
42. Determine a plausible value of x0 for which the
graph of the solution of the initial-value problem 
y� � 2y � 3x � 6, y(x0) � 0 is tangent to the x-axis at
(x0, 0). Explain your reasoning.

43. Suppose that the first-order differential equation 
dy�dx � f (x, y) possesses a one-parameter family of
solutions and that f (x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the 
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point
(x0, y0) in R.

44. The functions and

have the same domain but are clearly different. See
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem

y(x) � �0,
1

16 x
4,

 x � 0

  x � 0

y(x) � 1
16 x

4, �
 � x � 
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FIGURE 1.2.11 Graphs for Problem 41

(0, )1
2

1

1 x

y

dy�dx � xy1/2, y(2) � 1 on the interval (�
, 
).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

Mathematical Model

45. Population Growth Beginning in the next section
we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

where P is the number of individuals in the community
and time t is measured in years. How fast—that is, at
what rate—is the population increasing at t � 0? How
fast is the population increasing when the population
is 500?

dP

dt
� 0.15P(t) � 20,  P(0) � 100,

FIGURE 1.2.12 Two solutions of the IVP in Problem 44

(a)

(2, 1)

y

x

(b)

(2, 1)

y

x

DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS

REVIEW MATERIAL
● Units of measurement for weight, mass, and density
● Newton’s second law of motion
● Hooke’s law
● Kirchhoff’s laws
● Archimedes’ principle

INTRODUCTION In this section we introduce the notion of a differential equation as a
mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of
these models in Chapters 3 and 5.

1.3

MATHEMATICAL MODELS It is often desirable to describe the behavior of
some real-life system or phenomenon, whether physical, sociological, or even eco-
nomic, in mathematical terms. The mathematical description of a system of phenom-
enon is called a mathematical model and is constructed with certain goals in mind.
For example, we may wish to understand the mechanisms of a certain ecosystem by
studying the growth of animal populations in that system, or we may wish to date
fossils by analyzing the decay of a radioactive substance either in the fossil or in the
stratum in which it was discovered.



Construction of a mathematical model of a system starts with

(i) identification of the variables that are responsible for changing the
system. We may choose not to incorporate all these variables into the
model at first. In this step we are specifying the level of resolution of
the model.

Next

(ii) we make a set of reasonable assumptions, or hypotheses, about the
system we are trying to describe. These assumptions will also include
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-
resolution models. For example, you may already be aware that in beginning
physics courses, the retarding force of air friction is sometimes ignored in modeling
the motion of a body falling near the surface of the Earth, but if you are a scientist
whose job it is to accurately predict the flight path of a long-range projectile,
you have to take into account air resistance and other factors such as the curvature
of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions
may be one or more equations involving derivatives. In other words, the mathemat-
ical model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equa-
tion or a system of differential equations, we are faced with the not insignificant
problem of trying to solve it. If we can solve it, then we deem the model to be reason-
able if its solution is consistent with either experimental data or known facts about
the behavior of the system. But if the predictions produced by the solution are poor,
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the following diagram:

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t.
A solution of the model then gives the state of the system; in other words, the values
of the dependent variable (or variables) for appropriate values of t describe the system
in the past, present, and future.

POPULATION DYNAMICS One of the earliest attempts to model human popula-
tion growth by means of mathematics was by the English economist Thomas Malthus
in 1798. Basically, the idea behind the Malthusian model is the assumption that the rate
at which the population of a country grows at a certain time is proportional* to the total
population of the country at that time. In other words, the more people there are at time t,
the more there are going to be in the future. In mathematical terms, if P(t) denotes the

Assumptions
Mathematical
formulation

Obtain
solutions

Check model
predictions with

known facts

Express assumptions in terms
of differential equations

Display model predictions
(e.g., graphically)

Solve the DEs
If necessary,

alter assumptions
or increase resolution

of model
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*If two quantities u and v are proportional, we write u � v. This means that one quantity is a constant
multiple of the other: u � kv.



total population at time t, then this assumption can be expressed as

, (1)

where k is a constant of proportionality. This simple model, which fails to take into
account many factors that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790–1860.
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used
to model growth of small populations over short intervals of time (bacteria growing
in a petri dish, for example).

RADIOACTIVE DECAY The nucleus of an atom consists of combinations of pro-
tons and neutrons. Many of these combinations of protons and neutrons are unstable—
that is, the atoms decay or transmute into atoms of another substance. Such nuclei are
said to be radioactive. For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of
radioactive decay, it is assumed that the rate dA�dt at which the nuclei of a sub-
stance decay is proportional to the amount (more precisely, the number of nuclei)
A(t) of the substance remaining at time t:

. (2)

Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we
expect in (1), k � 0, and for decay, as in (2), k � 0.

