
2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 35

SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL
● The first derivative as slope of a tangent line
● The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy�dx � f (x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.”

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1

2.1.1 DIRECTION FIELDS

SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever
f (x, y) and �f��y satisfy certain continuity conditions, qualitative questions about
existence and uniqueness of solutions can be answered. In this section we shall see
that other qualitative questions about properties of solutions—How does a solution
behave near a certain point? How does a solution behave as ?—can often be
answered when the function f depends solely on the variable y. We begin, however,
with a simple concept from calculus: 

A derivative dy�dx of a differentiable function y � y(x) gives slopes of tangent
lines at points on its graph.

SLOPE Because a solution y � y(x) of a first-order differential equation

(1)

is necessarily a differentiable function on its interval I of definition, it must also be con-
tinuous on I. Thus the corresponding solution curve on I must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy�dx at this point, and we know
from (1) that this is the value of the slope function f (x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function f is defined. The
value f (x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy�dx � 0.2xy, where f (x, y) � 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is f (2, 3) � 0.2(2)(3) � 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f (x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dy�dx � f (x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a

dy
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solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a line element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy�dx � sin(x � y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the field.

EXAMPLE 1 Direction Field

The direction field for the differential equation dy�dx � 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 � 5 grid of points (mh, nh),
m and n integers, was defined by letting �5 � m � 5, �5 � n � 5, and h � 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y � 0) and the
y-axis (x � 0), the slopes are f (x, 0) � 0 and f (0, y) � 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f (x, y) � 0.2xy increase as y increases; similarly, for a fixed y the
values of f (x, y) � 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f (x, y) �
0.2xy � 0 for x � 0, y � 0). In the second quadrant, � f (x, y)� increases as �x � and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f (x, y) � 0.2xy � 0 for x � 0, y � 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the first
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y : 

as x : �
. Now in the third and fourth quadrants, since f (x, y) � 0.2xy � 0 and
f (x, y) � 0.2xy � 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that

is an explicit solution of the differential equation dy�dx � 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by . For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b).

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy�dx � sin y, .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) � sin y and
�f��y � cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specified point (x0, y0) in the plane. Now we set our computer soft-
ware again for a 5 � 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of unit—that is, at
points (mh, nh), , m and n integers such that �10 � m � 10, �10 � n � 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy�dx � sin y is 0
at y � 0, and at y � ��, the lineal elements are horizontal at all points whose second
coordinates are y � 0 or y � ��. It makes sense then that a solution curve passing
through the initial point (0, has the shape shown in the figure.

INCREASING/DECREASING Interpretation of the derivative dy�dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy�dx � 0 (or
dy�dx � 0) for all x in an interval I, then a differentiable function y � y(x) is
increasing (or decreasing) on I.
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REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficiently carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction field by hand. For the DE
dy�dx � f (x, y), any member of the family of curves f (x, y) � c, c a constant,
is called an isocline. Lineal elements drawn through points on a specific iso-
cline, say, f (x, y) � c1 all have the same slope c1. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

AUTONOMOUS FIRST-ORDER DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f (y, y�) � 0 or in normal form as

. (2)

We shall assume throughout that the function f in (2) and its derivative f � are contin-
uous functions of y on some interval I. The first-order equations

f (y) f (x, y)
p p

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are

models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

,

where k, n, and Tm are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

CRITICAL POINTS The zeros of the function f in (2) are of special importance.
We say that a real number c is a critical point of the autonomous differential
equation (2) if it is a zero of f—that is, f (c) � 0. A critical point is also called an
equilibrium point or stationary point. Now observe that if we substitute the constant
function y(x) � c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) � c is a constant solution of the
autonomous differential equation.

A constant solution y(x) � c of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).

dA

dt
� kA,    

dx

dt
� kx(n � 1 � x),    
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dt
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dy
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� f (y)
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As was already mentioned, we can tell when a nonconstant solution y � y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy�dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f (y) is positive or negative.

EXAMPLE 3 An Autonomous DE

The differential equation

where a and b are positive constants, has the normal form dP�dt � f(P), which is (2)
with t and P playing the parts of x and y, respectively, and hence is autonomous.
From f(P) � P(a � bP) � 0 we see that 0 and a�b are critical points of the equation,
so the equilibrium solutions are P(t) � 0 and P(t) � a�b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by �
 � P � 0,
0 � P � a�b, a�b � P � 
. The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f(P) � P(a � bP) on these intervals and whether a nonconstant
solution P(t) is increasing or decreasing on an interval. The following table explains
the figure.

