
OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral.
Evaluating the indefinite integral

is equivalent to finding a function F such that and then adding an
arbitrary constant C:

In this chapter we study a number of important techniques for finding indefinite
integrals of more complicated functions than those seen before. The goal of this chapter
is to show how to change unfamiliar integrals into integrals we can recognize, find in a
table, or evaluate with a computer. We also extend the idea of the definite integral to
improper integrals for which the integrand may be unbounded over the interval of inte-
gration, or the interval itself may no longer be finite.

L  ƒsxd dx = Fsxd + C .

F¿sxd = ƒsxd ,

L  ƒsxd dx
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Basic Integration Formulas

To help us in the search for finding indefinite integrals, it is useful to build up a table of
integral formulas by inverting formulas for derivatives, as we have done in previous chap-
ters. Then we try to match any integral that confronts us against one of the standard types.
This usually involves a certain amount of algebraic manipulation as well as use of the Sub-
stitution Rule.

Recall the Substitution Rule from Section 5.5:

where is a differentiable function whose range is an interval I and ƒ is continuous
on I. Success in integration often hinges on the ability to spot what part of the integrand
should be called u in order that one will also have du, so that a known formula can be
applied. This means that the first requirement for skill in integration is a thorough mastery of
the formulas for differentiation.

u = gsxd

L  ƒsgsxddg¿sxd dx = L  ƒsud du

8.1
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TABLE 8.1 Basic integration formulas

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

 = ln ƒ sec u ƒ + C

 L  tan u du = - ln ƒ cos u ƒ + C

L  csc u cot u du = -csc u + C

L  sec u tan u du = sec u + C

L  csc2 u du = -cot u + C

L  sec2 u du = tan u + C

L  cos u du = sin u + C

L  sin u du = -cos u + C

L  
du
u = ln ƒ u ƒ + C

L  un du =

un + 1

n + 1
+ C sn Z -1d

L  sdu + dyd = L  du + L  dy

Lk du = ku + C sany number kd

L  du = u + C 13.

14.

15.

16.

17.

18.

19.

20.

21.

22. L  
du2u2

- a2
= cosh-1 aua b + C su 7 a 7 0d

L  
du2a2

+ u2
= sinh-1 aua b + C sa 7 0d

L  
du

u2u2
- a2

=
1
a sec-1 `  ua ` + C

L  
du

a2
+ u2 =

1
a tan-1 aua b + C

L  
du2a2

- u2
= sin-1 aua b + C

L  cosh u du = sinh u + C

L  sinh u du = cosh u + C

Lau du =

au

ln a
+ C sa 7 0, a Z 1d

Leu du = eu
+ C

 = - ln ƒ csc u ƒ + C

 L  cot u du = ln ƒ sin u ƒ + C

554 Chapter 8: Techniques of Integration

We often have to rewrite an integral to match it to a standard formula.

EXAMPLE 1 Making a Simplifying Substitution

Evaluate

L  
2x - 92x2

- 9x + 1
 dx .

Table 8.1 shows the basic forms of integrals we have evaluated so far. In this section
we present several algebraic or substitution methods to help us use this table. There is a
more extensive table at the back of the book; we discuss its use in Section 8.6.
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Solution

EXAMPLE 2 Completing the Square

Evaluate

Solution We complete the square to simplify the denominator:

Then

EXAMPLE 3 Expanding a Power and Using a Trigonometric Identity

Evaluate

Solution We expand the integrand and get

The first two terms on the right-hand side of this equation are familiar; we can integrate
them at once. How about There is an identity that connects it with 

tan2 x + 1 = sec2 x,  tan2 x = sec2 x - 1.

sec2 x :tan2 x?

ssec x + tan xd2
= sec2 x + 2 sec x tan x + tan2 x .

L  ssec x + tan xd2 dx .

 = sin-1 ax - 4
4
b + C .

 = sin-1 aua b + C

 = L  
du2a2

- u2

 L  
dx28x - x2

= L  
dx216 - sx - 4d2

 = -sx2
- 8x + 16d + 16 = 16 - sx - 4d2 .

 8x - x2
= -sx2

- 8xd = -sx2
- 8x + 16 - 16d

L  
dx28x - x2

.

 = 22x2
- 9x + 1 + C

 = 2u1>2
+ C

 =

u s-1>2d + 1

s -1>2d + 1
+ C

 = Lu-1>2 du

 L  
2x - 92x2

- 9x + 1
 dx = L  

du1u

8.1 Basic Integration Formulas 555

Table 8.1 Formula 4,
with n = -1>2

du = dx
a = 4, u = sx - 4d,

Table 8.1, Formula 18

.du = s2x - 9d dx
u = x2

- 9x + 1,
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We replace by and get

EXAMPLE 4 Eliminating a Square Root

Evaluate

Solution We use the identity

With this identity becomes

Hence,

EXAMPLE 5 Reducing an Improper Fraction

Evaluate

Solution The integrand is an improper fraction (degree of numerator greater than or
equal to degree of denominator). To integrate it, we divide first, getting a quotient plus a
remainder that is a proper fraction:

Therefore,

L  
3x2

- 7x
3x + 2

 dx = L  ax - 3 +

6
3x + 2

b  dx =

x2

2
- 3x + 2 ln ƒ 3x + 2 ƒ + C .

3x2
- 7x

3x + 2
= x - 3 +

6
3x + 2

.

L  
3x2

- 7x
3x + 2

 dx .

 = 22 c1
2

- 0 d =

22
2

.

 = 22 csin 2x
2
d

0

p>4
 = 22L

p>4
0

 cos 2x dx

 = 22L
p>4

0
ƒ cos 2x ƒ  dx

 L
p>4

0
21 + cos 4x dx = L

p>4
0
22 2cos2 2x dx

1 + cos 4x = 2 cos2 2x .

u = 2x ,

cos2 u =

1 + cos 2u
2

,  or 1 + cos 2u = 2 cos2 u .

L
p>4

0
21 + cos 4x dx .

 = 2 tan x + 2 sec x - x + C .

 = 2L  sec2 x dx + 2L  sec x tan x dx - L  1 dx

 L  ssec x + tan xd2 dx = L  ssec2 x + 2 sec x tan x + sec2 x - 1d dx

sec2 x - 1tan2 x

556 Chapter 8: Techniques of Integration

On 
so ƒ cos 2x ƒ = cos 2x .

[0, p>4], cos 2x Ú 0 ,

Table 8.1, Formula 7, with
and du = 2 dxu = 2x

2u2
= ƒ u ƒ

x - 3  
3x + 2�3x2

- 7x 
3x2

+ 2x 
-9x 
-9x - 6

+ 6
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Reducing an improper fraction by long division (Example 5) does not always lead to
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Separating a Fraction

Evaluate

Solution We first separate the integrand to get

In the first of these new integrals, we substitute

The second of the new integrals is a standard form,

Combining these results and renaming as C gives

The final example of this section calculates an important integral by the algebraic
technique of multiplying the integrand by a form of 1 to change the integrand into one we
can integrate.

EXAMPLE 7 Integral of —Multiplying by a Form of 1

Evaluate

Solution

 = ln ƒ u ƒ + C = ln ƒ sec x + tan x ƒ + C .

 = L  
du
u

 = L  
sec2 x + sec x tan x

sec x + tan x  dx

 L  sec x dx = L  ssec xds1d dx = L  sec x # sec x + tan x
sec x + tan x dx

L  sec x dx .

y = sec x

L  
3x + 221 - x2

 dx = -321 - x2
+ 2 sin-1 x + C .

C1 + C2

2L  
dx21 - x2

= 2 sin-1x + C2 .

 = -

3
2

# u1>2
1>2 + C1 = -321 - x2

+ C1

 3L  
x dx21 - x2

= 3L  
s -1>2d du1u

= -

3
2L  u-1>2 du

 u = 1 - x2,  du = -2x dx,  and x dx = -
1
2

 du .

L  
3x + 221 - x2

 dx = 3L  
x dx21 - x2

+ 2L  
dx21 - x2

.

L  
3x + 221 - x2

 dx .

8.1 Basic Integration Formulas 557

du = ssec2 x + sec x tan xd dx
u = tan x + sec x ,

HISTORICAL BIOGRAPHY

George David Birkhoff
(1884–1944)
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With cosecants and cotangents in place of secants and tangents, the method of Exam-
ple 7 leads to a companion formula for the integral of the cosecant (see Exercise 95).

558 Chapter 8: Techniques of Integration

TABLE 8.2 The secant and cosecant integrals

1.

2. L  csc u du = - ln ƒ csc u + cot u ƒ + C

L  sec u du = ln ƒ sec u + tan u ƒ + C

Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying
substitution

Completing the square

Using a trigonometric
identity

Eliminating a square root

Reducing an improper
fraction

Separating a fraction

Multiplying by a form of 1

 =

sec2 x + sec x tan x
sec x + tan x

 sec x = sec x # sec x + tan x
sec x + tan x

3x + 221 - x2
=

3x21 - x2
+

221 - x2

3x2
- 7x

3x + 2
= x - 3 +

6
3x + 2

21 + cos 4x = 22 cos2 2x = 22 ƒ cos 2x ƒ

 = 2 sec2 x + 2 sec x tan x - 1

 + ssec2 x - 1d
 = sec2 x + 2 sec x tan x

 ssec x + tan xd2
= sec2 x + 2 sec x tan x + tan2 x

28x - x2
= 216 - sx - 4d2

2x - 92x2
- 9x + 1

 dx =

du1u
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558 Chapter 8: Techniques of Integration

EXERCISES 8.1

Basic Substitutions
Evaluate each integral in Exercises 1–36 by using a substitution to re-
duce it to standard form.