The model (1) for growth can also be seen as the equation dS�dt � rS, which
describes the growth of capital S when an annual rate of interest r is compounded
continuously. The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug—the time that it takes for 50% of a drug to be
eliminated from a body by excretion or metabolism. In chemistry the decay model
(2) appears in the mathematical description of a first-order chemical reaction. The
point is this:

A single differential equation can serve as a mathematical model for many
different phenomena.

Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population P0 and
the initial amount of radioactive substance A0 on hand. If the initial point in time is
taken to be t � 0, then we know that P(0) � P0 and A(0) � A0. In other words, a
mathematical model can consist of either an initial-value problem or, as we shall see
later on in Section 5.2, a boundary-value problem.

NEWTON’S LAW OF COOLING/WARMING According to Newton’s empiri-
cal law of cooling/warming, the rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the temper-
ature of the surrounding medium, the so-called ambient temperature. If T(t) repre-
sents the temperature of a body at time t, Tm the temperature of the surrounding
medium, and dT�dt the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement

, (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a
constant, it stands to reason that k � 0.

dT

dt
� T � Tm    or    

dT

dt
� k(T � Tm)

dA

dt
� A    or    

dA

dt
� kA

dP

dt
� P    or    

dP

dt
� kP
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SPREAD OF A DISEASE A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(t) denote the number of people who have contracted the disease and y(t) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx�dt at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(t) and y(t)—that is, proportional to the
product xy—then

, (4)

where k is the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(t) and y(t) are related by x � y � n � 1. Using
this last equation to eliminate y in (4) gives us the model

. (5)

An obvious initial condition accompanying equation (5) is x(0) � 1.

CHEMICAL REACTIONS The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-order reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(t) is the amount of substance A
remaining at any time, then dX�dt � kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of t-butyl
chloride, (CH3)3CCl, into t-butyl alcohol, (CH3)3COH:

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the
reaction

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH3Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance A combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time t and if � and �
are, in turn, the amounts of the two chemicals A and B at t � 0 (the initial amounts),
then the instantaneous amounts of A and B not converted to chemical C are � � X
and � � X, respectively. Hence the rate of formation of C is given by

, (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is
said to be a second-order reaction.

MIXTURES The mixing of two salt solutions of differing concentrations gives
rise to a first-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that
is, water in which a certain number of pounds of salt has been dissolved). Another

dX

dt
� k(� � X)(� � X)

CH3Cl � NaOH : CH3OH � NaCl

(CH3)3CCl � NaOH : (CH3)3COH � NaCl.

dx

dt
� kx(n � 1 � x)

dx

dt
� kxy
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brine solution is pumped into the large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds per gallon. When the solution in
the tank is well stirred, it is pumped out at the same rate as the entering solution. See
Figure 1.3.1. If A(t) denotes the amount of salt (measured in pounds) in the tank at
time t, then the rate at which A(t) changes is a net rate:

. (7)

The input rate Rin at which salt enters the tank is the product of the inflow concentra-
tion of salt and the inflow rate of fluid. Note that Rin is measured in pounds per
minute:

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time t is a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(t) � A(t)�300 lb/gal, so the output rate Rout of salt is

The net rate (7) then becomes

(8)

If rin and rout denote general input and output rates of the brine solutions,* then
there are three possibilities: rin � rout, rin � rout, and rin � rout. In the analysis lead-
ing to (8) we have assumed that rin � rout. In the latter two cases the number of gal-
lons of brine in the tank is either increasing (rin � rout) or decreasing (rin � rout) at
the net rate rin � rout. See Problems 10–12 in Exercises 1.3.

DRAINING A TANK In hydrodynamics Torricelli’s law states that the speed v of
efflux of water though a sharp-edged hole at the bottom of a tank filled to a depth h
is the same as the speed that a body (in this case a drop of water) would acquire in
falling freely from a height h—that is, , where g is the acceleration due to
gravity. This last expression comes from equating the kinetic energy with the
potential energy mgh and solving for v. Suppose a tank filled with water is allowed to
drain through a hole under the influence of gravity. We would like to find the depth h
of water remaining in the tank at time t. Consider the tank shown in Figure 1.3.2. If
the area of the hole is Ah (in ft2) and the speed of the water leaving the tank is

(in ft/s), then the volume of water leaving the tank per second is 
(in ft3/s). Thus if V(t) denotes the volume of water in the tank at time t, then