Interval Sign of f (P) P(t) Arrow

(�
, 0) minus decreasing points down
(0, a�b) plus increasing points up
(a�b, 
) minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP�dt � P(a � bP). The vertical line is called a
phase line.

SOLUTION CURVES Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f in (2) is
independent of the variable x, we may consider f defined for �
 � x � 
 or for 
0 � x � 
. Also, since f and its derivative f� are continuous functions of y on some
interval I of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to I, and so through any point
(x0, y0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points c1 and
c2 and that c1 � c2. The graphs of the equilibrium solutions y(x) � c1 and y(x) � c2

are horizontal lines, and these lines partition the region R into three subregions R1,
R2, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

• If (x0, y0) is in a subregion Ri, i � 1, 2, 3, and y(x) is a solution whose graph
passes through this point, then y(x) remains in the subregion Ri for all x. As
illustrated in Figure 2.1.6(b), the solution y(x) in R2 is bounded below by c1

and above by c2, that is, c1 � y(x) � c2 for all x. The solution curve stays
within R2 for all x because the graph of a nonconstant solution of (2) cannot
cross the graph of either equilibrium solution y(x) � c1 or y(x) � c2. See
Problem 33 in Exercises 2.1.

• By continuity of f we must then have either f (y) � 0 or f (y) � 0 for all x in
a subregion Ri, i � 1, 2, 3. In other words, f (y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.
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• Since dy�dx � f (y(x)) is either positive or negative in a subregion Ri, i � 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion Ri. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

• If y(x) is bounded above by a critical point c1 (as in subregion R1 where
y(x) � c1 for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) � c1 either as x : 
 or as x : �
. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R2 where c1 � y(x) � c2 for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) � c1 and
y(x) � c2, one as x : 
 and the other as x : �
. If y(x) is bounded below
by a critical point (as in subregion R3 where c2 � y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) � c2

either as x : 
 or as x : �
. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 
P � 0 and P � a�b now correspond in the tP-plane to three subregions defined by:

R1: �
 � P � 0, R2: 0 � P � a�b, and R3: a�b � P � 
,

where �
 � t � 
. The phase portrait in Figure 2.1.7 tells us that P(t) is decreasing
in R1, increasing in R2, and decreasing in R3. If P(0) � P0 is an initial value, then in
R1, R2, and R3 we have, respectively, the following:

(i) For P0 � 0, P(t) is bounded above. Since P(t) is decreasing, P(t)
decreases without bound for increasing t, and so P(t) : 0 as t : �
.
This means that the negative t-axis, the graph of the equilibrium solution
P(t) � 0, is a horizontal asymptote for a solution curve.

(ii) For 0 � P0 � a�b, P(t) is bounded. Since P(t) is increasing, P(t) : a�b
as t : 
 and P(t) : 0 as t : �
. The graphs of the two equilibrium
solutions, P(t) � 0 and P(t) � a�b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iii) For P0 � a�b, P(t) is bounded below. Since P(t) is decreasing, P(t) : a�b
as t : 
. The graph of the equilibrium solution P(t) � a�b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R1, R2, and R3 are shaded. The graphs of the equilibrium solutions
P(t) � a�b and P(t) � 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(t) illustrating the three cases just
discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded
below, we must necessarily have P(t) : �
. Do not interpret this last statement to
mean P(t) : �
 as t : 
; we could have P(t) : �
 as t : T, where T � 0 is a
finite number that depends on the initial condition P(t0) � P0. Thinking in dynamic
terms, P(t) could “blow up” in finite time; thinking graphically, P(t) could have a
vertical asymptote at t � T � 0. A similar remark holds for the subregion R3.

The differential equation dy�dx � sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y � 0 at y � n�, n an integer. Moreover,
we now know that because the solution y(x) that passes through is bounded(0, �3

2)
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FIGURE 2.1.7 Phase portrait and
solution curves in each of the three
subregions

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 39



40 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

above and below by two consecutive critical points (�� � y(x) � 0) and is
decreasing (sin y � 0 for �� � y � 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) : �� as x : 
 and
y(x) : 0 as x : �
.

