happens to $y^{\prime}(x)$ as $x \rightarrow \infty$.
35. Using the autonomous equation (1), discuss how it is possible to obtain information about the location of points of inflection of a solution curve.
36. Consider the autonomous $\mathrm{DE} d y / d x=y^{2}-y-6$. Use your ideas from Problem 35 to find intervals on the y-axis for which solution curves are concave up and intervals for which solution curves are concave down. Discuss why each solution curve of an initial-value problem of the form $d y / d x=y^{2}-y-6, y(0)=y_{0}$, where $-2<y_{0}<3$, has a point of inflection with the same y-coordinate. What is that y-coordinate? Carefully sketch the solution curve for which $y(0)=-1$. Repeat for $y(2)=2$.
37. Suppose the autonomous DE in (1) has no critical points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in Example 3 is a well-known population model. Suppose the DE is changed to

$$
\frac{d P}{d t}=P(a P-b)
$$

where a and b are positive constants. Discuss what happens to the population P as time t increases.
39. Population Model Another population model is given by

$$
\frac{d P}{d t}=k P-h
$$

where h and k are positive constants. For what initial values $P(0)=P_{0}$ does this model predict that the population will go extinct?
40. Terminal Velocity In Section 1.3 we saw that the autonomous differential equation

$$
m \frac{d v}{d t}=m g-k v
$$

where k is a positive constant and g is the acceleration due to gravity, is a model for the velocity v of a body of mass m that is falling under the influence of gravity. Because the term $-k v$ represents air resistance, the velocity of a body falling from a great height does not increase without bound as time t increases. Use a phase portrait of the differential equation to find the limiting, or terminal, velocity of the body. Explain your reasoning.
41. Suppose the model in Problem 40 is modified so that air resistance is proportional to v^{2}, that is,

$$
m \frac{d v}{d t}=m g-k v^{2}
$$

See Problem 17 in Exercises 1.3. Use a phase portrait to find the terminal velocity of the body. Explain your reasoning.
42. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled by the autonomous differential equation

$$
\frac{d X}{d t}=k(\alpha-X)(\beta-X)
$$

where $k>0$ is a constant of proportionality and $\beta>\alpha>0$. Here $X(t)$ denotes the number of grams of the new compound formed in time t.
(a) Use a phase portrait of the differential equation to predict the behavior of $X(t)$ as $t \rightarrow \infty$.
(b) Consider the case when $\alpha=\beta$. Use a phase portrait of the differential equation to predict the behavior of $X(t)$ as $t \rightarrow \infty$ when $X(0)<\alpha$. When $X(0)>\alpha$.
(c) Verify that an explicit solution of the DE in the case when $k=1$ and $\alpha=\beta$ is $X(t)=\alpha-1 /(t+c)$. Find a solution that satisfies $X(0)=\alpha / 2$. Then find a solution that satisfies $X(0)=2 \alpha$. Graph these two solutions. Does the behavior of the solutions as $t \rightarrow \infty$ agree with your answers to part (b)?

REVIEW MATERIAL

- Basic integration formulas (See inside front cover)
- Techniques of integration: integration by parts and partial fraction decomposition
- See also the Student Resource and Solutions Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest of all differential equations: first-order equations with separable variables. Because the method in this section and many techniques for solving differential equations involve integration, you are urged to refresh your memory on important formulas (such as $\int d u / u$) and techniques (such as integration by parts) by consulting a calculus text.

SOLUTION BY INTEGRATION Consider the first-order differential equation $d y / d x=f(x, y)$. When f does not depend on the variable y, that is, $f(x, y)=g(x)$, the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=g(x) \tag{1}
\end{equation*}
$$

can be solved by integration. If $g(x)$ is a continuous function, then integrating both sides of (1) gives $y=\int g(x) d x=G(x)+c$, where $G(x)$ is an antiderivative (indefinite integral) of $g(x)$. For example, if $d y / d x=1+e^{2 x}$, then its solution is $y=\int\left(1+e^{2 x}\right) d x$ or $y=x+\frac{1}{2} e^{2 x}+c$.

A DEFINITION Equation (1), as well as its method of solution, is just a special case when the function f in the normal form $d y / d x=f(x, y)$ can be factored into a function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

is said to be separable or to have separable variables.