, (9)
dV

dt
� �Ah12gh

Ah12ghv � 12gh

1
2mv2

v � 12gh

dA

dt
� 6 �

A

100
    or    

dA

dt
�

1

100
A � 6.

Rout � (        lb/gal) 
 (3 gal/min) �         lb/min.
A(t)
––––
300

A(t)
––––
100

concentration
of salt

in outflow
output rate

of brine
output rate

of salt

concentration
of salt

in inflow
input rate
of brine

input rate
of salt

Rin � (2 lb/gal) 
 (3 gal/min) � (6 lb/min).

dA

dt
� �input rate

of salt � � �output rate

of salt � � Rin � Rout
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input rate of brine
3 gal/min

output rate of brine
3 gal/min

constant
300 gal

FIGURE 1.3.1 Mixing tank

h

Aw

Ah

FIGURE 1.3.2 Draining tank

*Don’t confuse these symbols with Rin and Rout, which are input and output rates of salt.



where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) � Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.2), then dV�dt � Aw dh�dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw � A(h). See Problem 14 in Exercises 1.3.

SERIES CIRCUITS Consider the single-loop series circuit shown in Figure 1.3.3(a),
containing an inductor, resistor, and capacitor. The current in a circuit after a switch
is closed is denoted by i(t); the charge on a capacitor at time t is denoted by q(t). The
letters L, R, and C are known as inductance, resistance, and capacitance, respectively,
and are generally constants. Now according to Kirchhoff’s second law, the im-
pressed voltage E(t) on a closed loop must equal the sum of the voltage drops in the
loop. Figure 1.3.3(b) shows the symbols and the formulas for the respective voltage
drops across an inductor, a capacitor, and a resistor. Since current i(t) is related to
charge q(t) on the capacitor by i � dq�dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

FALLING BODIES To construct a mathematical model of the motion of a body
moving in a force field, one often starts with Newton’s second law of motion. Recall
from elementary physics that Newton’s first law of motion states that a body either
will remain at rest or will continue to move with a constant velocity unless acted on
by an external force. In each case this is equivalent to saying that when the sum of
the forces —that is, the net or resultant force—acting on the body is zero,
then the acceleration a of the body is zero. Newton’s second law of motion
indicates that when the net force acting on a body is not zero, then the net force is
proportional to its acceleration a or, more precisely, F � ma, where m is the mass of
the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated in
Figure 1.3.4. What is the position s(t) of the rock relative to the ground at time t? The
acceleration of the rock is the second derivative d2s�dt2. If we assume that the up-
ward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F � F1 � �W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W � mg, where m is

m
d 2s

dt2 � �mg    or    
d 2s

dt2 � �g

F � � Fk

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t).

L
di

dt
� L

d 2q

dt2 ,    iR � R
dq

dt
,    and    

1

C
q

dh

dt
� �

Ah

Aw

12gh
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(b)

E(t)
L

C

R

(a) LRC-series circuit

(b)

L

R

Inductor
inductance L: henries (h)

voltage drop across: L
di
dt

i

Capacitor
capacitance C: farads (f)

voltage drop across:
1
C

i

Resistor
resistance R: ohms (Ω)
voltage drop across: iR

i

q

C

FIGURE 1.3.3 Symbols, units, and
voltages. Current i(t) and charge q(t) are
measured in amperes (A) and coulombs
(C), respectively

ground

building

rock

s(t)
s0

v0

FIGURE 1.3.4 Position of rock
measured from ground level



the mass of the body and g is the acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s0 and the initial velocity of the
rock is v0, then s is determined from the second-order initial-value problem

. (13)

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant �g twice with
respect to t. The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula

FALLING BODIES AND AIR RESISTANCE Before Galileo’s famous experiment
from the leaning tower of Pisa, it was generally believed that heavier objects in free
fall, such as a cannonball, fell with a greater acceleration than lighter objects, such as
a feather. Obviously, a cannonball and a feather when dropped simultaneously from
the same height do fall at different rates, but it is not because a cannonball is heavier.
The difference in rates is due to air resistance. The resistive force of air was ignored
in the model given in (13). Under some circumstances a falling body of mass m, such
as a feather with low density and irregular shape, encounters air resistance propor-
tional to its instantaneous velocity v. If we take, in this circumstance, the positive
direction to be oriented downward, then the net force acting on the mass is given by
F � F1 � F2 � mg � kv, where the weight F1 � mg of the body is force acting in the
positive direction and air resistance F2 � �kv is a force, called viscous damping,
acting in the opposite or upward direction. See Figure 1.3.5. Now since v is related to
acceleration a by a � dv�dt, Newton’s second law becomes F � ma � m dv�dt. By
equating the net force to this form of Newton’s second law, we obtain a first-order
differential equation for the velocity v(t) of the body at time t,