1. 2. L  
3 cos x dx21 + 3 sin xL  

16x dx28x2
+ 1

3. 4.

5. 6. L
p>3
p>4  

sec2 z
tan z dzL

1

0
 

16x dx

8x2
+ 2

L  cot3 y csc2 y dyL  32sin y cos y dy

4100 AWL/Thomas_ch08p553-641  8/20/04  10:07 AM  Page 558

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Completing the Square
Evaluate each integral in Exercises 37–42 by completing the square
and using a substitution to reduce it to standard form.

37. 38.

39. 40.

41. 42. L  
dx

sx - 2d2x2
- 4x + 3L  

dx

sx + 1d2x2
+ 2x

L  
du22u - u2L  

dt2- t2
+ 4t - 3

L
4

2
 

2 dx

x2
- 6x + 10L

2

1
 

8 dx

x2
- 2x + 2

L  
ln x dx

x + 4x ln2 xL
ep>3

1
 

dx
x cos sln xd

L  
dy2e2y

- 1L  
dx

ex
+ e-x

L  
dr

r2r2
- 9L  

6 dx

x225x2
- 1

L  
2 dx

x21 - 4 ln2 xL  
2s ds21 - s4

L
1

0
 

dt24 - t2L
1>6

0
 

dx21 - 9x2

L  
4 dx

1 + s2x + 1d2L  
9 du

1 + 9u2

L  102u duL  
21w dw
21w

L  
2lnx

x  dxL  3x + 1 dx

L  
e1t dt1tL  e tan y sec2 y dy

L
p

p>2ssin ydecos y dyL
2ln 2

0
 2x ex2

 dx

L  
1
u2 csc 

1
u

 duL  csc ss - pd ds

L  x sec sx2
- 5d dxL  sec 

t
3

 dt

L  
cot s3 + ln xd

x  dxL  eu csc seu + 1d du

L  csc spx - 1d dxL  cot s3 - 7xd dx

L  
dx

x - 1xL  
dx1x s1x + 1d

8.1 Basic Integration Formulas 559

Trigonometric Identities
Evaluate each integral in Exercises 43–46 by using trigonometric
identities and substitutions to reduce it to standard form.

43. 44.

45.

46.

Improper Fractions
Evaluate each integral in Exercises 47–52 by reducing the improper
fraction and using a substitution (if necessary) to reduce it to standard
form.

47. 48.

49. 50.

51. 52.

Separating Fractions
Evaluate each integral in Exercises 53–56 by separating the fraction
and using a substitution (if necessary) to reduce it to standard form.

53. 54.

55. 56.

Multiplying by a Form of 1
Evaluate each integral in Exercises 57–62 by multiplying by a form of
1 and using a substitution (if necessary) to reduce it to standard form.

57. 58.

59. 60.

61. 62.

Eliminating Square Roots
Evaluate each integral in Exercises 63–70 by eliminating the square
root.

63. 64. L
p

0
21 - cos 2x dxL

2p

0 A1 - cos x
2

 dx

L  
1

1 - csc x
 dxL  

1
1 - sec x

 dx

L  
1

csc u + cot u
 duL  

1
sec u + tan u

 du

L  
1

1 + cos x
 dxL  

1
1 + sin x

 dx

L
1>2

0
 
2 - 8x

1 + 4x2 dxL
p>4

0
 
1 + sin x

cos2 x
 dx

L  
x + 22x - 1

2x2x - 1
 dxL  

1 - x21 - x2
 dx

L  
2u3

- 7u2
+ 7u

2u - 5
 duL  

4t3
- t2

+ 16t

t2
+ 4

 dt

L
3

-1
  
4x2

- 7
2x + 3

 dxL
322

  
2x3

x2
- 1

 dx

L  
x2

x2
+ 1

 dxL  
x

x + 1
 dx

L  ssin 3x cos 2x - cos 3x sin 2xd dx

L  csc x sin 3x dx

L  scsc x - tan xd2 dxL  ssec x + cot xd2 dx
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65. 66.

67. 68.

69. 70.

Assorted Integrations
Evaluate each integral in Exercises 71–82 by using any technique you
think is appropriate.

71. 72.

73. 74.

75.

76.

77. 78.

79. 80.

81. 82.

Trigonometric Powers
83. a. Evaluate (Hint: )

b. Evaluate 

c. Without actually evaluating the integral, explain how you
would evaluate 

84. a. Evaluate (Hint: )

b. Evaluate 

c. Evaluate 

d. Without actually evaluating the integral, explain how you
would evaluate 

85. a. Express in terms of Then evaluate
(Hint: )

b. Express in terms of 

c. Express in terms of 

d. Express where k is a positive integer, in terms 

of 

86. a. Express in terms of Then evaluate
(Hint: )cot2 u = csc2 u - 1.1  cot3 u du .

1  cot u du .1  cot3 u du
1  tan2k - 1 u du .

1  tan2k + 1 u du ,
1  tan5 u du .1  tan7 u du
1  tan3 u du .1  tan5 u du

tan2 u = sec2 u - 1.1  tan3 u du .
1  tan u du .1  tan3 u du

1  sin13 u du .

1  sin7 u du .
1  sin5 u du .

sin2 u = 1 - cos2 u .1  sin3 u du .
1  cos9 u du .

1  cos5 u du .

cos2 u = 1 - sin2 u .1  cos3 u du .

L  
dx

x23 + x2L  sec2 t tan stan td dt

L  
dx

s2x + 1d24x2
+ 4xL  

7 dx

sx - 1d2x2
- 2x - 48

L  
dx

x24x2
- 1L  

6 dy1ys1 + yd

L  3 sinh ax
2

+ ln 5b  dx

L  scsc x - sec xdssin x + cos xd dx

L  a1 +

1
x b  cot sx + ln xd dxL  cos u csc ssin ud du

L
p>4

0
ssec x + 4 cos xd2 dxL

3p>4
p>4 scsc x - cot xd2 dx

L
0

-p>42sec2 y - 1 dyL
p>4

-p>421 + tan2 y dy

L
p

p>221 - sin2 u duL
0

-p

21 - cos2 u du

L
0

-p

21 + cos t dtL
p

p>221 + cos 2t dt

560 Chapter 8: Techniques of Integration

b. Express in terms of 

c. Express in terms of 

d. Express where k is a positive integer, in terms 

of 

Theory and Examples
87. Area Find the area of the region bounded above by 

and below by 

88. Area Find the area of the “triangular” region that is bounded
from above and below by the curves and 

and on the left by the line 

89. Volume Find the volume of the solid generated by revolving the
region in Exercise 87 about the x-axis.

90. Volume Find the volume of the solid generated by revolving the
region in Exercise 88 about the x-axis.

91. Arc length Find the length of the curve 

92. Arc length Find the length of the curve 

93. Centroid Find the centroid of the region bounded by the x-axis,
the curve and the lines 

94. Centroid Find the centroid of the region that is bounded by the
x-axis, the curve and the lines 

95. The integral of csc x Repeat the derivation in Example 7, using
cofunctions, to show that

96. Using different substitutions Show that the integral

can be evaluated with any of the following substitutions.

a.

b.
and 

c.

d. e.

f. g.

What is the value of the integral? (Source: “Problems and Solu-
tions,” College Mathematics Journal, Vol. 21, No. 5 (Nov. 1990),
pp. 425–426.)

u = cosh-1 xu = cos-1 x

u = tan-1 ssx - 1d>2du = tan-11x

u = tan-1 x

-1
u = ssx - 1d>sx + 1ddk for k = 1, 1>2, 1>3, -1>3, -2>3,

u = 1>sx + 1d

L  ssx2
- 1dsx + 1dd-2>3 dx

L  csc x dx = - ln ƒ csc x + cot x ƒ + C .

x = p>6, x = 5p>6.y = csc x ,

x = -p>4, x = p>4.y = sec x ,

0 … x … p>4.
y = ln ssec xd, 

0 … x … p>3.
y = ln scos xd, 

x = p>6.p>6 … x … p>2,
y = sin x,y = csc x

y = sec x, -p>4 … x … p>4.
y = 2 cos x

1  cot2k - 1 u du .
1  cot2k + 1 u du ,

1  cot5 u du .1  cot7 u du
1  cot3 u du .1  cot5 u du
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8.2 Integration by Parts 561

Integration by Parts

Since

and

it is apparent that

In other words, the integral of a product is generally not the product of the individual-
integrals:

Integration by parts is a technique for simplifying integrals of the form

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integral

is such an integral because can be differentiated twice to become zero and
can be integrated repeatedly without difficulty. Integration by parts also applies

to integrals like

in which each part of the integrand appears again after repeated differentiation or
integration.