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy�dx � (y � 1)2 possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by �
 � y � 1 and 1 � y � 
, where
�
 � x � 
. For an initial condition y(0) � y0 � 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) : 1 as x : 
; for y(0) � y0 � 1 a solution y(x) is
increasing and unbounded.

Now y(x) � 1 � 1�(x � c) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2) A given initial condition determines
a value for c. For the initial conditions, say, y(0) � �1 � 1 and y(0) � 2 � 1, we
find, in turn, that y(x) � 1 � 1�(x � , and y(x) � 1 � 1�(x � 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses
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FIGURE 2.1.9 Critical point c is an
attractor in (a), a repeller in (b), and semi-
stable in (c) and (d).
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a vertical asymptote. But bear in mind that the solutions of the IVPs

are defined on special intervals. They are, respectively,

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) : 1 as x : 
; for the solution curve in Figure 2.1.8(c),
y(x) : 
 as x : 1 from the left.

ATTRACTORS AND REPELLERS Suppose that y(x) is a nonconstant solution of
the autonomous differential equation given in (1) and that c is a critical point of
the DE. There are basically three types of behavior that y(x) can exhibit near c. In
Figure 2.1.9 we have placed c on four vertical phase lines. When both arrowheads on
either side of the dot labeled c point toward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (x0, y0) sufficiently near c exhibit the asymp-
totic behavior . For this reason the critical point c is said to belimx:
 y(x) � c

y(x) � 1 �
1

x � 1
2

,  �1
2 � x � 
   and   y(x) � 1 �

1

x � 1
,  �
 � x � 1.

dy

dx
� ( y � 1)2,  y(0) � �1    and    

dy

dx
� (y � 1)2,  y(0) � 2



asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled c point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (x0, y0) move away from c as x increases. In this case the critical
point c is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point c illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since c exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (x0, y0) suffi-
ciently near c is attracted to c from one side and repelled from the other side—we say
that the critical point c is semi-stable. In Example 3 the critical point a�b is
asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DEs AND DIRECTION FIELDS If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form 
dy�dx � f (y) that slopes of lineal elements through points in the rectangular grid used
to construct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must all
have the same slope; slopes of lineal elements along any vertical line will, of course,
vary. These facts are apparent from inspection of the horizontal gold strip and vertical
blue strip in Figure 2.1.10. The figure exhibits a direction field for the autonomous equa-
tion dy�dx � 2y � 2. With these facts in mind, reexamine Figure 2.1.4.
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line are all the same
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autonomous DE
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EXERCISES 2.1 Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS

In Problems 1–4 reproduce the given computer-generated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.
Use different colored pencils for each solution curve.

1.

(a) y(�2) � 1 (b) y(3) � 0

(c) y(0) � 2 (d) y(0) � 0

dy

dx
� x2 � y2

3.

(a) y(0) � 0 (b) y(�1) � 0

(c) y(2) � 2 (d) y(0) � �4

dy

dx
� 1 � xy

2.

(a) y(�6) � 0 (b) y(0) � 1

(c) y(0) � �4 (d) y(8) � �4

dy

dx
� e�0.01xy2
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In Problems 13 and 14 the given figure represents the graph
of f (y) and f (x), respectively. By hand, sketch a direction
field over an appropriate grid for dy�dx � f (y) (Problem 13)
and then for dy�dx � f (x) (Problem 14).

13.

4.

(a) y(0) � 1 (b) y(1) � 0

(c) y(3) � 3 (d) y(0) � �5
2

dy

dx
� (sin x) cos y

In Problems 5–12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the
given points.

5. y� � x 6. y� � x � y

(a) y(0) � 0 (a) y(�2) � 2

(b) y(0) � �3 (b) y(1) � �3

7. 8.

(a) y(1) � 1 (a) y(0) � 1

(b) y(0) � 4 (b) y(�2) � �1

9. 10.

(a) (a) y(0) � �2

(b) y(2) � �1 (b) y(1) � 2.5

11. 12.

(a) y(2) � 2 (a)

(b) y(�1) � 0 (b) y(3
2) � 0

y(�1
2) � 2

dy

dx
� 1 �

y

x
y� � y � cos

�

2
x

y(0) � 1
2

dy

dx
� xeydy

dx
� 0.2x2 � y

dy

dx
�

1

y
y

dy

dx
� �x

x

y
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FIGURE 2.1.13 Direction field for Problem 3
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FIGURE 2.1.15 Graph for Problem 13
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FIGURE 2.1.16 Graph for Problem 14
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FIGURE 2.1.14 Direction field for Problem 4

14.