. (14)

Here k is a positive constant of proportionality. If s(t) is the distance the body falls in
time t from its initial point of release, then v � ds�dt and a � dv�dt � d2s�dt2. In
terms of s, (14) is a second-order differential equation

(15)

SUSPENDED CABLES Suppose a flexible cable, wire, or heavy rope is suspended
between two vertical supports. Physical examples of this could be one of the two
cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.6(a) or
a long telephone wire strung between two posts as shown in Figure 1.3.6(b). Our goal
is to construct a mathematical model that describes the shape that such a cable
assumes.

To begin, let’s agree to examine only a portion or element of the cable between
its lowest point P1 and any arbitrary point P2. As drawn in blue in Figure 1.3.7, this
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P1 on the curve and the x-axis chosen a units
below P1. Three forces are acting on the cable: the tensions T1 and T2 in the cable
that are tangent to the cable at P1 and P2, respectively, and the portion W of the total
vertical load between the points P1 and P2. Let T1 � �T1�, T2 � �T2�, and 
W � �W� denote the magnitudes of these vectors. Now the tension T2 resolves
into horizontal and vertical components (scalar quantities) T2 cos � and T2 sin �.

m
d 2s

dt 2 � mg � k
ds

dt
    or    m

d 2s

dt 2 � k
ds

dt
� mg.

m
dv

dt
� mg � kv

s(t) � �1
2gt2 � v0t � s0.

d 2s

dt 2 � �g,  s(0) � s0,  s�(0) � v0
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Because of static equilibrium we can write

By dividing the last equation by the first, we eliminate T2 and get tan � � W�T1. But
because dy�dx � tan �, we arrive at

(16)

This simple first-order differential equation serves as a model for both the shape of a
flexible wire such as a telephone wire hanging under its own weight and the shape of
the cables that support the roadbed of a suspension bridge. We will come back to
equation (16) in Exercises 2.2 and Section 5.3.

WHAT LIES AHEAD Throughout this text you will see three different types of
approaches to, or analyses of, differential equations. Over the centuries differential
equations would often spring from the efforts of a scientist or engineer to describe
some physical phenomenon or to translate an empirical or experimental law into
mathematical terms. As a consequence a scientist, engineer, or mathematician would
often spend many years of his or her life trying to find the solutions of a DE. With a
solution in hand, the study of its properties then followed. This quest for solutions is
called by some the analytical approach to differential equations. Once they realized
that explicit solutions are at best difficult to obtain and at worst impossible to obtain,
mathematicians learned that a differential equation itself could be a font of valuable
information. It is possible, in some instances, to glean directly from the differential
equation answers to questions such as Does the DE actually have solutions? If a
solution of the DE exists and satisfies an initial condition, is it the only such solu-
tion? What are some of the properties of the unknown solutions? What can we say
about the geometry of the solution curves? Such an approach is qualitative analysis.
Finally, if a differential equation cannot be solved by analytical methods, yet we
can prove that a solution exists, the next logical query is Can we somehow approxi-
mate the values of an unknown solution? Here we enter the realm of numerical
analysis. An affirmative answer to the last question stems from the fact that a differ-
ential equation can be used as a cornerstone for constructing very accurate approxi-
mation algorithms. In Chapter 2 we start with qualitative considerations of first-order
ODEs, then examine analytical stratagems for solving some special first-order equa-
tions, and conclude with an introduction to an elementary numerical method. See
Figure 1.3.8.

dy

dx
�

W

T1
.

T1 � T2 cos �    and    W � T2 sin �.
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(a) analytical (b) qualitative (c) numerical

y'=f(y)