For example, the equations

$$
\frac{d y}{d x}=y^{2} x e^{3 x+4 y} \quad \text { and } \quad \frac{d y}{d x}=y+\sin x
$$

are separable and nonseparable, respectively. In the first equation we can factor $f(x, y)=y^{2} x e^{3 x+4 y}$ as

$$
f(x, y)=y^{2} x e^{3 x+4 y}=\left(x e^{3 x}\right)\left(y^{2} e^{4 y}\right),
$$

but in the second equation there is no way of expressing $y+\sin x$ as a product of a function of x times a function of y.

Observe that by dividing by the function $h(y)$, we can write a separable equation $d y / d x=g(x) h(y)$ as

$$
\begin{equation*}
p(y) \frac{d y}{d x}=g(x) \tag{2}
\end{equation*}
$$

where, for convenience, we have denoted $1 / h(y)$ by $p(y)$. From this last form we can see immediately that (2) reduces to (1) when $h(y)=1$.

Now if $y=\phi(x)$ represents a solution of (2), we must have $p(\phi(x)) \phi^{\prime}(x)=g(x)$, and therefore

$$
\begin{equation*}
\int p(\phi(x)) \phi^{\prime}(x) d x=\int g(x) d x \tag{3}
\end{equation*}
$$

But $d y=\phi^{\prime}(x) d x$, and so (3) is the same as

$$
\begin{equation*}
\int p(y) d y=\int g(x) d x \quad \text { or } \quad H(y)=G(x)+c \tag{4}
\end{equation*}
$$

where $H(y)$ and $G(x)$ are antiderivatives of $p(y)=1 / h(y)$ and $g(x)$, respectively.

METHOD OF SOLUTION Equation (4) indicates the procedure for solving separable equations. A one-parameter family of solutions, usually given implicitly, is obtained by integrating both sides of $p(y) d y=g(x) d x$.

NOTE There is no need to use two constants in the integration of a separable equation, because if we write $H(y)+c_{1}=G(x)+c_{2}$, then the difference $c_{2}-c_{1}$ can be replaced by a single constant c, as in (4). In many instances throughout the chapters that follow, we will relabel constants in a manner convenient to a given equation. For example, multiples of constants or combinations of constants can sometimes be replaced by a single constant.

EXAMPLE 1 Solving a Separable DE

Solve $(1+x) d y-y d x=0$.
SOLUTION Dividing by $(1+x) y$, we can write $d y / y=d x /(1+x)$, from which it follows that

$$
\begin{array}{rlr}
\int \frac{d y}{y} & =\int \frac{d x}{1+x} \\
\ln |y| & =\ln |1+x|+c_{1} \\
y & =e^{\ln |1+x|+c_{1}}=e^{\ln |1+x|} \cdot e^{c_{1}} & \leftarrow \text { laws of exponents } \\
& =|1+x| e^{c_{1}} \\
& = \pm e^{c_{1}}(1+x) . & \leftarrow \begin{cases}|1+x|=1+x, & x \geq-1 \\
|1+x|=-(1+x), & x<-1\end{cases}
\end{array}
$$

Relabeling $\pm e^{c_{1}}$ as c then gives $y=c(1+x)$.
ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious choice for the constant of integration is $\ln |c|$ rather than c. Rewriting the second line of the solution as $\ln |y|=\ln |1+x|+\ln |c|$ enables us to combine the terms on the right-hand side by the properties of logarithms. From $\ln |y|=\ln |c(1+x)|$ we immediately get $y=c(1+x)$. Even if the indefinite integrals are not all logarithms, it may still be advantageous to use $\ln |c|$. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of the graph of an implicit solution $G(x, y)=0$.

EXAMPLE 2 Solution Curve

Solve the initial-value problem $\frac{d y}{d x}=-\frac{x}{y}, \quad y(4)=-3$.
SOLUTION Rewriting the equation as $y d y=-x d x$, we get

$$
\int y d y=-\int x d x \quad \text { and } \quad \frac{y^{2}}{2}=-\frac{x^{2}}{2}+c_{1}
$$

We can write the result of the integration as $x^{2}+y^{2}=c^{2}$ by replacing the constant $2 c_{1}$ by c^{2}. This solution of the differential equation represents a family of concentric circles centered at the origin.

Now when $x=4, y=-3$, so $16+9=25=c^{2}$. Thus the initial-value problem determines the circle $x^{2}+y^{2}=25$ with radius 5 . Because of its simplicity we can solve this implicit solution for an explicit solution that satisfies the initial condition.