In this section, we describe integration by parts and show how to apply it.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says

In terms of indefinite integrals, this equation becomes

L  
d
dx

 [ƒsxdgsxd] dx = L  [ƒ¿sxdgsxd + ƒsxdg¿sxd] dx

d
dx

 [ƒsxdgsxd] = ƒ¿sxdgsxd + ƒsxdg¿sxd .

L  ex sin x dx

gsxd = ex
ƒsxd = x

L  xex dx

L  ƒsxdgsxd dx .

L  ƒsxdgsxd dx  is not equal to L  ƒsxd dx #L  gsxd dx .

L  x # x dx Z L  x dx #L  x dx .

L  x2 dx =
1
3

 x3
+ C ,

L  x dx =
1
2

 x2
+ C

8.2
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562 Chapter 8: Techniques of Integration

(1)L  ƒsxdg¿sxd dx = ƒsxdgsxd - L  ƒ¿sxdgsxd dx

Integration by Parts Formula

(2)L  u dy = uy - L  y du

or

Rearranging the terms of this last equation, we get

leading to the integration by parts formula

Lƒsxdg¿sxd dx = L  
d
dx

 [ f sxdgsxd] dx - Lƒ¿(x)g(x) dx

L  
d
dx

 [ f sxdgsxd] dx = L  ƒ¿sxdgsxd dx + Lƒ(x)g¿(x) dx .

Sometimes it is easier to remember the formula if we write it in differential form. Let
and Then and Using the Substitution

Rule, the integration by parts formula becomes
dy = g¿sxd dx .du = ƒ¿sxd dxy = gsxd .u = ƒsxd

This formula expresses one integral, in terms of a second integral, 
With a proper choice of u and y, the second integral may be easier to evaluate than the
first. In using the formula, various choices may be available for u and dy. The next
examples illustrate the technique.

EXAMPLE 1 Using Integration by Parts

Find

Solution We use the formula with

Simplest antiderivative of cos x

Then

Let us examine the choices available for u and dy in Example 1.

EXAMPLE 2 Example 1 Revisited

To apply integration by parts to

L  x cos x dx = L  u dy

L  x cos x dx = x sin x - L  sin x dx = x sin x + cos x + C .

 u = x, dy = cos x dx,

du = dx,  y = sin x.

L  u dy = uy - L  y du

L  x cos x dx .

1  y du .1  u dy ,
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we have four possible choices:

1. Let and 2. Let and 
3. Let and 4. Let and 

Let’s examine these one at a time.
Choice 1 won’t do because we don’t know how to integrate to get y.
Choice 2 works well, as we saw in Example 1.
Choice 3 leads to

and the new integral

This is worse than the integral we started with.
Choice 4 leads to

so the new integral is

This, too, is worse.

The goal of integration by parts is to go from an integral that we don’t see how
to evaluate to an integral that we can evaluate. Generally, you choose dy first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
Keep in mind that integration by parts does not always work.

EXAMPLE 3 Integral of the Natural Logarithm

Find

Solution Since can be written as we use the formula
with

Simplifies when differentiated Easy to integrate

Simplest antiderivative

Then

Sometimes we have to use integration by parts more than once.

L  ln x dx = x ln x - L  x # 1
x  dx = x ln x - L  dx = x ln x - x + C .

 y = x . du =
1
x  dx, 

 dy = dx u = ln x

1  u dy = uy - 1  y du
1  ln x # 1 dx ,1  ln x dx

L  ln x dx .

1  y du
1  u dy

L  y du = -L  
x2

2
 sin x dx .

 u = cos x, dy = x dx,

du = -sin x dx,  y = x2>2,

L  y du = Lsx cos x - x2 sin xd dx .

 u = x cos x, dy = dx,

du = scos x - x sin xd dx,  y = x,

dy = x cos x dx

dy = x dx .u = cos xdy = dx .u = x cos x
dy = cos x dx .u = xdy = x cos x dx .u = 1

8.2 Integration by Parts 563
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EXAMPLE 4 Repeated Use of Integration by Parts

Evaluate

Solution With and we have

The new integral is less complicated than the original because the exponent on x is
reduced by one. To evaluate the integral on the right, we integrate by parts again with

Then and

Hence,

The technique of Example 4 works for any integral in which n is a positive
integer, because differentiating will eventually lead to zero and integrating is easy.
We say more about this later in this section when we discuss tabular integration.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 5 Solving for the Unknown Integral

Evaluate

Solution Let and Then and

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

Then

 = e x sin x + e x cos x - L  e x cos x dx .

 L  e x cos x dx = e x sin x - a-e x cos x - L  s -cos xdse x dxdb

u = e x,  dy = sin x dx,  y = -cos x,  du = e x dx .

L  e x cos x dx = e x sin x - L  e x sin x dx .

du = e x dx, y = sin x ,dy = cos x dx .u = e x

L  e x cos x dx .

e xxn
1  xne x dx

 = x2e x
- 2xe x

+ 2e x
+ C .

 L  x2e x dx = x2e x
- 2L  xe x dx

L  xe x dx = xe x
- L  e x dx = xe x

- e x
+ C .

du = dx, y = e x ,u = x, dy = e x dx .

L  x2e x dx = x2e x
- 2L  xe x dx .

y = e x ,u = x2, dy = e x dx, du = 2x dx ,

L  x2e x dx .
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The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration gives

Dividing by 2 and renaming the constant of integration gives

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the
Fundamental Theorem in order to evaluate definite integrals by parts. Assuming that both

and are continuous over the interval [a, b], Part 2 of the Fundamental Theorem givesg¿ƒ¿

L  e x cos x dx =

e x sin x + e x cos x
2

+ C .

2L  e x cos x dx = e x sin x + e x cos x + C1 .

8.2 Integration by Parts 565

Integration by Parts Formula for Definite Integrals

(3)L
b

a
ƒsxdg¿sxd dx = ƒsxdgsxd Dab - L

b

a
ƒ¿sxdgsxd dx

In applying Equation (3), we normally use the u and y notation from Equation (2)
because it is easier to remember. Here is an example.

EXAMPLE 6 Finding Area

Find the area of the region bounded by the curve and the x-axis from to

Solution The region is shaded in Figure 8.1. Its area is

Let and Then,

Tabular Integration

We have seen that integrals of the form in which ƒ can be differentiated
repeatedly to become zero and g can be integrated repeatedly without difficulty, are
natural candidates for integration by parts. However, if many repetitions are required,
the calculations can be cumbersome. In situations like this, there is a way to organize

1  ƒsxdgsxd dx ,

 = -4e-4
- e-4

- s -e0d = 1 - 5e-4
L 0.91.

 = -4e-4
- e-x D04

 = [-4e-4
- s0d] + L

4

0
 e-x dx

 L
4

0
 xe-x dx = -xe-x D04 - L

4

0
 s -e-xd dx

du = dx .u = x, dy = e-x dx, y = -e-x ,

L
4

0
 xe-x dx .

x = 4.
x = 0y = xe-x

x

y

1 2 3 4–1 0

–0.5

–1

0.5

1

y � xe–x

FIGURE 8.1 The region in Example 6.
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ƒ(x) and its derivatives g(x) and its integrals

2x

2

0 ex

exs + d

exs - d

exs + dx2

566 Chapter 8: Techniques of Integration

the calculations that saves a great deal of work. It is called tabular integration and is
illustrated in the following examples.

EXAMPLE 7 Using Tabular Integration

Evaluate

Solution With and we list:gsxd = ex ,ƒsxd = x2

L  x2ex dx .

ƒ(x) and its derivatives g(x) and its integrals

sin x

6x

6 cos x

0 sin x

s - d

-sin xs + d

-cos xs - d3x2

s + dx3

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

Compare this with the result in Example 4.

EXAMPLE 8 Using Tabular Integration

Evaluate

Solution With and we list:gsxd = sin x ,ƒsxd = x3

L  x3 sin x dx .

L  x2ex dx = x2ex
- 2xex

+ 2ex
+ C .

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

L  x3 sin x dx = -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x + C .
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The Additional Exercises at the end of this chapter show how tabular integration can
be used when neither function ƒ nor g can be differentiated repeatedly to become zero.

Summary

When substitution doesn’t work, try integration by parts. Start with an integral in which
the integrand is the product of two functions,

(Remember that g may be the constant function 1, as in Example 3.) Match the integral
with the form

by choosing dy to be part of the integrand including dx and either ƒ(x) or g(x). Remember that
we must be able to readily integrate dy to get y in order to obtain the right side of the formula

If the new integral on the right side is more complex than the original one, try a different
choice for u and dy.

EXAMPLE 9 A Reduction Formula

Obtain a “reduction” formula that expresses the integral

in terms of an integral of a lower power of cos x.

Solution We may think of as Then we let

so that

Hence

If we add

sn - 1dL  cosn x dx

 = cosn - 1 x sin x + sn - 1dL  cosn - 2 x dx - sn - 1dL  cosn x dx .