FIGURE 1.3.8 Different approaches to the study of differential equations



REMARKS

Each example in this section has described a dynamical system—a system that
changes or evolves with the flow of time t. Since the study of dynamical
systems is a branch of mathematics currently in vogue, we shall occasionally
relate the terminology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that enables
us to determine (without ambiguity) the state of the system (this may be a past,
present, or future state) in terms of a state prescribed at some time t0. Dynamical
systems are classified as either discrete-time systems or continuous-time systems.
In this course we shall be concerned only with continuous-time systems—
systems in which all variables are defined over a continuous range of time. The
rule, or mathematical model, in a continuous-time dynamical system is a differ-
ential equation or a system of differential equations. The state of the system
at a time t is the value of the state variables at that time; the specified state of
the system at a time t0 is simply the initial conditions that accompany the math-
ematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the case of radioactive decay, the rule
is dA�dt � kA. Now if the quantity of a radioactive substance at some time t0 is
known, say A(t0) � A0, then by solving the rule we find that the response of the
system for t � t0 is (see Section 3.1). The response A(t) is the
single state variable for this system. In the case of the rock tossed from the roof
of a building, the response of the system—the solution of the differential
equation d2s�dt2 � �g, subject to the initial state s(0) � s0, s�(0) � v0 , is the
function , where T represents the time
when the rock hits the ground. The state variables are s(t) and s�(t), which
are the vertical position of the rock above ground and its velocity at time t,
respectively. The acceleration s	(t) is not a state variable, since we have to know
only any initial position and initial velocity at a time t0 to uniquely determine
the rock’s position s(t) and velocity s�(t) � v(t) for any time in the interval 
t0 � t � T. The acceleration s	(t) � a(t) is, of course, given by the differential
equation s	(t) � �g, 0 � t � T.

One last point: Not every system studied in this text is a dynamical system.
We shall also examine some static systems in which the model is a differential
equation.

s(t) � �1
2gt2 � v0t � s0, 0 � t � T

A(t) � A0e(t� t0)
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EXERCISES 1.3 Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

1. Under the same assumptions that underlie the model in
(1), determine a differential equation for the population
P(t) of a country when individuals are allowed to
immigrate into the country at a constant rate r � 0.
What is the differential equation for the population P(t)
of the country when individuals are allowed to emigrate
from the country at a constant rate r � 0?

2. The population model given in (1) fails to take death
into consideration; the growth rate equals the birth rate.
In another model of a changing population of a commu-
nity it is assumed that the rate at which the population
changes is a net rate—that is, the difference between

the rate of births and the rate of deaths in the commu-
nity. Determine a model for the population P(t) if both
the birth rate and the death rate are proportional to the
population present at time t.

3. Using the concept of net rate introduced in Problem 2,
determine a model for a population P(t) if the birth rate
is proportional to the population present at time t but the
death rate is proportional to the square of the population
present at time t.

4. Modify the model in Problem 3 for net rate at which
the population P(t) of a certain kind of fish changes by
also assuming that the fish are harvested at a constant
rate h � 0.



Newton’s Law of Cooling/Warming

5. A cup of coffee cools according to Newton’s law of
cooling (3). Use data from the graph of the temperature
T(t) in Figure 1.3.9 to estimate the constants Tm, T0, and
k in a model of the form of a first-order initial-value
problem: dT�dt � k(T � Tm), T(0) � T0.
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number of people x(t) who have adopted the innovation
at time t if it is assumed that the rate at which the innova-
tions spread through the community is jointly propor-
tional to the number of people who have adopted it and
the number of people who have not adopted it.

Mixtures

9. Suppose that a large mixing tank initially holds 300 gal-
lons of water in which 50 pounds of salt have been dis-
solved. Pure water is pumped into the tank at a rate of
3 gal/min, and when the solution is well stirred, it is
then pumped out at the same rate. Determine a differen-
tial equation for the amount of salt A(t) in the tank at
time t. What is A(0)?

10. Suppose that a large mixing tank initially holds 300 gal-
lons of water is which 50 pounds of salt have been
dissolved. Another brine solution is pumped into the tank
at a rate of 3 gal/min, and when the solution is well
stirred, it is then pumped out at a slower rate of 2 gal/min.
If the concentration of the solution entering is 2 lb/gal,
determine a differential equation for the amount of salt
A(t) in the tank at time t.

11. What is the differential equation in Problem 10, if the
well-stirred solution is pumped out at a faster rate of
3.5 gal/min?

12. Generalize the model given in equation (8) on page 23
by assuming that the large tank initially contains N0

number of gallons of brine, rin and rout are the input and
output rates of the brine, respectively (measured in gal-
lons per minute), cin is the concentration of the salt in
the inflow, c(t) the concentration of the salt in the tank
as well as in the outflow at time t (measured in pounds
of salt per gallon), and A(t) is the amount of salt in the
tank at time t.

Draining a Tank

13. Suppose water is leaking from a tank through a circular
hole of area Ah at its bottom. When water leaks through a
hole, friction and contraction of the stream near the hole
reduce the volume of water leaving the tank per second to

where c (0 � c � 1) is an empirical constant.
Determine a differential equation for the height h of water
at time t for the cubical tank shown in Figure 1.3.11. The
radius of the hole is 2 in., and g � 32 ft/s2.

cAh12gh,

FIGURE 1.3.9 Cooling curve in Problem 5

FIGURE 1.3.10 Ambient temperature in Problem 6
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6. The ambient temperature Tm in (3) could be a function
of time t. Suppose that in an artificially controlled
environment, Tm(t) is periodic with a 24-hour period,
as illustrated in Figure 1.3.10. Devise a mathematical
model for the temperature T(t) of a body within this
environment.