FIGURE 2.2.1 Solution curve for the IVP in Example 2

We saw this solution as $y=\phi_{2}(x)$ or $y=-\sqrt{25-x^{2}},-5<x<5$ in Example 3 of Section 1.1. A solution curve is the graph of a differentiable function. In this case the solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing the point $(4,-3)$.

LOSING A SOLUTION Some care should be exercised in separating variables, since the variable divisors could be zero at a point. Specifically, if r is a zero of the function $h(y)$, then substituting $y=r$ into $d y / d x=g(x) h(y)$ makes both sides zero; in other words, $y=r$ is a constant solution of the differential equation. But after variables are separated, the left-hand side of $\frac{d y}{h(y)}=g(x) d x$ is undefined at r. As a consequence, $y=r$ might not show up in the family of solutions that are obtained after integration and simplification. Recall that such a solution is called a singular solution.

EXAMPLE 3 Losing a Solution

Solve $\frac{d y}{d x}=y^{2}-4$.
SOLUTION We put the equation in the form

$$
\begin{equation*}
\frac{d y}{y^{2}-4}=d x \quad \text { or } \quad\left[\frac{\frac{1}{4}}{y-2}-\frac{\frac{1}{4}}{y+2}\right] d y=d x \tag{5}
\end{equation*}
$$

The second equation in (5) is the result of using partial fractions on the left-hand side of the first equation. Integrating and using the laws of logarithms gives

$$
\begin{aligned}
& \frac{1}{4} \ln |y-2|-\frac{1}{4} \ln |y+2|=x+c_{1} \\
& \text { or } \quad \ln \left|\frac{y-2}{y+2}\right|=4 x+c_{2} \quad \text { or } \quad \frac{y-2}{y+2}= \pm e^{4 x+c_{2}} .
\end{aligned}
$$

Here we have replaced $4 c_{1}$ by c_{2}. Finally, after replacing $\pm e^{c_{2}}$ by c and solving the last equation for y, we get the one-parameter family of solutions

$$
\begin{equation*}
y=2 \frac{1+c e^{4 x}}{1-c e^{4 x}} \tag{6}
\end{equation*}
$$

Now if we factor the right-hand side of the differential equation as $d y / d x=(y-2)(y+2)$, we know from the discussion of critical points in Section 2.1 that $y=2$ and $y=-2$ are two constant (equilibrium) solutions. The solution $y=2$ is a member of the family of solutions defined by (6) corresponding to the value $c=0$. However, $y=-2$ is a singular solution; it cannot be obtained from (6) for any choice of the parameter c. This latter solution was lost early on in the solution process. Inspection of (5) clearly indicates that we must preclude $y= \pm 2$ in these steps.

EXAMPLE 4 An Initial-Value Problem

Solve $\left(e^{2 y}-y\right) \cos x \frac{d y}{d x}=e^{y} \sin 2 x, \quad y(0)=0$.

FIGURE 2.2.2 Level curves
$G(x, y)=c$, where $G(x, y)=e^{y}+y e^{-y}+e^{-y}+2 \cos x$

FIGURE 2.2.3 Level curves $c=2$ and $c=4$

SOLUTION Dividing the equation by $e^{y} \cos x$ gives

$$
\frac{e^{2 y}-y}{e^{y}} d y=\frac{\sin 2 x}{\cos x} d x
$$

Before integrating, we use termwise division on the left-hand side and the trigonometric identity $\sin 2 x=2 \sin x \cos x$ on the right-hand side. Then

$$
\text { integration by parts } \rightarrow \quad \int\left(e^{y}-y e^{-y}\right) d y=2 \int \sin x d x
$$

yields

$$
\begin{equation*}
e^{y}+y e^{-y}+e^{-y}=-2 \cos x+c \tag{7}
\end{equation*}
$$

The initial condition $y=0$ when $x=0$ implies $c=4$. Thus a solution of the initialvalue problem is

$$
\begin{equation*}
e^{y}+y e^{-y}+e^{-y}=4-2 \cos x . \tag{8}
\end{equation*}
$$

USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned that it may be difficult to use an implicit solution $G(x, y)=0$ to find an explicit solution $y=\phi(x)$. Equation (8) shows that the task of solving for y in terms of x may present more problems than just the drudgery of symbol pushing-sometimes it simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; neither the graph of the equation nor an interval over which a solution satisfying $y(0)=$ 0 is defined is apparent. The problem of "seeing" what an implicit solution looks like can be overcome in some cases by means of technology. One way* of proceeding is to use the contour plot application of a computer algebra system (CAS). Recall from multivariate calculus that for a function of two variables $z=G(x, y)$ the $t w o$ dimensional curves defined by $G(x, y)=c$, where c is constant, are called the level curves of the function. With the aid of a CAS, some of the level curves of the function $G(x, y)=e^{y}+y e^{-y}+e^{-y}+2 \cos x$ have been reproduced in Figure 2.2.2. The family of solutions defined by (7) is the level curves $G(x, y)=c$. Figure 2.2.3 illustrates the level curve $G(x, y)=4$, which is the particular solution (8), in blue color. The other curve in Figure 2.2.3 is the level curve $G(x, y)=2$, which is the member of the family $G(x, y)=c$ that satisfies $y(\pi / 2)=0$.

If an initial condition leads to a particular solution by yielding a specific value of the parameter c in a family of solutions for a first-order differential equation, there is a natural inclination for most students (and instructors) to relax and be content. However, a solution of an initial-value problem might not be unique. We saw in Example 4 of Section 1.2 that the initial-value problem

$$
\begin{equation*}
\frac{d y}{d x}=x y^{1 / 2}, \quad y(0)=0 \tag{9}
\end{equation*}
$$

has at least two solutions, $y=0$ and $y=\frac{1}{16} x^{4}$. We are now in a position to solve the equation. Separating variables and integrating $y^{-1 / 2} d y=x d x$ gives

$$
2 y^{1 / 2}=\frac{x^{2}}{2}+c_{1} \quad \text { or } \quad y=\left(\frac{x^{2}}{4}+c\right)^{2} .
$$

When $x=0$, then $y=0$, so necessarily, $c=0$. Therefore $y=\frac{1}{16} x^{4}$. The trivial solution $y=0$ was lost by dividing by $y^{1 / 2}$. In addition, the initial-value problem (9) possesses infinitely many more solutions, since for any choice of the parameter $a \geq 0$ the

[^0]

FIGURE 2.2.4 Piecewise-defined solutions of (9)
piecewise-defined function

$$
y= \begin{cases}0, & x<a \\ \frac{1}{16}\left(x^{2}-a^{2}\right)^{2}, & x \geq a\end{cases}
$$

satisfies both the differential equation and the initial condition. See Figure 2.2.4.
SOLUTIONS DEFINED BY INTEGRALS If g is a function continuous on an open interval I containing a, then for every x in I,

$$
\frac{d}{d x} \int_{a}^{x} g(t) d t=g(x)
$$

You might recall that the foregoing result is one of the two forms of the fundamental theorem of calculus. In other words, $\int_{a}^{x} g(t) d t$ is an antiderivative of the function g. There are times when this form is convenient in solving DEs. For example, if g is continuous on an interval I containing x_{0} and x, then a solution of the simple initialvalue problem $d y / d x=g(x), y\left(x_{0}\right)=y_{0}$, that is defined on I is given by

$$
y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

You should verify that $y(x)$ defined in this manner satisfies the initial condition. Since an antiderivative of a continuous function g cannot always be expressed in terms of elementary functions, this might be the best we can do in obtaining an explicit solution of an IVP. The next example illustrates this idea.

EXAMPLE 5 An Initial-Value Problem

Solve $\frac{d y}{d x}=e^{-x^{2}}, \quad y(3)=5$.
SOLUTION The function $g(x)=e^{-x^{2}}$ is continuous on $(-\infty, \infty)$, but its antiderivative is not an elementary function. Using t as dummy variable of integration, we can write

$$
\begin{aligned}
\int_{3}^{x} \frac{d y}{d t} d t & =\int_{3}^{x} e^{-t^{2}} d t \\
y(t)]_{3}^{x} & =\int_{3}^{x} e^{-t^{2}} d t \\
y(x)-y(3) & =\int_{3}^{x} e^{-t^{2}} d t \\
y(x) & =y(3)+\int_{3}^{x} e^{-t^{2}} d t
\end{aligned}
$$

Using the initial condition $y(3)=5$, we obtain the solution

$$
y(x)=5+\int_{3}^{x} e^{-t^{2}} d t
$$

The procedure demonstrated in Example 5 works equally well on separable equations $d y / d x=g(x) f(y)$ where, say, $f(y)$ possesses an elementary antiderivative but $g(x)$ does not possess an elementary antiderivative. See Problems 29 and 30 in Exercises 2.2.

REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess an antiderivative that is an elementary function. Integrals of these kinds of functions are called nonelementary. For example, $\int_{3}^{x} e^{-t^{2}} d t$ and $\int \sin x^{2} d x$ are nonelementary integrals. We will run into this concept again in Section 2.3.
(ii) In some of the preceding examples we saw that the constant in the oneparameter family of solutions for a first-order differential equation can be relabeled when convenient. Also, it can easily happen that two individuals solving the same equation correctly arrive at dissimilar expressions for their answers. For example, by separation of variables we can show that one-parameter families of solutions for the $\mathrm{DE}\left(1+y^{2}\right) d x+\left(1+x^{2}\right) d y=0$ are

$$
\arctan x+\arctan y=c \quad \text { or } \quad \frac{x+y}{1-x y}=c .
$$

As you work your way through the next several sections, bear in mind that families of solutions may be equivalent in the sense that one family may be obtained from another by either relabeling the constant or applying algebra and trigonometry. See Problems 27 and 28 in Exercises 2.2.

EXERCISES 2.2

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1-22 solve the given differential equation by separation of variables.

1. $\frac{d y}{d x}=\sin 5 x$
2. $\frac{d y}{d x}=(x+1)^{2}$
3. $d x+e^{3 x} d y=0$
4. $d y-(y-1)^{2} d x=0$
5. $x \frac{d y}{d x}=4 y$
6. $\frac{d y}{d x}+2 x y^{2}=0$
7. $\frac{d y}{d x}=e^{3 x+2 y}$
8. $e^{x} y \frac{d y}{d x}=e^{-y}+e^{-2 x-y}$
9. $y \ln x \frac{d x}{d y}=\left(\frac{y+1}{x}\right)^{2}$
10. $\frac{d y}{d x}=\left(\frac{2 y+3}{4 x+5}\right)^{2}$
11. $\csc y d x+\sec ^{2} x d y=0$
12. $\sin 3 x d x+2 y \cos ^{3} 3 x d y=0$
13. $\left(e^{y}+1\right)^{2} e^{-y} d x+\left(e^{x}+1\right)^{3} e^{-x} d y=0$
14. $x\left(1+y^{2}\right)^{1 / 2} d x=y\left(1+x^{2}\right)^{1 / 2} d y$
15. $\frac{d S}{d r}=k S$
16. $\frac{d Q}{d t}=k(Q-70)$
17. $\frac{d P}{d t}=P-P^{2}$
18. $\frac{d N}{d t}+N=N t e^{t+2}$
19. $\frac{d y}{d x}=\frac{x y+3 x-y-3}{x y-2 x+4 y-8}$
20. $\frac{d y}{d x}=\frac{x y+2 y-x-2}{x y-3 y+x-3}$
21. $\frac{d y}{d x}=x \sqrt{1-y^{2}}$
22. $\left(e^{x}+e^{-x}\right) \frac{d y}{d x}=y^{2}$

In Problems 23-28 find an explicit solution of the given initial-value problem.
23. $\frac{d x}{d t}=4\left(x^{2}+1\right), \quad x(\pi / 4)=1$
24. $\frac{d y}{d x}=\frac{y^{2}-1}{x^{2}-1}, \quad y(2)=2$
25. $x^{2} \frac{d y}{d x}=y-x y, \quad y(-1)=-1$
26. $\frac{d y}{d t}+2 y=1, \quad y(0)=\frac{5}{2}$
27. $\sqrt{1-y^{2}} d x-\sqrt{1-x^{2}} d y=0, \quad y(0)=\frac{\sqrt{3}}{2}$
28. $\left(1+x^{4}\right) d y+x\left(1+4 y^{2}\right) d x=0, \quad y(1)=0$