 = cosn - 1 x sin x + sn - 1dL  s1 - cos2 xd cosn - 2 x dx ,

 L  cosn x dx = cosn - 1 x sin x + sn - 1dL  sin2 x cosn - 2 x dx

du = sn - 1d cosn - 2 x s -sin x dxd and y = sin x .

u = cosn - 1 x and dy = cos x dx ,

cosn - 1 x #  cos x .cosn x

L  cosn x dx

L  u dy = uy - L  y du .

L  u dy

L  ƒsxdgsxd dx .

8.2 Integration by Parts 567
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to both sides of this equation, we obtain

We then divide through by n, and the final result is

This allows us to reduce the exponent on cos x by 2 and is a very useful formula. When n
is a positive integer, we may apply the formula repeatedly until the remaining integral is
either

EXAMPLE 10 Using a Reduction Formula

Evaluate

Solution From the result in Example 9,

 =
1
3

 cos2 x sin x +
2
3

 sin x + C .

 L  cos3 x dx =

cos2 x sin x
3

+
2
3L  cos x dx

L  cos3x dx .

L  cos x dx = sin x + C or L  cos0 x dx = L  dx = x + C .

L  cosn x dx =

cosn - 1 x sin x
n +

n - 1
n L  cosn - 2 x dx .

nL  cosn x dx = cosn - 1 x sin x + sn - 1dL  cosn - 2 x dx .

568 Chapter 8: Techniques of Integration
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568 Chapter 8: Techniques of Integration

EXERCISES 8.2

Integration by Parts
Evaluate the integrals in Exercises 1–24.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. L  p4e-p dpL  x3ex dx

L  4x sec2 2x dxL  x sec2 x dx

L  sin-1 y dyL  tan-1 y dy

L
e

1
 x3 ln x dxL

2

1
 x ln x dx

L  x2 sin x dxL  t2 cos t dt

L  u cos pu duL  x sin 
x
2

 dx

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. L  e-2x sin 2x dxL  e2x cos 3x dx

L  e-y cos y dyL  eu sin u du

L
1>22

0
 2x sin-1 sx2d dxL

2

2>23
  t sec-1 t dt

L
p>2

0
 x3 cos 2x dxL

p>2
0

 u2 sin 2u du

L  t2e4t dtL  x5ex dx

L  sr2
+ r + 1der drL  sx2

- 5xdex dx
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Substitution and Integration by Parts
Evaluate the integrals in Exercises 25–30 by using a substitution prior
to integration by parts.

25. 26.

27. 28.

29. 30.

Theory and Examples
31. Finding area Find the area of the region enclosed by the curve

and the x-axis (see the accompanying figure) for

a. b. c.

d. What pattern do you see here? What is the area between the
curve and the x-axis for an arbitrary
nonnegative integer? Give reasons for your answer.

32. Finding area Find the area of the region enclosed by the curve
and the x-axis (see the accompanying figure) for

a. b.

c. .

d. What pattern do you see? What is the area between the curve
and the x-axis for

n an arbitrary positive integer? Give reasons for your answer.

0

10

–10

y � x cos x

x

y

�
2

7�
2

5�
2

3�
2

a2n - 1
2
bp … x … a2n + 1

2
bp ,

5p>2 … x … 7p>2
3p>2 … x … 5p>2p>2 … x … 3p>2

y = x cos x

x

y

0 2��

5

y � x sin x10

–5

3�

np … x … sn + 1dp, n

2p … x … 3p .p … x … 2p0 … x … p

y = x sin x

L  zsln zd2 dzL  sin sln xd dx

L  ln sx + x2d dxL
p>3

0
 x tan2 x dx

L
1

0
 x21 - x dxL  e23s + 9 ds

8.2 Integration by Parts 569

33. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line about the line

34. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line 

a. about the y-axis. b. about the line 

35. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes and the curve about

a. the y-axis. b. the line 

36. Finding volume Find the volume of the solid generated by re-
volving the region bounded by the x-axis and the curve

about

a. the y-axis. b. the line 

(See Exercise 31 for a graph.)

37. Average value A retarding force, symbolized by the dashpot in
the figure, slows the motion of the weighted spring so that the
mass’s position at time t is

Find the average value of y over the interval 

38. Average value In a mass-spring-dashpot system like the one in
Exercise 37, the mass’s position at time t is

Find the average value of y over the interval 0 … t … 2p .

y = 4e-t ssin t - cos td, t Ú 0.

0

Massy

Dashpot

y

0 … t … 2p .

y = 2e-t cos t, t Ú 0.

x = p .

y = x sin x, 0 … x … p ,

x = p>2.

y = cos x, 0 … x … p>2,

x = 1.

x = 1y = e-x ,

x = ln 2 .
x = ln 2y = ex ,
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Reduction Formulas
In Exercises 39–42, use integration by parts to establish the reduction
formula.

39.

40.

41.

42.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually
gives good results:

The idea is to take the most complicated part of the integral, in this
case and simplify it first. For the integral of ln x, we get

For the integral of we get

 = x cos-1 x - sin scos-1 xd + C .

 = x cos-1 x - sin y + C

y = cos-1 x L  cos-1 x dx = x cos-1 x - L  cos y dy

cos-1 x

 = x ln x - x + C .

 = ye y
- e y

+ C

 L  ln x dx = L  ye y dy

ƒ-1sxd ,

 = xƒ-1sxd - L  ƒsyd dy

 = yƒsyd - L  ƒsyd dy

 L  ƒ-1sxd dx = L  yƒ¿syd dy

L  sln xdn dx = xsln xdn
- nL  sln xdn - 1 dx

L  xneax dx =

xneax

a -

n
aL  xn - 1eax dx, a Z 0

L  xn sin x dx = -xn cos x + nL  xn - 1 cos x dx

L  xn cos x dx = xn sin x - nL  xn - 1 sin x dx

570 Chapter 8: Techniques of Integration

Use the formula

(4)

to evaluate the integrals in Exercises 43–46. Express your answers in
terms of x.

43. 44.

45. 46.

Another way to integrate (when is integrable, of
course) is to use integration by parts with and to
rewrite the integral of as

(5)

Exercises 47 and 48 compare the results of using Equations (4) and (5).

47. Equations (4) and (5) give different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

48. Equations (4) and (5) lead to different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 49 and 50 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

49. 50. L  tanh-1 x dxL  sinh-1 x dx

L  tan-1 x dx = x tan-1 x - ln 21 + x2
+ C

L  tan-1 x dx = x tan-1 x - ln sec stan-1 xd + C

tan-1 x :

L  cos-1 x dx = x cos-1 x - 21 - x2
+ C

L  cos-1 x dx = x cos-1 x - sin scos-1 xd + C

cos-1 x :

L  ƒ-1sxd dx = xƒ-1sxd - L  x a d
dx

 ƒ-1sxdb  dx .

ƒ-1
dy = dxu = ƒ-1sxd

ƒ-1ƒ-1sxd

L  log2 x dxL  sec-1 x dx

L  tan-1 x dxL  sin-1 x dx

y = ƒ-1sxdL  ƒ-1sxd dx = xƒ-1sxd - L  ƒs yd dy

Integration by parts with
u = y, dy = ƒ¿s yd dy

dx = ƒ¿s yd dy
y = ƒ-1sxd, x = ƒs yd

dx = e y dy
y = ln x, x = e y
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570 Chapter 8: Techniques of Integration

Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum
of simpler fractions, called partial fractions, which are easily integrated. For instance, the
rational function can be rewritten as

5x - 3
x2

- 2x - 3
=

2
x + 1

+

3
x - 3

,

(5x - 3)>(x2
- 2x - 3)

8.3
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which can be verified algebraically by placing the fractions on the right side over a
common denominator The skill acquired in writing rational functions 
as such a sum is useful in other settings as well (for instance, when using certain trans-
form methods to solve differential equations). To integrate the rational function

on the left side of our previous expression, we simply sum the
integrals of the fractions on the right side:

The method for rewriting rational functions as a sum of simpler fractions is called the
method of partial fractions. In the case of the above example, it consists of finding
constants A and B such that

(1)

(Pretend for a moment that we do not know that and will work.) We call the
fractions and partial fractions because their denominators are only
part of the original denominator We call A and B undetermined coeffi-
cients until proper values for them have been found.

To find A and B, we first clear Equation (1) of fractions, obtaining

This will be an identity in x if and only if the coefficients of like powers of x on the two
sides are equal:

Solving these equations simultaneously gives and 

General Description of the Method

Success in writing a rational function ƒ(x) g(x) as a sum of partial fractions depends on
two things:

• The degree of ƒ(x) must be less than the degree of g(x). That is, the fraction must be
proper. If it isn’t, divide ƒ(x) by g(x) and work with the remainder term. See Example 3
of this section.

• We must know the factors of g(x). In theory, any polynomial with real coefficients can
be written as a product of real linear factors and real quadratic factors. In practice, the
factors may be hard to find.

Here is how we find the partial fractions of a proper fraction ƒ(x) g(x) when the factors of
g are known.

>

>

B = 3.A = 2

A + B = 5, -3A + B = -3.

5x - 3 = Asx - 3d + Bsx + 1d = sA + Bdx - 3A + B .

x2
- 2x - 3.