Spread of a Disease/Technology

7. Suppose a student carrying a flu virus returns to an iso-
lated college campus of 1000 students. Determine a dif-
ferential equation for the number of people x(t) who have
contracted the flu if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the flu and the number of
students who have not yet been exposed to it.

8. At a time denoted as t � 0 a technological innovation is
introduced into a community that has a fixed population
of n people. Determine a differential equation for the

h

circular
hole

10 ft

Aw

FIGURE 1.3.11 Cubical tank in Problem 13



14. The right-circular conical tank shown in Figure 1.3.12
loses water out of a circular hole at its bottom. Determine
a differential equation for the height of the water h at
time t. The radius of the hole is 2 in., g � 32 ft/s2, and
the friction/contraction factor introduced in Problem 13
is c � 0.6.
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Newton’s Second Law and Archimedes’ Principle

18. A cylindrical barrel s feet in diameter of weight w lb
is floating in water as shown in Figure 1.3.16(a). After
an initial depression the barrel exhibits an up-and-
down bobbing motion along a vertical line. Using
Figure 1.3.16(b), determine a differential equation for
the vertical displacement y(t) if the origin is taken to be
on the vertical axis at the surface of the water when the
barrel is at rest. Use Archimedes’ principle: Buoyancy,
or upward force of the water on the barrel, is equal to
the weight of the water displaced. Assume that the
downward direction is positive, that the weight density
of water is 62.4 lb/ft3, and that there is no resistance
between the barrel and the water.

FIGURE 1.3.12 Conical tank in Problem 14
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FIGURE 1.3.13 LR series circuit in Problem 15

FIGURE 1.3.14 RC series circuit in Problem 16

FIGURE 1.3.15 Air resistance proportional to square of
velocity in Problem 17
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FIGURE 1.3.16 Bobbing motion of floating barrel in
Problem 18
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Series Circuits

15. A series circuit contains a resistor and an inductor as
shown in Figure 1.3.13. Determine a differential equa-
tion for the current i(t) if the resistance is R, the induc-
tance is L, and the impressed voltage is E(t).

16. A series circuit contains a resistor and a capacitor as
shown in Figure 1.3.14. Determine a differential equa-
tion for the charge q(t) on the capacitor if the resis-
tance is R, the capacitance is C, and the impressed
voltage is E(t).

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as the
skydiver shown in Figure 1.3.15, falling before the para-
chute is opened—air resistance is closer to a power of
the instantaneous velocity v(t). Determine a differential
equation for the velocity v(t) of a falling body of mass m
if air resistance is proportional to the square of the
instantaneous velocity.

Newton’s Second Law and Hooke’s Law

19. After a mass m is attached to a spring, it stretches it
s units and then hangs at rest in the equilibrium position
as shown in Figure 1.3.17(b). After the spring/mass

FIGURE 1.3.17 Spring/mass system in Problem 19
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system has been set in motion, let x(t) denote the di-
rected distance of the mass beyond the equilibrium po-
sition. As indicated in Figure 1.3.17(c), assume that the
downward direction is positive, that the motion takes
place in a vertical straight line through the center of
gravity of the mass, and that the only forces acting on
the system are the weight of the mass and the restoring
force of the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its total
elongation. Determine a differential equation for the
displacement x(t) at time t.

20. In Problem 19, what is a differential equation for the
displacement x(t) if the motion takes place in a medium
that imparts a damping force on the spring/mass system
that is proportional to the instantaneous velocity of the
mass and acts in a direction opposite to that of motion?

Newton’s Second Law and the Law 
of Universal Gravitation

21. By Newton’s universal law of gravitation the free-fall
acceleration a of a body, such as the satellite shown in
Figure 1.3.18, falling a great distance to the surface is not
the constant g. Rather, the acceleration a is inversely pro-
portional to the square of the distance from the center of
the Earth, a � k�r2, where k is the constant of proportion-
ality. Use the fact that at the surface of the Earth r � R and
a � g to determine k. If the positive direction is upward,
use Newton’s second law and his universal law of gravita-
tion to find a differential equation for the distance r.
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Additional Mathematical Models

23. Learning Theory In the theory of learning, the rate at
which a subject is memorized is assumed to be pro-
portional to the amount that is left to be memorized.
Suppose M denotes the total amount of a subject to be
memorized and A(t) is the amount memorized in time t.
Determine a differential equation for the amount A(t).