15. In parts (a) and (b) sketch isoclines f (x, y) � c (see the
Remarks on page 37) for the given differential equation
using the indicated values of c. Construct a direction field
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) � 1.

(a) dy�dx � x � y; c an integer satisfying �5 � c � 5

(b) dy�dx � x2 � y2;

Discussion Problems

16. (a) Consider the direction field of the differential equa-
tion dy�dx � x(y � 4)2 � 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on the lines x � 0, y � 3, y � 4, and y � 5.

(b) Consider the IVP dy�dx � x(y � 4)2 � 2, y(0) � y0,
where y0 � 4. Can a solution y(x) : 
 as x : 
?
Based on the information in part (a), discuss.

17. For a first-order DE dy�dx � f (x, y) a curve in the plane
defined by f (x, y) � 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction field
over a rectangular grid of points for dy�dx � x2 � 2y,

c � 1
4, c � 1, c � 9

4, c � 4



and then superimpose the graph of the nullcline 
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by and by

. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.11, 2.1.13, and
2.1.14 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-order
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy�dx � y � y3 and the initial condition y(0) � y0.
By hand, sketch the graph of a typical solution y(x)
when y0 has the given values.

(a) y0 � 1 (b) 0 � y0 � 1

(c) �1 � y0 � 0 (d) y0 � �1

20. Consider the autonomous first-order differential equation
dy�dx � y2 � y4 and the initial condition y(0) � y0. By
hand, sketch the graph of a typical solution y(x) when y0

has the given values.

(a) y0 � 1 (b) 0 � y0 � 1

(c) �1 � y0 � 0 (d) y0 � �1

In Problems 21–28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 consider the autonomous differential
equation dy�dx � f(y), where the graph of f is given. Use the
graph to locate the critical points of each differential equa-
tion. Sketch a phase portrait of each differential equation.
By hand, sketch typical solution curves in the subregions in
the xy-plane determined by the graphs of the equilibrium
solutions.

dy

dx
�

yey � 9y

ey

dy

dx
� y ln(y � 2)

dy

dx
� y(2 � y)(4 � y)

dy

dx
� y2(4 � y2)

dy

dx
� 10 � 3y � y2dy

dx
� (y � 2)4

dy

dx
� y2 � y3dy

dx
� y2 � 3y

y � 1
2 x2

y � 1
2 x2

y � 1
2 x2 29. f

c y

FIGURE 2.1.17 Graph for Problem 29

30. f

y1

1

FIGURE 2.1.18 Graph for Problem 30

Discussion Problems

31. Consider the autonomous DE dy�dx � (2��)y � sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

32. A critical point c of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains c but no other critical point. Can there exist an
autonomous DE of the form given in (1) for which every
critical point is nonisolated? Discuss; do not think pro-
found thoughts.

33. Suppose that y(x) is a nonconstant solution of the
autonomous equation dy�dx � f (y) and that c is a
critical point of the DE. Discuss. Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y � c? Why can’t f (y) change signs in one of the
subregions discussed on page 38? Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

34. Suppose that y(x) is a solution of the autonomous equa-
tion dy�dx � f (y) and is bounded above and below by
two consecutive critical points c1 � c2, as in subregion 
R2 of Figure 2.1.6(b). If f (y) � 0 in the region, then 
limx:
 y(x) � c2. Discuss why there cannot exist a num-
ber L � c2 such that limx:
 y(x) � L. As part of your
discussion, consider what happens to y�(x) as x : 
.

35. Using the autonomous equation (1), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 43
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36. Consider the autonomous DE dy�dx � y2 � y � 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy�dx � y2 � y � 6, y(0) � y0,
where �2 � y0 � 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) � �1. Repeat
for y(2) � 2.

37. Suppose the autonomous DE in (1) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in
Example 3 is a well-known population model. Suppose
the DE is changed to

,

where a and b are positive constants. Discuss what
happens to the population P as time t increases.

39. Population Model Another population model is
given by

,

where h and k are positive constants. For what initial
values P(0) � P0 does this model predict that the popu-
lation will go extinct?

40. Terminal Velocity In Section 1.3 we saw that the
autonomous differential equation

,m
dv

dt
� mg � kv

dP

dt
� kP � h

dP

dt
� P(aP � b)

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influence of gravity.
Because the term �kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time t increases. Use a phase
portrait of the differential equation to find the limiting, or
terminal, velocity of the body. Explain your reasoning.