B>sx - 3dA>sx + 1d
B = 3A = 2

5x - 3
x2

- 2x - 3
=

A
x + 1

+
B

x - 3
.

 = 2 ln ƒ x + 1 ƒ + 3 ln ƒ x - 3 ƒ + C .

 L  
5x - 3

sx + 1dsx - 3d
 dx = L  

2
x + 1

 dx + L  
3

x - 3
 dx

(x - 3)(5x - 3)>(x + 1)

sx + 1dsx - 3d .

8.3 Integration of Rational Functions by Partial Fractions 571
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EXAMPLE 1 Distinct Linear Factors

Evaluate

using partial fractions.

Solution The partial fraction decomposition has the form

To find the values of the undetermined coefficients A, B, and C we clear fractions and get

The polynomials on both sides of the above equation are identical, so we equate coefficients
of like powers of x obtaining

Coefficient of x2: A + B + C = 1

Coefficient of x1: 4A + 2B = 4

Coefficient of x0: 3A - 3B - C = 1

 = sA + B + Cdx2
+ s4A + 2Bdx + s3A - 3B - Cd .

 x2
+ 4x + 1 = Asx + 1dsx + 3d + Bsx - 1dsx + 3d + Csx - 1dsx + 1d

x2
+ 4x + 1

sx - 1dsx + 1dsx + 3d
=

A
x - 1

+
B

x + 1
+

C
x + 3

.

L  
x2

+ 4x + 1
sx - 1dsx + 1dsx + 3d

 dx

572 Chapter 8: Techniques of Integration

Method of Partial Fractions (ƒ(x) g(x) Proper)

1. Let be a linear factor of g(x). Suppose that is the highest
power of that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:

Do this for each distinct linear factor of g(x).

2. Let be a quadratic factor of g(x). Suppose that 
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the n partial fractions:

Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction ƒ(x) g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

>

B1 x + C1

x2
+ px + q

+

B2 x + C2

sx2
+ px + qd2 +

Á
+

Bn x + Cn

sx2
+ px + qdn .

sx2
+ px + qdnx2

+ px + q

A1
x - r +

A2

sx - rd2 +
Á

+

Am

sx - rdm .

x - r
sx - rdmx - r

>

4100 AWL/Thomas_ch08p553-641  8/20/04  10:07 AM  Page 572

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



There are several ways for solving such a system of linear equations for the unknowns A,
B, and C, including elimination of variables, or the use of a calculator or computer. What-
ever method is used, the solution is and Hence we have

where K is the arbitrary constant of integration (to avoid confusion with the undetermined
coefficient we labeled as C ).

EXAMPLE 2 A Repeated Linear Factor

Evaluate

Solution First we express the integrand as a sum of partial fractions with undetermined
coefficients.

Equating coefficients of corresponding powers of x gives

Therefore,

EXAMPLE 3 Integrating an Improper Fraction

Evaluate

Solution First we divide the denominator into the numerator to get a polynomial plus a
proper fraction.

2x     
x2

- 2x - 3�2x3
- 4x2

- x - 3

2x3
- 4x2

- 6x  
5x - 3

L  
2x3

- 4x2
- x - 3

x2
- 2x - 3

 dx .

 = 6 ln ƒ x + 2 ƒ + 5sx + 2d-1
+ C

 = 6 L  
dx

x + 2
- 5L  sx + 2d-2 dx

 L  
6x + 7

sx + 2d2 dx = L  a 6
x + 2

-

5
sx + 2d2 b  dx

A = 6 and 2A + B = 12 + B = 7, or A = 6 and B = -5.

 = Ax + s2A + Bd

 6x + 7 = Asx + 2d + B

 
6x + 7

sx + 2d2 =
A

x + 2
+

B
sx + 2d2

L  
6x + 7

sx + 2d2 dx .

 =

3
4

 ln ƒ x - 1 ƒ +
1
2

 ln ƒ x + 1 ƒ -
1
4

 ln ƒ x + 3 ƒ + K, 

 L  
x2

+ 4x + 1
sx - 1dsx + 1dsx + 3d

 dx = L  c3
4

 
1

x - 1
+

1
2

 
1

x + 1
-

1
4

 
1

x + 3
d  dx

C = -1>4.A = 3>4, B = 1>2,
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Then we write the improper fraction as a polynomial plus a proper fraction.

We found the partial fraction decomposition of the fraction on the right in the opening
example, so

A quadratic polynomial is irreducible if it cannot be written as the product of two linear
factors with real coefficients.

EXAMPLE 4 Integrating with an Irreducible Quadratic Factor in the Denominator

Evaluate

using partial fractions.

Solution The denominator has an irreducible quadratic factor as well as a repeated
linear factor, so we write

(2)

Clearing the equation of fractions gives

Equating coefficients of like terms gives

Coefficients of 

Coefficients of 

Coefficients of 

Coefficients of 

We solve these equations simultaneously to find the values of A, B, C, and D:

Subtract fourth equation from second.

From the first equation

From the fourth equation D = 4 - B + C = 1.

A = 2 and C = -2 in third equation. B = 1

 C = -A = -2

 -4 = -2A, A = 2

4 = B - C + Dx0 :

-2 = A - 2B + Cx1 :

0 =  -2A + B - C + Dx2 :

0 = A + Cx3 :

 + sA - 2B + Cdx + sB - C + Dd .

 = sA + Cdx3
+ s -2A + B - C + Ddx2

 -2x + 4 = sAx + Bdsx - 1d2
+ Csx - 1dsx2

+ 1d + Dsx2
+ 1d

-2x + 4
sx2

+ 1dsx - 1d2 =

Ax + B
x2

+ 1
+

C
x - 1

+
D

sx - 1d2 .

L  
-2x + 4

sx2
+ 1dsx - 1d2 dx

 = x2
+ 2 ln ƒ x + 1 ƒ + 3 ln ƒ x - 3 ƒ + C .

 = L  2x dx + L  
2

x + 1
 dx + L  

3
x - 3

 dx

 L  
2x3

- 4x2
- x - 3

x2
- 2x - 3

 dx = L  2x dx + L  
5x - 3

x2
- 2x - 3

 dx

2x3
- 4x2

- x - 3
x2

- 2x - 3
= 2x +

5x - 3
x2

- 2x - 3

574 Chapter 8: Techniques of Integration
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We substitute these values into Equation (2), obtaining

Finally, using the expansion above we can integrate:

EXAMPLE 5 A Repeated Irreducible Quadratic Factor

Evaluate

Solution The form of the partial fraction decomposition is

Multiplying by we have

If we equate coefficients, we get the system

Solving this system gives and Thus,

 = ln 
ƒ x ƒ2x2

+ 1
+

1
2sx2

+ 1d
+ K .

 = ln ƒ x ƒ -
1
2

 ln sx2
+ 1d +

1
2sx2

+ 1d
+ K

 = ln ƒ x ƒ -
1
2

 ln ƒ u ƒ +
1
2u

+ K

 = L  
dx
x -

1
2L  

du
u -

1
2L  

du
u2

 = L  
dx
x - L  

x dx
x2

+ 1
- L  

x dx
sx2

+ 1d2

 L  
dx

xsx2
+ 1d2 = L  c1x +

-x
x2

+ 1
+

-x
sx2

+ 1d2 d  dx

E = 0.A = 1, B = -1, C = 0, D = -1,

A + B = 0, C = 0, 2A + B + D = 0, C + E = 0, A = 1.

 = sA + Bdx4
+ Cx3

+ s2A + B + Ddx2
+ sC + Edx + A

 = Asx4
+ 2x2

+ 1d + Bsx4
+ x2d + Csx3

+ xd + Dx2
+ Ex

 1 = Asx2
+ 1d2

+ sBx + Cdxsx2
+ 1d + sDx + Edx

xsx2
+ 1d2 ,

1
xsx2

+ 1d2 =
A
x +

Bx + C
x2

+ 1
+

Dx + E
sx2

+ 1d2

L  
dx

xsx2
+ 1d2 .

 = ln sx2
+ 1d + tan-1 x - 2 ln ƒ x - 1 ƒ -

1
x - 1

+ C .

 = L  a 2x
x2

+ 1
+

1
x2

+ 1
-

2
x - 1

+
1

sx - 1d2 b  dx

 L  
-2x + 4

sx2
+ 1dsx - 1d2 dx = L  a2x + 1

x2
+ 1

-
2

x - 1
+

1
sx - 1d2 b  dx

-2x + 4
sx2

+ 1dsx - 1d2 =

2x + 1
x2

+ 1
-

2
x - 1

+
1

sx - 1d2 .
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 du = 2x dx
 u = x2

+ 1,
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The Heaviside “Cover-up” Method for Linear Factors

When the degree of the polynomial ƒ(x) is less than the degree of g(x) and

is a product of n distinct linear factors, each raised to the first power, there is a quick way
to expand ƒ(x) g(x) by partial fractions.