In Problems 29 and 30 proceed as in Example 5 and find an explicit solution of the given initial-value problem.
29. $\frac{d y}{d x}=y e^{-x^{2}}, \quad y(4)=1$
30. $\frac{d y}{d x}=y^{2} \sin x^{2}, \quad y(-2)=\frac{1}{3}$
31. (a) Find a solution of the initial-value problem consisting of the differential equation in Example 3 and the initial conditions $y(0)=2, y(0)=-2$, and $y\left(\frac{1}{4}\right)=1$.
(b) Find the solution of the differential equation in Example 4 when $\ln c_{1}$ is used as the constant of integration on the left-hand side in the solution and $4 \ln c_{1}$ is replaced by $\ln c$. Then solve the same initial-value problems in part (a).
32. Find a solution of $x \frac{d y}{d x}=y^{2}-y$ that passes through the indicated points.
(a) $(0,1)$
(b) $(0,0)$
(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(d) $\left(2, \frac{1}{4}\right)$
33. Find a singular solution of Problem 21. Of Problem 22.
34. Show that an implicit solution of

$$
2 x \sin ^{2} y d x-\left(x^{2}+10\right) \cos y d y=0
$$

is given by $\ln \left(x^{2}+10\right)+\csc y=c$. Find the constant solutions, if any, that were lost in the solution of the differential equation.

Often a radical change in the form of the solution of a differential equation corresponds to a very small change in either the initial condition or the equation itself. In Problems 35-38 find an explicit solution of the given initial-value problem. Use a graphing utility to plot the graph of each solution. Compare each solution curve in a neighborhood of $(0,1)$.
35. $\frac{d y}{d x}=(y-1)^{2}, \quad y(0)=1$
36. $\frac{d y}{d x}=(y-1)^{2}, \quad y(0)=1.01$
37. $\frac{d y}{d x}=(y-1)^{2}+0.01, \quad y(0)=1$
38. $\frac{d y}{d x}=(y-1)^{2}-0.01, \quad y(0)=1$
39. Every autonomous first-order equation $d y / d x=f(y)$ is separable. Find explicit solutions $y_{1}(x), y_{2}(x), y_{3}(x)$, and $y_{4}(x)$ of the differential equation $d y / d x=y-y^{3}$ that satisfy, in turn, the initial conditions $y_{1}(0)=2$, $y_{2}(0)=\frac{1}{2}, y_{3}(0)=-\frac{1}{2}$, and $y_{4}(0)=-2$. Use a graphing utility to plot the graphs of each solution. Compare these graphs with those predicted in Problem 19 of Exercises 2.1. Give the exact interval of definition for each solution.
40. (a) The autonomous first-order differential equation $d y / d x=1 /(y-3)$ has no critical points. Nevertheless, place 3 on the phase line and obtain a phase portrait of the equation. Compute $d^{2} y / d x^{2}$ to determine where solution curves are concave up and where they are concave down (see Problems 35 and 36 in Exercises 2.1). Use the phase portrait and concavity to sketch, by hand, some typical solution curves.
(b) Find explicit solutions $y_{1}(x), y_{2}(x), y_{3}(x)$, and $y_{4}(x)$ of the differential equation in part (a) that satisfy, in turn, the initial conditions $y_{1}(0)=4, y_{2}(0)=2$,
$y_{3}(1)=2$, and $y_{4}(-1)=4$. Graph each solution and compare with your sketches in part (a). Give the exact interval of definition for each solution.
41. (a) Find an explicit solution of the initial-value problem

$$
\frac{d y}{d x}=\frac{2 x+1}{2 y}, \quad y(-2)=-1
$$

(b) Use a graphing utility to plot the graph of the solution in part (a). Use the graph to estimate the interval I of definition of the solution.
(c) Determine the exact interval I of definition by analytical methods.
42. Repeat parts (a) - (c) of Problem 41 for the IVP consisting of the differential equation in Problem 7 and the initial condition $y(0)=0$.

Discussion Problems

43. (a) Explain why the interval of definition of the explicit solution $y=\phi_{2}(x)$ of the initial-value problem in Example 2 is the open interval $(-5,5)$.
(b) Can any solution of the differential equation cross the x-axis? Do you think that $x^{2}+y^{2}=1$ is an implicit solution of the initial-value problem $d y / d x=-x / y, y(1)=0$?
44. (a) If $a>0$, discuss the differences, if any, between the solutions of the initial-value problems consisting of the differential equation $d y / d x=x / y$ and each of the initial conditions $y(a)=a, y(a)=-a$, $y(-a)=a$, and $y(-a)=-a$.
(b) Does the initial-value problem $d y / d x=x / y$, $y(0)=0$ have a solution?
(c) Solve $d y / d x=x / y, y(1)=2$ and give the exact interval I of definition of its solution.
45. In Problems 39 and 40 we saw that every autonomous first-order differential equation $d y / d x=f(y)$ is separable. Does this fact help in the solution of the initial-value problem $\frac{d y}{d x}=\sqrt{1+y^{2}} \sin ^{2} y, \quad y(0)=\frac{1}{2}$? Discuss. Sketch, by hand, a plausible solution curve of the problem.
46. Without the use of technology, how would you solve