24. Forgetfulness In Problem 23 assume that the rate at
which material is forgotten is proportional to the amount
memorized in time t. Determine a differential equation
for the amount A(t) when forgetfulness is taken into
account.

25. Infusion of a Drug A drug is infused into a patient’s
bloodstream at a constant rate of r grams per second.
Simultaneously, the drug is removed at a rate proportional
to the amount x(t) of the drug present at time t. Determine
a differential equation for the amount x(t).

26. Tractrix A person P, starting at the origin, moves in the
direction of the positive x-axis, pulling a weight along
the curve C, called a tractrix, as shown in Figure 1.3.20.
The weight, initially located on the y-axis at (0, s), is
pulled by a rope of constant length s, which is kept taut
throughout the motion. Determine a differential equation
for the path C of motion. Assume that the rope is always
tangent to C.

FIGURE 1.3.18 Satellite
in Problem 21

FIGURE 1.3.19 Hole through
Earth in Problem 22
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22. Suppose a hole is drilled through the center of the Earth
and a bowling ball of mass m is dropped into the hole, as
shown in Figure 1.3.19. Construct a mathematical model
that describes the motion of the ball. At time t let r de-
note the distance from the center of the Earth to the mass
m, M denote the mass of the Earth, Mr denote the mass of
that portion of the Earth within a sphere of radius r, and
� denote the constant density of the Earth.

FIGURE 1.3.20 Tractrix curve in Problem 26

FIGURE 1.3.21 Reflecting surface in Problem 27
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27. Reflecting Surface Assume that when the plane
curve C shown in Figure 1.3.21 is revolved about the
x-axis, it generates a surface of revolution with the prop-
erty that all light rays L parallel to the x-axis striking the
surface are reflected to a single point O (the origin). Use
the fact that the angle of incidence is equal to the angle
of reflection to determine a differential equation that



describes the shape of the curve C. Such a curve C is
important in applications ranging from construction of
telescopes to satellite antennas, automobile headlights,
and solar collectors. [Hint: Inspection of the figure
shows that we can write � � 2�. Why? Now use an
appropriate trigonometric identity.]

Discussion Problems

28. Reread Problem 41 in Exercises 1.1 and then give an
explicit solution P(t) for equation (1). Find a one-
parameter family of solutions of (1).

29. Reread the sentence following equation (3) and assume
that Tm is a positive constant. Discuss why we would ex-
pect k � 0 in (3) in both cases of cooling and warming.
You might start by interpreting, say, T(t) � Tm in a
graphical manner.

30. Reread the discussion leading up to equation (8). If we
assume that initially the tank holds, say, 50 lb of salt, it
stands to reason that because salt is being added to the
tank continuously for t � 0, A(t) should be an increas-
ing function. Discuss how you might determine from
the DE, without actually solving it, the number of
pounds of salt in the tank after a long period of time.

31. Population Model The differential equation

where k is a positive constant, is a

model of human population P(t) of a certain commu-
nity. Discuss an interpretation for the solution of this
equation. In other words, what kind of population do
you think the differential equation describes?

32. Rotating Fluid As shown in Figure 1.3.22(a), a right-
circular cylinder partially filled with fluid is rotated
with a constant angular velocity � about a vertical y-axis
through its center. The rotating fluid forms a surface of
revolution S. To identify S, we first establish a coordinate
system consisting of a vertical plane determined by the
y-axis and an x-axis drawn perpendicular to the y-axis
such that the point of intersection of the axes (the origin)
is located at the lowest point on the surface S. We then
seek a function y � f (x) that represents the curve C of in-
tersection of the surface S and the vertical coordinate
plane. Let the point P(x, y) denote the position of a parti-
cle of the rotating fluid of mass m in the coordinate
plane. See Figure 1.3.22(b).

(a) At P there is a reaction force of magnitude F due to
the other particles of the fluid which is normal to the
surface S. By Newton’s second law the magnitude
of the net force acting on the particle is m�2x. What
is this force? Use Figure 1.3.22(b) to discuss the na-
ture and origin of the equations

(b) Use part (a) to find a first-order differential equation
that defines the function y � f (x).

F cos � � mg,    F sin � � m�2x.

dP

dt
� (k cos t)P,
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33. Falling Body In Problem 21, suppose r � R � s,
where s is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 21 become when s is very small in
comparison to R? [Hint: Think binomial series for 

(R � s)�2 � R�2 (1 � s�R)�2.]