EXAMPLE 6 Using the Heaviside Method

Find A, B, and C in the partial-fraction expansion

(3)

Solution If we multiply both sides of Equation (3) by to get

and set the resulting equation gives the value of A:

Thus, the value of A is the number we would have obtained if we had covered the factor
in the denominator of the original fraction

(4)

and evaluated the rest at 

Cover

Similarly, we find the value of B in Equation (3) by covering the factor in Equa-
tion (4) and evaluating the rest at 

Cover

Finally, C is found by covering the in Equation (4) and evaluating the rest at

Cover
y

C =

s3d2
+ 1

s3 - 1ds3 - 2d� sx - 3d �
=

10
s2ds1d

= 5.

x = 3:
sx - 3d

y

B =

s2d2
+ 1

s2 - 1d � sx - 2d �  s2 - 3d
=

5
s1ds -1d

= -5.

x = 2:
sx - 2d

y

A =

s1d2
+ 1

� sx - 1d �  s1 - 2ds1 - 3d
=

2
s -1ds -2d

= 1.

x = 1:

x2
+ 1

sx - 1dsx - 2dsx - 3d

sx - 1d

 A = 1.

 
s1d2

+ 1

s1 - 2ds1 - 3d
= A + 0 + 0, 

x = 1,

x2
+ 1

sx - 2dsx - 3d
= A +

Bsx - 1d
x - 2

+

Csx - 1d
x - 3

sx - 1d

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

A
x - 1

+
B

x - 2
+

C
x - 3

.

>
gsxd = sx - r1dsx - r2d Á sx - rnd

576 Chapter 8: Techniques of Integration
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EXAMPLE 7 Integrating with the Heaviside Method

Evaluate

Solution The degree of is less than the degree of 
and, with g(x) factored,

The roots of g(x) are and We find

Cover

Cover

Cover
y

 A3 =

-5 + 4

s -5ds -5 - 2d � sx + 5d �
=

-1
s -5ds -7d

= -
1
35

.

y

 A2 =
2 + 4

2 � sx - 2d �  s2 + 5d
=

6
s2ds7d

=

3
7

y

 A1 =

0 + 4

� x �  s0 - 2ds0 + 5d
=

4
s -2ds5d

= -
2
5

r3 = -5.r1 = 0, r2 = 2,

x + 4
x3

+ 3x2
- 10x

=

x + 4
xsx - 2dsx + 5d

.

-  10x ,
gsxd = x3

+ 3x2ƒsxd = x + 4

L  
x + 4

x3
+ 3x2

- 10x
 dx .

8.3 Integration of Rational Functions by Partial Fractions 577

Heaviside Method

1. Write the quotient with g(x) factored:

2. Cover the factors of one at a time, each time replacing all the
uncovered x’s by the number This gives a number for each root 

3. Write the partial-fraction expansion of as

ƒsxd
gsxd

=

A1

sx - r1d
+

A2

sx - r2d
+

Á
+

An

sx - rnd
.

ƒsxd>gsxd

 An =

ƒsrnd
srn - r1dsrn - r2d Á srn - rn - 1d

.

 o

 A2 =

ƒsr2d
sr2 - r1dsr2 - r3d Á sr2 - rnd

 A1 =

ƒsr1d
sr1 - r2d Á sr1 - rnd

ri :Airi .
gsxdsx - rid

ƒsxd
gsxd

=

ƒsxd
sx - r1dsx - r2d Á sx - rnd

.
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Therefore,

and

Other Ways to Determine the Coefficients

Another way to determine the constants that appear in partial fractions is to differentiate,
as in the next example. Still another is to assign selected numerical values to x.

EXAMPLE 8 Using Differentiation

Find A, B, and C in the equation

Solution We first clear fractions:

Substituting shows We then differentiate both sides with respect to x,
obtaining

Substituting shows We differentiate again to get which shows
Hence,

In some problems, assigning small values to x such as to get
equations in A, B, and C provides a fast alternative to other methods.

EXAMPLE 9 Assigning Numerical Values to x

Find A, B, and C in

Solution Clear fractions to get

x2
+ 1 = Asx - 2dsx - 3d + Bsx - 1dsx - 3d + Csx - 1dsx - 2d .

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

A
x - 1

+
B

x - 2
+

C
x - 3

.

x = 0, ;1, ;2,

x - 1
sx + 1d3 =

1
sx + 1d2 -

2
sx + 1d3 .

A = 0.
0 = 2A ,B = 1.x = -1

1 = 2Asx + 1d + B .

C = -2.x = -1

x - 1 = Asx + 1d2
+ Bsx + 1d + C .

x - 1
sx + 1d3 =

A
x + 1

+
B

sx + 1d2 +

C
sx + 1d3 .

L  
x + 4

xsx - 2dsx + 5d
 dx = -

2
5 ln ƒ x ƒ +

3
7 ln ƒ x - 2 ƒ -

1
35

 ln ƒ x + 5 ƒ + C .

x + 4
xsx - 2dsx + 5d

= -
2
5x

+

3
7sx - 2d

-
1

35sx + 5d
,

578 Chapter 8: Techniques of Integration

4100 AWL/Thomas_ch08p553-641  8/20/04  10:07 AM  Page 578

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



8.3 Integration of Rational Functions by Partial Fractions 579

Then let 2, 3 successively to find A, B, and C:

Conclusion:

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

1
x - 1

-

5
x - 2

+

5
x - 3

.

  C = 5.

  10 = 2C

 x = 3: s3d2
+ 1 = As0d + Bs0d + Cs2ds1d

  B = -5

  5 = -B

 x = 2: s2d2
+ 1 = As0d + Bs1ds -1d + Cs0d

  A = 1

  2 = 2A

 x = 1: s1d2
+ 1 = As -1ds -2d + Bs0d + Cs0d

x = 1,
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8.3 Integration of Rational Functions by Partial Fractions 579

EXERCISES 8.3

Expanding Quotients into Partial Fractions
Expand the quotients in Exercises 1–8 by partial fractions.

1. 2.

3. 4.

5. 6.

7. 8.

Nonrepeated Linear Factors
In Exercises 9–16, express the integrands as a sum of partial fractions
and evaluate the integrals.

9. 10.

11. 12.

13. 14.

15. 16.

Repeated Linear Factors
In Exercises 17–20, express the integrands as a sum of partial frac-
tions and evaluate the integrals.

17. 18. L
0

-1
  

x3 dx

x2
- 2x + 1L

1

0
 

x3 dx

x2
+ 2x + 1

L  
x + 3

2x3
- 8x

 dxL  
dt

t3
+ t2

- 2t

L
1

1>2  
y + 4

y2
+ y

 dyL
8

4
 

y dy

y2
- 2y - 3

L  
2x + 1

x2
- 7x + 12

 dxL  
x + 4

x2
+ 5x - 6

 dx

L  
dx

x2
+ 2xL  

dx

1 - x2

t4
+ 9

t4
+ 9t2

t2
+ 8

t2
- 5t + 6

z
z3

- z2
- 6z

z + 1
z2sz - 1d

2x + 2
x2

- 2x + 1
x + 4

sx + 1d2

5x - 7
x2

- 3x + 2
5x - 13

sx - 3dsx - 2d

19. 20.

Irreducible Quadratic Factors
In Exercises 21–28, express the integrands as a sum of partial frac-
tions and evaluate the integrals.

21. 22.

23. 24.

25. 26.

27.

28.

Improper Fractions
In Exercises 29–34, perform long division on the integrand, write the
proper fraction as a sum of partial fractions, and then evaluate the
integral.

29. 30.

31. 32.

33. 34. L  
2y4

y3
- y2

+ y - 1
 dyL  

y4
+ y2

- 1

y3
+ y

 dy

L  
16x3

4x2
- 4x + 1

 dxL  
9x3

- 3x + 1
x3

- x2  dx

L  
x4

x2
- 1

 dxL  
2x3

- 2x2
+ 1

x2
- x

 dx

L  
u4

- 4u3
+ 2u2

- 3u + 1

su2
+ 1d3  du

L  
2u3

+ 5u2
+ 8u + 4

su2
+ 2u + 2d2  du

L  
s4

+ 81
sss2

+ 9d2 dsL  
2s + 2

ss2
+ 1dss - 1d3 ds

L  
8x2

+ 8x + 2
s4x2

+ 1d2  dxL  
y2

+ 2y + 1

sy2
+ 1d2  dy

L
23

1
 
3t2

+ t + 4
t3

+ t
 dtL

1

0
 

dx

sx + 1dsx2
+ 1d

L  
x2 dx

sx - 1dsx2
+ 2x + 1dL  

dx

sx2
- 1d2
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Evaluating Integrals
Evaluate the integrals in Exercises 35–40.

35. 36.

37. 38.

39.

40.

Initial Value Problems
Solve the initial value problems in Exercises 41–44 for x as a function
of t.

41.

42.

43.

44.

Applications and Examples
In Exercises 45 and 46, find the volume of the solid generated by re-
volving the shaded region about the indicated axis.