$$
(\sqrt{x}+x) \frac{d y}{d x}=\sqrt{y}+y ?
$$

Carry out your ideas.
47. Find a function whose square plus the square of its derivative is 1 .
48. (a) The differential equation in Problem 27 is equivalent to the normal form

$$
\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}
$$

in the square region in the $x y$-plane defined by $|x|<1,|y|<1$. But the quantity under the radical is nonnegative also in the regions defined by $|x|>1$, $|y|>1$. Sketch all regions in the $x y$-plane for which this differential equation possesses real solutions.
(b) Solve the DE in part (a) in the regions defined by $|x|>1,|y|>1$. Then find an implicit and an explicit solution of the differential equation subject to $y(2)=2$.

Mathematical Model

49. Suspension Bridge In (16) of Section 1.3 we saw that a mathematical model for the shape of a flexible cable strung between two vertical supports is

$$
\begin{equation*}
\frac{d y}{d x}=\frac{W}{T_{1}} \tag{10}
\end{equation*}
$$

where W denotes the portion of the total vertical load between the points P_{1} and P_{2} shown in Figure 1.3.7. The DE (10) is separable under the following conditions that describe a suspension bridge.

Let us assume that the x - and y-axes are as shown in Figure 2.2.5-that is, the x-axis runs along the horizontal roadbed, and the y-axis passes through $(0, a)$, which is the lowest point on one cable over the span of the bridge, coinciding with the interval $[-L / 2, L / 2]$. In the case of a suspension bridge, the usual assumption is that the vertical load in (10) is only a uniform roadbed distributed along the horizontal axis. In other words, it is assumed that the weight of all cables is negligible in comparison to the weight of the roadbed and that the weight per unit length of the roadbed (say, pounds per horizontal foot) is a constant ρ. Use this information to set up and solve an appropriate initial-value problem from which the shape (a curve with equation $y=\phi(x)$) of each of the two cables in a suspension bridge is determined. Express your solution of the IVP in terms of the sag h and span L. See Figure 2.2.5.

FIGURE 2.2.5 Shape of a cable in Problem 49

Computer Lab Assignments

50. (a) Use a CAS and the concept of level curves to plot representative graphs of members of the
family of solutions of the differential equation $\frac{d y}{d x}=-\frac{8 x+5}{3 y^{2}+1}$. Experiment with different numbers of level curves as well as various rectangular regions defined by $a \leq x \leq b, c \leq y \leq d$.
(b) On separate coordinate axes plot the graphs of the particular solutions corresponding to the initial conditions: $\quad y(0)=-1 ; \quad y(0)=2 ; \quad y(-1)=4$; $y(-1)=-3$.
51. (a) Find an implicit solution of the IVP

$$
(2 y+2) d y-\left(4 x^{3}+6 x\right) d x=0, \quad y(0)=-3
$$

(b) Use part (a) to find an explicit solution $y=\phi(x)$ of the IVP.
(c) Consider your answer to part (b) as a function only. Use a graphing utility or a CAS to graph this function, and then use the graph to estimate its domain.
(d) With the aid of a root-finding application of a CAS, determine the approximate largest interval I of definition of the solution $y=\phi(x)$ in part (b). Use a graphing utility or a CAS to graph the solution curve for the IVP on this interval.
52. (a) Use a CAS and the concept of level curves to plot representative graphs of members of the family of solutions of the differential equation $\frac{d y}{d x}=\frac{x(1-x)}{y(-2+y)}$. Experiment with different numbers of level curves as well as various rectangular regions in the $x y$-plane until your result resembles Figure 2.2.6.
(b) On separate coordinate axes, plot the graph of the implicit solution corresponding to the initial condition $y(0)=\frac{3}{2}$. Use a colored pencil to mark off that segment of the graph that corresponds to the solution curve of a solution ϕ that satisfies the initial condition. With the aid of a root-finding application of a CAS, determine the approximate largest interval I of definition of the solution ϕ. [Hint: First find the points on the curve in part (a) where the tangent is vertical.]
(c) Repeat part (b) for the initial condition $y(0)=-2$.

FIGURE 2.2.6 Level curves in Problem 52

[^0]: *In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a numerical solver.