41. Suppose the model in Problem 40 is modified so 
that air resistance is proportional to v2, that is,

.

See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.

42. Chemical Reactions When certain kinds of chemicals
are combined, the rate at which the new compound is
formed is modeled by the autonomous differential
equation

where k � 0 is a constant of proportionality and
� � � � 0. Here X(t) denotes the number of grams of
the new compound formed in time t.

(a) Use a phase portrait of the differential equation to
predict the behavior of X(t) as t : 
.

(b) Consider the case when � � �. Use a phase portrait
of the differential equation to predict the behavior
of X(t) as t : 
 when X(0) � �. When X(0) � �.

(c) Verify that an explicit solution of the DE in the case
when k � 1 and � � � is X(t) � � � 1�(t � c).
Find a solution that satisfies X(0) � ��2. Then find
a solution that satisfies X(0) � 2�. Graph these
two solutions. Does the behavior of the solutions as
t : 
 agree with your answers to part (b)?

dX

dt
� k(� � X)(� � X),

m
dv

dt
� mg � kv2

2.2 SEPARABLE VARIABLES

REVIEW MATERIAL
● Basic integration formulas (See inside front cover)
● Techniques of integration: integration by parts and partial fraction decomposition
● See also the Student Resource and Solutions Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest of
all differential equations: first-order equations with separable variables. Because the method in this
section and many techniques for solving differential equations involve integration, you are urged to
refresh your memory on important formulas (such as 	 du�u) and techniques (such as integration by
parts) by consulting a calculus text.



SOLUTION BY INTEGRATION Consider the first-order differential equation
dy�dx � f (x, y). When f does not depend on the variable y, that is, f (x, y) � g(x), the
differential equation

(1)

can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives , where G(x) is an antiderivative (indefi-
nite integral) of g(x). For example, if dy�dx � 1 � e2x, then its solution is

or .

A DEFINITION Equation (1), as well as its method of solution, is just a special
case when the function f in the normal form dy�dx � f (x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

is said to be separable or to have separable variables.

For example, the equations

are separable and nonseparable, respectively. In the first equation we can factor
f (x, y) � y2xe3x�4y as

g(x) h(y)
p p

,

but in the second equation there is no way of expressing y � sin x as a product of a
function of x times a function of y.

Observe that by dividing by the function h(y), we can write a separable equation
dy�dx � g(x)h(y) as

, (2)

where, for convenience, we have denoted 1�h(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when h(y) � 1.

Now if y � �(x) represents a solution of (2), we must have p(� (x))��(x) � g(x),
and therefore

. (3)

But dy � ��(x) dx, and so (3) is the same as

, (4)

where H(y) and G(x) are antiderivatives of p(y) � 1�h(y) and g(x), respectively.

� p(y) dy � � g(x) dx    or    H(y) � G(x) � c

� p(� (x))��(x) dx � � g(x) dx

p(y)
dy

dx
� g(x)

f (x, y) � y2xe3x�4y �  (xe3x )( y2e4y)

dy

dx
� y2xe3x�4y    and    

dy

dx
� y � sin x

dy

dx
� g(x)h(y)

y � x � 1
2e2x � cy � 	(1 � e2x) dx

y � 	g(x) dx � G(x) � c

dy

dx
� g(x)

2.2 SEPARABLE VARIABLES ● 45
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METHOD OF SOLUTION Equation (4) indicates the procedure for solving
separable equations. A one-parameter family of solutions, usually given implicitly, is
obtained by integrating both sides of p(y) dy � g(x) dx.

NOTE There is no need to use two constants in the integration of a separable equa-
tion, because if we write H(y) � c1 � G(x) � c2, then the difference c2 � c1 can be
replaced by a single constant c, as in (4). In many instances throughout the chapters
that follow, we will relabel constants in a manner convenient to a given equation. For
example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

EXAMPLE 1 Solving a Separable DE

Solve (1 � x) dy � y dx � 0.

SOLUTION Dividing by (1 � x)y, we can write dy�y � dx�(1 � x), from which it
follows that

; laws of exponents

Relabeling as c then gives y � c(1 � x).

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is ln�c � rather than c. Rewriting the second
line of the solution as ln�y � � ln�1 � x � � ln�c � enables us to combine the terms on
the right-hand side by the properties of logarithms. From ln�y � � ln�c(1 � x) � we
immediately get y � c(1 � x). Even if the indefinite integrals are not all logarithms,
it may still be advantageous to use ln�c �. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) � 0.