45. The x-axis

46. The y-axis

47. Find, to two decimal places, the x-coordinate of the centroid of
the region in the first quadrant bounded by the x-axis, the curve

and the line x = 23.y = tan-1 x ,

1

1
x

y y � 2
(x � 1)(2 � x)

0

x

y

2

0 0.5 2.5

(0.5, 2.68) (2.5, 2.68)

y � 3

�3x � x2

st + 1d 
dx
dt

= x2
+ 1 st 7 -1d, xs0d = p>4

st2
+ 2td 

dx
dt

= 2x + 2 st, x 7 0d, xs1d = 1

s3t 4
+ 4t 2

+ 1d 
dx
dt

= 223, xs1d = -p23>4
st2

- 3t + 2d 
dx
dt

= 1 st 7 2d, xs3d = 0

L  
sx + 1d2 tan-1 s3xd + 9x3

+ x

s9x2
+ 1dsx + 1d2  dx

L  
sx - 2d2 tan-1 s2xd - 12x3

- 3x

s4x2
+ 1dsx - 2d2  dx

L  
sin u du

cos2 u + cos u - 2L  
cos y dy

sin2 y + sin y - 6

L  
e4t

+ 2e2t
- et

e2t
+ 1

 dtL  
et dt

e2t
+ 3et

+ 2

580 Chapter 8: Techniques of Integration

48. Find the x-coordinate of the centroid of this region to two decimal
places.

49. Social diffusion Sociologists sometimes use the phrase “social
diffusion” to describe the way information spreads through a pop-
ulation. The information might be a rumor, a cultural fad, or news
about a technical innovation. In a sufficiently large population,
the number of people x who have the information is treated as a
differentiable function of time t, and the rate of diffusion, dx dt, is
assumed to be proportional to the number of people who have the
information times the number of people who do not. This leads to
the equation

where N is the number of people in the population.
Suppose t is in days, and two people start a ru-

mor at time in a population of people.

a. Find x as a function of t.

b. When will half the population have heard the rumor? (This is
when the rumor will be spreading the fastest.)

50. Second-order chemical reactions Many chemical reactions
are the result of the interaction of two molecules that undergo a
change to produce a new product. The rate of the reaction typi-
cally depends on the concentrations of the two kinds of mole-
cules. If a is the amount of substance A and b is the amount of
substance B at time and if x is the amount of product at
time t, then the rate of formation of x may be given by the differ-
ential equation

or

where k is a constant for the reaction. Integrate both sides of this
equation to obtain a relation between x and t (a) if and
(b) if Assume in each case that when 

51. An integral connecting to the approximation 22 7

a. Evaluate 

b. How good is the approximation Find out by 

expressing as a percentage of p .a22
7

- pb
p L 22>7?

L
1

0
 
x4sx - 1d4

x2
+ 1

 dx .

>p

t = 0.x = 0a Z b .
a = b ,

1
sa - xdsb - xd

 
dx
dt

= k ,

dx
dt

= ksa - xdsb - xd ,

t = 0,

N = 1000t = 0
k = 1>250,

dx
dt

= kxsN - xd ,

>

x

y

(3, 1.83)

(5, 0.98)

30 5

y � 4x2 � 13x � 9
x3 � 2x2 � 3x

T

T

T

T
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c. Graph the function for Experi-

ment with the range on the y-axis set between 0 and 1, then
between 0 and 0.5, and then decreasing the range until the
graph can be seen. What do you conclude about the area
under the curve?

0 … x … 1.y =

x4sx - 1d4

x2
+ 1

52. Find the second-degree polynomial P(x) such that 
and

is a rational function.

L  
Psxd

x3sx - 1d2 dx

P¿s0d = 0,
Ps0d = 1, 

581
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8.4 Trigonometric Integrals 581

Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric
functions. In principle, we can always express such integrals in terms of sines and cosines,
but it is often simpler to work with other functions, as in the integral

The general idea is to use identities to transform the integrals we have to find into integrals
that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form:

where m and n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as and use the identity to
obtain

(1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to 

Case 2 If m is even and n is odd in we write n as and use the
identity to obtain

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in we substitute

(2)

to reduce the integrand to one in lower powers of cos 2x.
Here are some examples illustrating each case.

EXAMPLE 1 m is Odd

Evaluate

L  sin3 x cos2 x dx .

sin2 x =

1 - cos 2x
2

, cos2 x =

1 + cos 2x
2

1  sinm x cosn x dx ,

cosn x = cos2k + 1 x = scos2 xdk cos x = s1 - sin2 xdk cos x .

cos2 x = 1 - sin2 x
2k + 11  sinm x cosn x dx ,

-d scos xd .

sinm x = sin2k + 1 x = ssin2 xdk sin x = s1 - cos2 xdk sin x .

sin2 x = 1 - cos2 x2k + 1

L  sinm x cosn x dx ,

L  sec2 x dx = tan x + C .

8.4
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Solution

EXAMPLE 2 m is Even and n is Odd

Evaluate

Solution

EXAMPLE 3 m and n are Both Even

Evaluate

Solution

 =
1
8

 Cx +
1
2

 sin 2x - L(cos2 2x +  cos3 2x) dx D .
 =

1
8L  s1 + cos 2x - cos2 2x - cos3 2xd dx

 =
1
8L  s1 - cos 2xds1 + 2 cos 2x + cos2 2xd dx

 L  sin2 x cos4 x dx = L  a1 - cos 2x
2

b a1 + cos 2x
2

b2

 dx

L  sin2 x cos4 x dx .

 = u -
2
3

 u3
+

1
5 u5

+ C = sin x -
2
3

 sin3 x +
1
5 sin5 x + C .

 = L  s1 - 2u2
+ u4d du

 = L  s1 - u2d2 du

 L  cos5 x dx = L  cos4 x cos x dx = L  s1 - sin2 xd2 dssin xd

L  cos5 x dx .

 =

cos5 x
5 -

cos3 x
3

+ C .

 =

u5

5 -

u3

3
+ C

 = L  su4
- u2d du

 = L  s1 - u2dsu2ds -dud

 = L  s1 - cos2 xd cos2 x s -d scos xdd

 L  sin3 x cos2 x dx = L  sin2 x cos2 x sin x dx

582 Chapter 8: Techniques of Integration

u = cos x

m = 0

u = sin x
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For the term involving we use

For the term we have

Combining everything and simplifying we get

Eliminating Square Roots

In the next example, we use the identity to eliminate a square
root.

EXAMPLE 4 Evaluate

Solution To eliminate the square root we use the identity

With this becomes

Therefore,

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant and their squares. To integrate higher
powers we use the identities and and integrate
by parts when necessary to reduce the higher powers to lower powers.

sec2 x = tan2 x + 1,tan2 x = sec2 x - 1

 = 22 csin 2x
2
d

0

p>4
=

22
2

 [1 - 0] =

22
2

.

 = 22L
p>4

0
 ƒ cos 2x ƒ  dx = 22L

p>4
0

 cos 2x dx

 L
p>4

0
 21 + cos 4x dx = L

p>4
0

 22 cos2 2x dx = L
p>4

0
 222cos2 2x dx

1 + cos 4x = 2 cos2 2x .

u = 2x ,

cos2 u =

1 + cos 2u
2

, or 1 + cos 2u = 2 cos2 u .

L
p>4

0
 21 + cos 4x dx .

cos2 u = s1 + cos 2ud>2

L  sin2 x cos4 x dx =
1
16

 ax -
1
4

 sin 4x +
1
3

 sin3 2xb + C .

 =
1
2L  s1 - u2d du =

1
2

 asin 2x -
1
3

 sin3 2xb .

 L  cos3 2x dx = L  s1 - sin2 2xd cos 2x dx

cos3 2x

 =
1
2

 ax +
1
4

 sin 4xb .

 L  cos2 2x dx =
1
2L  s1 + cos 4xd dx

cos2 2x

8.4 Trigonometric Integrals 583

Omitting the constant of
integration until the final result

Again
omitting C

 du = 2 cos 2x dx
u = sin 2x,

on [0, p>4]
cos 2x Ú 0
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EXAMPLE 5 Evaluate

Solution

In the first integral, we let

and have

The remaining integrals are standard forms, so

EXAMPLE 6 Evaluate

Solution We integrate by parts, using

Then

Combining the two secant-cubed integrals gives

2L  sec3 x dx = sec x tan x + L  sec x dx

 = sec x tan x + L  sec x dx - L  sec3 x dx .

 = sec x tan x - L  ssec2 x - 1d sec x dx

 L  sec3 x dx = sec x tan x - L  stan xdssec x tan x dxd

u = sec x, dy = sec2 x dx, y = tan x, du = sec x tan x dx .

L  sec3 x dx .

L  tan4 x dx =
1
3

 tan3 x - tan x + x + C .

L  u2 du =
1
3

 u3
+ C1 .

u = tan x, du = sec2 x dx

 = L  tan2 x sec2 x dx - L  sec2 x dx + L  dx .

 = L  tan2 x sec2 x dx - L  ssec2 x - 1d dx

 = L  tan2 x sec2 x dx - L  tan2 x dx

 L  tan4 x dx = L  tan2 x # tan2 x dx = L  tan2 x # ssec2 x - 1d dx

L  tan4 x dx .