34. Raindrops Keep Falling In meteorology the term
virga refers to falling raindrops or ice particles that
evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as t � 0, the raindrop of radius
r0 falls from rest from a cloud and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a
manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius r of the raindrop decreases is a constant.
Find r(t). [Hint: See Problem 51 in Exercises 1.1.]

(b) If the positive direction is downward, construct a
mathematical model for the velocity v of the falling
raindrop at time t. Ignore air resistance. [Hint:
When the mass m of an object is changing with

time, Newton’s second law becomes ,

where F is the net force acting on the body and mv
is its momentum.]

F �
d

dt
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FIGURE 1.3.22 Rotating fluid in Problem 32



35. Let It Snow The “snowplow problem” is a classic and
appears in many differential equations texts but was
probably made famous by Ralph Palmer Agnew:

“One day it started snowing at a heavy and steady
rate. A snowplow started out at noon, going 2 miles
the first hour and 1 mile the second hour. What time
did it start snowing?”
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Find the text Differential Equations, Ralph Palmer Agnew,
McGraw-Hill Book Co., and then discuss the construction
and solution of the mathematical model.

36. Reread this section and classify each mathematical
model as linear or nonlinear.

CHAPTER 1 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol c1 and has the form dy�dx � f (x, y). The symbol c1

represents a constant.

1.

2.

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols c1 and c2 and has the form F(y, y	) � 0. The
symbols c1, c2, and k represent constants.

3.

4.

In Problems 5 and 6 compute y� and y	 and then combine
these derivatives with y as a linear second-order differential
equation that is free of the symbols c1 and c2 and has the form
F(y, y� y	) � 0. The symbols c1 and c2 represent constants.

5. y � c1ex � c2xex 6. y � c1ex cos x � c2ex sin x

In Problems 7–12 match each of the given differential equa-
tions with one or more of these solutions:

(a) y � 0, (b) y � 2, (c) y � 2x, (d) y � 2x2.

7. xy� � 2y 8. y� � 2

9. y� � 2y � 4 10. xy� � y

11. y	 � 9y � 18 12. xy	 � y� � 0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.

13. y	 � y� 14. y� � y(y � 3)

In Problems 15 and 16 interpret each statement as a differen-
tial equation.

15. On the graph of y � �(x) the slope of the tangent line at
a point P(x, y) is the square of the distance from P(x, y) to
the origin.

16. On the graph of y � �(x) the rate at which the slope
changes with respect to x at a point P(x, y) is the nega-
tive of the slope of the tangent line at P(x, y).

d 2

dx2 (c1 cosh kx � c2 sinh kx) �

d 2

dx2 (c1 cos kx � c2 sin kx) �

d

dx
 (5 � c1e

�2x) �

d

dx
c1e10x �

17. (a) Give the domain of the function y � x2/3.

(b) Give the largest interval I of definition over which
y � x2/3 is solution of the differential equation 
3xy� � 2y � 0.

18. (a) Verify that the one-parameter family y2 � 2y �
x2 � x � c is an implicit solution of the differential
equation (2y � 2)y� � 2x � 1.

(b) Find a member of the one-parameter family in
part (a) that satisfies the initial condition y(0) � 1.

(c) Use your result in part (b) to find an explicit
function y � �(x) that satisfies y(0) � 1. Give the
domain of the function �. Is y � �(x) a solution of
the initial-value problem? If so, give its interval I of
definition; if not, explain.

19. Given that y � x � 2�x is a solution of the DE xy� �
y � 2x. Find x0 and the largest interval I for which y(x) is
a solution of the first-order IVP xy� � y � 2x, y(x0) � 1.

20. Suppose that y(x) denotes a solution of the first-order
IVP y� � x2 � y2, y(1) � �1 and that y(x) possesses
at least a second derivative at x � 1. In some neigh-
borhood of x � 1 use the DE to determine whether
y(x) is increasing or decreasing and whether the graph
y(x) is concave up or concave down.

21. A differential equation may possess more than one fam-
ily of solutions.

(a) Plot different members of the families 
y � �1(x) � x2 � c1 and y � �2(x) � �x2 � c2.

(b) Verify that y � �1(x) and y � �2(x) are two
solutions of the nonlinear first-order differential
equation (y�)2 � 4x2.

(c) Construct a piecewise-defined function that is a
solution of the nonlinear DE in part (b) but is not a
member of either family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a
solution of that passes through (�1, 4)?

In Problems 23–26 verify that the indicated function is a
particular solution of the given differential equation. Give an
interval of definition I for each solution.

23. y	 � y � 2 cos x � 2 sin x; y � x sin x � x cos x

24. y	 � y � sec x; y � x sin x � (cos x)ln(cos x)

y� � 61y � 5x3