EXAMPLE 2 Solution Curve

Solve the initial-value problem .

SOLUTION Rewriting the equation as y dy � �x dx, we get

.

We can write the result of the integration as x2 � y2 � c2 by replacing the constant
2c1 by c2. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now when x � 4, y � �3, so 16 � 9 � 25 � c2. Thus the initial-value problem
determines the circle x2 � y2 � 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.

� y dy � �� x dx    and    
y2

2
� �

x2

2
� c1

dy

dx
� �

x

y
,  y(4) � �3

�ec1

� �ec1(1 � x).

� � 1 � x � ec1

y � eln�1�x��c1 � eln�1�x� � ec1

 ln� y � � ln� 1 � x � � c1

� dy

y
� � dx

1 � x

;�� 1 � x � � 1 � x,

� 1 � x � � �(1 � x),  
x ��1

x <�1



We saw this solution as y � �2(x) or in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, �3).

LOSING A SOLUTION Some care should be exercised in separating variables,
since the variable divisors could be zero at a point. Specifically, if r is a zero 
of the function h(y), then substituting y � r into dy�dx � g(x)h(y) makes both sides
zero; in other words, y � r is a constant solution of the differential equation.

But after variables are separated, the left-hand side of � g(x) dx is undefined at r.

As a consequence, y � r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular
solution.

EXAMPLE 3 Losing a Solution

Solve .

SOLUTION We put the equation in the form

. (5)

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms gives

.

Here we have replaced 4c1 by c2. Finally, after replacing by c and solving the
last equation for y, we get the one-parameter family of solutions

. (6)

Now if we factor the right-hand side of the differential equation as 
dy�dx � (y � 2)(y � 2), we know from the discussion of critical points in Section 2.1
that y � 2 and y � �2 are two constant (equilibrium) solutions. The solution y � 2 is a
member of the family of solutions defined by (6) corresponding to the value c � 0.
However, y � �2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter c. This latter solution was lost early on in the solution process. Inspection
of (5) clearly indicates that we must preclude y � �2 in these steps.

EXAMPLE 4 An Initial-Value Problem

Solve .(e2y � y) cos x
dy

dx
� ey sin 2x, y(0) � 0

y � 2
1 � ce4x

1 � ce4x

�ec2

 or    ln� y � 2

y � 2 � � 4x � c2    or    
y � 2

y � 2
� �e4x�c2

1

4
 ln� y � 2 � �

1

4
 ln� y � 2 � � x � c1

dy

y2 � 4
� dx    or    
 1

4

y � 2
�

1
4

y � 2 � dy � dx

dy

dx
� y2 � 4

dy

h(y)

y � �125 � x2, �5 � x � 5

FIGURE 2.2.1 Solution curve for the
IVP in Example 2

x

y

(4, −3)
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SOLUTION Dividing the equation by ey cos x gives

.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x � 2 sin x cos x on the right-hand side. Then

integration by parts :

yields ey � ye�y � e�y � �2 cos x � c. (7)

The initial condition y � 0 when x � 0 implies c � 4. Thus a solution of the initial-
value problem is

ey � ye�y � e�y � 4 � 2 cos x. (8)

USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) � 0 to find an explicit
solution y � � (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) �
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way* of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z � G(x, y) the two-
dimensional curves defined by G(x, y) � c, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x, y) � ey � ye�y � e�y � 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) � c. Figure 2.2.3 illus-
trates the level curve G(x, y) � 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) � 2, which is the member
of the family G(x, y) � c that satisfies y(��2) � 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is
a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

(9)

has at least two solutions, y � 0 and . We are now in a position to solve the
equation. Separating variables and integrating y�1/2 dy � x dx gives

.

When x � 0, then y � 0, so necessarily, c � 0. Therefore . The trivial solution
y � 0 was lost by dividing by y1/2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter a � 0 the

y � 1
16 x

4

2y1/2 �
x2

2
� c1    or    y � �x2

4
� c�

2

y � 1
16 x

4

dy

dx
� xy1/2,  y(0) � 0

� (ey � ye�y) dy � 2 � sin x dx

e2y � y

ey dy �
sin 2x

cos x
dx

x

y

2_2
_2

_1

1

2

_1 1
FIGURE 2.2.2 Level curves 
G(x, y) � c, where 
G(x, y) � ey � ye�y � e�y � 2 cos x

FIGURE 2.2.3 Level curves 
c � 2 and c � 4

(0, 0) /2,0) (π 
x

y

2_2
_2

_1

1

2

_1 1

c=4

c=2

*In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a
numerical solver.



piecewise-defined function

satisfies both the differential equation and the initial condition. See Figure 2.2.4.

SOLUTIONS DEFINED BY INTEGRALS If g is a function continuous on an open
interval I containing a, then for every x in I,

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval I containing x0 and x, then a solution of the simple initial-
value problem , that is defined on I is given by

You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

EXAMPLE 5 An Initial-Value Problem

Solve 

SOLUTION The function is continuous on , but its antideriva-
tive is not an elementary function. Using t as dummy variable of integration, we can
write

Using the initial condition y(3) � 5, we obtain the solution

The procedure demonstrated in Example 5 works equally well on separable
equations where, say, f (y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2.

dy>dx � g(x) f (y)

y(x) � 5 � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt

y(t)]x

3
� �x

3
e�t2

dt

�x

3

dy

dt
dt � �x

3
e�t2

dt

(�
, 
)g(x) � e�x2

dy

dx
� e�x2

,  y(3) � 5.

y(x) � y0 � �x

x0

g(t) dt

dy>dx � g(x), y(x0) � y0

�x
a g(t) dt

d

dx
�x

a
g(t) dt � g(x).

y � �0,
1

16 (x
2 � a2)2,

x � a

x � a

a =   > 0 a 0

(0, 0) x

y

FIGURE 2.2.4 Piecewise-defined
solutions of (9)
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REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, and are
nonelementary integrals. We will run into this concept again in Section 2.3.

(ii) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 � y2) dx � (1 � x2) dy � 0 are

.

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

arctan x � arctan y � c    or    
x � y

1 � xy
� c

�sin x2 dx�x
3 e�t2

dt

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–22 solve the given differential equation by
separation of variables.

1. 2.

3. dx � e3xdy � 0 4. dy � (y � 1)2dx � 0

5. 6.

7. 8.

9. 10.

11. csc y dx � sec2x dy � 0

12. sin 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1/2 dx � y(1 � x2)1/2 dy

15. 16.

17. 18.

19. 20.
dy

dx
�

xy � 2y � x � 2

xy � 3y � x � 3

dy

dx
�

xy � 3x � y � 3

xy � 2x � 4y � 8

dN

dt
� N � Ntet�2dP

dt
� P � P2

dQ

dt
� k(Q � 70)

dS

dr
� kS

dy

dx
� �2y � 3

4x � 5�
2

y ln x
dx

dy
� �y � 1

x �
2

exy
dy

dx
� e�y � e�2x�ydy

dx
� e3x�2y

dy

dx
� 2xy2 � 0x

dy

dx
� 4y

dy

dx
� (x � 1)2dy

dx
� sin 5x

21. 22.

In Problems 23–28 find an explicit solution of the given
initial-value problem.

23.

24.

25.

26.

27.

28. (1 � x4) dy � x(1 � 4y2) dx � 0, y(1) � 0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.

29.

30.

31. (a) Find a solution of the initial-value problem consisting
of the differential equation in Example 3 and the ini-
tial conditions y(0) � 2, y(0) � �2, and .y (1

4) � 1

dy

dx
� y 2 sin x2,  y(�2) � 1

3

dy

dx
� ye�x2

,  y(4) � 1

11 � y2 dx � 11 � x2 dy � 0, y(0) �
13

2

dy

dt
� 2y � 1, y(0) � 5

2

x2 dy

dx
� y � xy, y(�1) � �1

dy

dx
�

y2 � 1

x2 � 1
, y(2) � 2

dx

dt
� 4(x2 � 1), x(�>4) � 1

(ex � e�x)
dy

dx
� y2dy

dx
� x11 � y2



(b) Find the solution of the differential equation in
Example 4 when ln c1 is used as the constant of
integration on the left-hand side in the solution and
4 ln c1 is replaced by ln c. Then solve the same
initial-value problems in part (a).

32. Find a solution of that passes through

the indicated points.

(a) (0, 1) (b) (0, 0) (c) (d)

33. Find a singular solution of Problem 21. Of Problem 22.

34. Show that an implicit solution of

is given by ln(x2 � 10) � csc y � c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 35–38 find
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

35.

36.

37.

38.

39. Every autonomous first-order equation dy�dx � f (y)
is separable. Find explicit solutions y1(x), y2(x), y3(x),
and y4(x) of the differential equation dy�dx � y � y3

that satisfy, in turn, the initial conditions y1(0) � 2,
, , and y4(0) � �2. Use a graphing

utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises
2.1. Give the exact interval of definition for each solution.

40. (a) The autonomous first-order differential equation 
dy�dx � 1�(y � 3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d2y�dx2

to determine where solution curves are concave up
and where they are concave down (see Problems 35
and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y1(x), y2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y1(0) � 4, y2(0) � 2,

y3(0) � �1
2y2(0) � 1

2

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2, y(0) � 1.01

dy

dx
� (y � 1)2, y(0) � 1

2x sin2 y dx � (x2 � 10) cos y dy � 0

(2, 1
4)(1

2,
1
2)

x
dy

dx
� y2 � y

y3(1) � 2, and y4(�1) � 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

41. (a) Find an explicit solution of the initial-value problem

.

(b) Use a graphing utility to plot the graph of the solu-
tion in part (a). Use the graph to estimate the inter-
val I of definition of the solution.

(c) Determine the exact interval I of definition by ana-
lytical methods.

42. Repeat parts (a)– (c) of Problem 41 for the IVP consist-
ing of the differential equation in Problem 7 and the ini-
tial condition y(0) � 0.

Discussion Problems

43. (a) Explain why the interval of definition of the explicit
solution y � �2(x) of the initial-value problem in
Example 2 is the open interval (�5, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x2 � y2 � 1 is an
implicit solution of the initial-value problem 
dy�dx � �x�y, y(1) � 0?

44. (a) If a � 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy�dx � x�y and
each of the initial conditions y(a) � a, y(a) � �a,
y(�a) � a, and y(�a) � �a.

(b) Does the initial-value problem dy�dx � x�y,
y(0) � 0 have a solution?

(c) Solve dy�dx � x�y, y(1) � 2 and give the exact
interval I of definition of its solution.

45. In Problems 39 and 40 we saw that every autonomous
first-order differential equation dy�dx � f (y) is
separable. Does this fact help in the solution of the

initial-value problem ?

Discuss. Sketch, by hand, a plausible solution curve of
the problem.

46. Without the use of technology, how would you solve

?

Carry out your ideas.

47. Find a function whose square plus the square of its
derivative is 1.

48. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

dy

dx
� B

1 � y2

1 � x2

(1x � x) dy

dx
� 1y � y

dy

dx
� 11 � y2 sin2 y, y(0) � 1

2

dy

dx
�

2x � 1

2y
,  y(�2) � �1
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in the square region in the xy-plane defined by
�x � � 1, �y � � 1. But the quantity under the radical is
nonnegative also in the regions defined by �x � � 1,
�y � � 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
�x � � 1, �y � � 1. Then find an implicit and an
explicit solution of the differential equation subject
to y(2) � 2.

Mathematical Model

49. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

, (10)

where W denotes the portion of the total vertical load
between the points P1 and P2 shown in Figure 1.3.7. The
DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, a), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [�L�2, L�2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant �. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y � �(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.

dy

dx
�

W

T1

family of solutions of the differential equation

. Experiment with different numbers

of level curves as well as various rectangular
regions defined by a � x � b, c � y � d.

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) � �1; y(0) � 2; y(�1) � 4;
y(�1) � �3.

51. (a) Find an implicit solution of the IVP

(b) Use part (a) to find an explicit solution y � �(x) of
the IVP.

(c) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval I of defi-
nition of the solution y � �(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

52. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation

. Experiment with different 

numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion . Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution � that satisfies the initial
condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution �.  [Hint: First find
the points on the curve in part (a) where the tangent
is vertical.]

(c) Repeat part (b) for the initial condition y(0) � �2.

y(0) � 3
2

dy

dx
�

x(1 � x)

y(�2 � y)

(2y � 2) dy � (4x3 � 6x) dx �  0, y(0) � �3.

dy

dx
� �

8x � 5

3y2 � 1

FIGURE 2.2.5 Shape of a cable in Problem 49
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FIGURE 2.2.6 Level curves in Problem 52

Computer Lab Assignments

50. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the