584 Chapter 8: Techniques of Integration

tan2 x = sec2 x - 1
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and

Products of Sines and Cosines

The integrals

arise in many places where trigonometric functions are applied to problems in mathemat-
ics and science. We can evaluate these integrals through integration by parts, but two such
integrations are required in each case. It is simpler to use the identities

(3)

(4)

(5)

These come from the angle sum formulas for the sine and cosine functions (Section 1.6).
They give functions whose antiderivatives are easily found.

EXAMPLE 7 Evaluate

Solution From Equation (4) with and we get

 = -

cos 8x
16

+

cos 2x
4

+ C .

 =
1
2L  ssin 8x - sin 2xd dx

 L  sin 3x cos 5x dx =
1
2L  [sin s -2xd + sin 8x] dx

n = 5m = 3

L  sin 3x cos 5x dx .

 cos mx cos nx =
1
2

 [cos sm - ndx + cos sm + ndx] .

 sin mx cos nx =
1
2

 [sin sm - ndx + sin sm + ndx] ,

 sin mx sin nx =
1
2

 [cos sm - ndx - cos sm + ndx], 

L  sin mx sin nx dx, L  sin mx cos nx dx, and L  cos mx cos nx dx

L  sec3 x dx =
1
2

 sec x tan x +
1
2

 ln ƒ sec x + tan x ƒ + C .

8.4 Trigonometric Integrals 585
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8.4 Trigonometric Integrals 585

EXERCISES 8.4

Products of Powers of Sines and Cosines
Evaluate the integrals in Exercises 1–14.

1. 2. L
p

0
 sin5 

x
2

 dxL
p>2

0
 sin5 x dx

3. 4.

5. 6. L
p>2

0
 7 cos7 t dtL

p>2
0

 sin7 y dy

L
p>6

0
 3 cos5 3x dxL

p>2
-p>2  cos3 x dx
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586 Chapter 8: Techniques of Integration

7. 8.

9. 10.

11. 12.

13. 14.

Integrals with Square Roots
Evaluate the integrals in Exercises 15–22.

15. 16.

17. 18.

19. 20.

21. 22.

Powers of Tan x and Sec x
Evaluate the integrals in Exercises 23–32.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

Products of Sines and Cosines
Evaluate the integrals in Exercises 33–38.

33. 34. L
p>2

0
 sin 2x cos 3x dxL

0

-p

 sin 3x cos 2x dx

L
p>2
p>4  8 cot4 t dtL

p>3
p>6  cot3 x dx

L
p>4

-p>4  6 tan4 x dxL
p>4

0
 4 tan3 x dx

L
p

p>2 3 csc4 
u

2
 duL

p>2
p>4  csc4 u du

L
p>12

0
 3 sec4 3x dxL

p>4
0

 sec4 u du

L  ex sec3 ex dxL
0

-p>3 2 sec3 x dx

L
p

-p

 s1 - cos2 td3>2 dtL
p>2

0
 u21 - cos 2u du

L
p/4

-p/4
 2sec2 x - 1 dxL

p>4
-p>4  21 + tan2 x dx

L
p

0
 21 - cos2 u duL

p

0
 21 - sin2 t dt

L
p

0
 21 - cos 2x dxL

2p

0
 A1 - cos x

2
 dx

L
p>2

0
 sin2 2u cos3 2u duL

p>4
0

 8 cos3 2u sin 2u du

L
p

0
 sin 2x cos2 2x dxL

p>2
0

 35 sin4 x cos3 x dx

L
p

0
 8 sin4 y cos2 y dyL

p>4
-p>4  16 sin2 x cos2 x dx

L
1

0
 8 cos4 2px dxL

p

0
 8 sin4 x dx 35. 36.

37. 38.

Theory and Examples
39. Surface area Find the area of the surface generated by revolv-

ing the arc

about the x-axis.

40. Arc length Find the length of the curve

41. Arc length Find the length of the curve

42. Center of gravity Find the center of gravity of the region
bounded by the x-axis, the curve and the lines 

43. Volume Find the volume generated by revolving one arch of the
curve about the x-axis.

44. Area Find the area between the x-axis and the curve 

45. Orthogonal functions Two functions ƒ and g are said to be or-
thogonal on an interval if 

a. Prove that sin mx and sin nx are orthogonal on any interval of
length provided m and n are integers such that 

b. Prove the same for cos mx and cos nx.

c. Prove the same for sin mx and cos nx even if 

46. Fourier series A finite Fourier series is given by the sum

Show that the mth coefficient is given by the formula

am =

1
pL

p

-p

 ƒsxd sin mx dx .

am

 = a1 sin x + a2 sin 2x +
Á

+ aN sin Nx

 ƒsxd = a
N

n = 1
an sin nx

m = n .

m2
Z n2 .2p

1b
a  ƒsxdgsxd dx = 0.a … x … b

21 + cos 4x, 0 … x … p .
y =

y = sin x

-p>4, x = p>4.
x =y = sec x ,

y = ln ssec xd, 0 … x … p>4.

y = ln scos xd, 0 … x … p>3.

x = t 2>3, y = t 2>2, 0 … t … 2,

L
p>2

-p>2  cos x cos 7x dxL
p

0
 cos 3x cos 4x dx

L
p>2

0
 sin x cos x dxL

p

-p

 sin 3x sin 3x dx
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586 Chapter 8: Techniques of Integration

Trigonometric Substitutions

Trigonometric substitutions can be effective in transforming integrals involving

and into integrals we can evaluate directly.2x2
- a2 2a2

+ x2 ,

2a2
- x2, 

8.5
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8.5 Trigonometric Substitutions 587

� � �

a

a

a

x
xx

�a2 � x2

x � a tan � x � a sin � x � a sec �

�x2 � a2�a2 � x2

�a2 � x2 � a�sec �� �a2 � x2 � a�cos �� �x2 � a2 � a�tan ��

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

�

�

�

x
a

x
a

x
a

x
a

�
2

�
2

�
2

�
2

–

�
2

–

�
� � sec–1

x
a� � sin–1

x
a� � tan–1

0

0 1–1

0 1–1

FIGURE 8.3 The arctangent, arcsine, and
arcsecant of x a, graphed as functions of
x a.>

>

Three Basic Substitutions

The most common substitutions are and They come
from the reference right triangles in Figure 8.2.

x2
- a2

= a2 sec2 u - a2
= a2ssec2 u - 1d = a2 tan2 u .

With x = a sec u ,

a2
- x2

= a2
- a2 sin2 u = a2s1 - sin2 ud = a2 cos2 u .

With x = a sin u ,

a2
+ x2

= a2
+ a2 tan2 u = a2s1 + tan2 ud = a2 sec2 u .

With x = a tan u ,

x = a sec u .x = a tan u, x = a sin u ,

We want any substitution we use in an integration to be reversible so that we can change
back to the original variable afterward. For example, if we want to be able to
set after the integration takes place. If we want to be able to set

when we’re done, and similarly for 
As we know from Section 7.7, the functions in these substitutions have inverses only

for selected values of (Figure 8.3). For reversibility,

To simplify calculations with the substitution we will restrict its use to inte-
grals in which This will place in and make We will then have

free of absolute values, provided 

EXAMPLE 1 Using the Substitution 

Evaluate

L  
dx24 + x2

.

x = a tan u

a 7 0.2x2
- a2

= 2a2 tan2 u = ƒ a tan u ƒ = a tan u ,
tan u Ú 0.[0, p>2dux>a Ú 1.

x = a sec u ,

x = a sec u requires u = sec-1 ax
a b with d 0 … u 6

p
2
 if x

a Ú 1,

p
2

6 u … p if x
a … -1.

 x = a sin u requires u = sin-1 ax
a b with -

p
2

… u …

p
2

, 

 x = a tan u requires u = tan-1 ax
a b with -

p
2

6 u 6

p
2

, 

u

x = a sec u .u = sin-1 sx>ad
x = a sin u ,u = tan-1 sx>ad

x = a tan u ,
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Solution We set

Then

Notice how we expressed in terms of x: We drew a reference triangle for
the original substitution (Figure 8.4) and read the ratios from the triangle.

EXAMPLE 2 Using the Substitution 

Evaluate

Solution We set

Then

 =

9
2

 sin-1 
x
3

-

x
2
29 - x2

+ C .

 =

9
2

 asin-1 
x
3

-

x
3

#
29 - x2

3
b + C

 =

9
2

 su - sin u cos ud + C

 =

9
2

 au -

sin 2u
2
b + C

 = 9L  
1 - cos 2u

2
 du

 = 9L  sin2 u du

 L  
x2 dx29 - x2

= L  
9 sin2 u # 3 cos u du

ƒ 3 cos u ƒ

9 - x2
= 9 - 9 sin2 u = 9s1 - sin2 ud = 9 cos2 u .

x = 3 sin u, dx = 3 cos u du, -

p
2

6 u 6

p
2

L  
x2 dx29 - x2

.

x = a sin u

x = 2 tan u

ln ƒ sec u + tan u ƒ

 = ln ƒ24 + x2
+ x ƒ + C¿ .

 = ln ` 24 + x2

2
+

x
2
` + C

 = ln ƒ sec u + tan u ƒ + C

 = L  sec u du

 L  
dx24 + x2

= L  
2 sec2 u du24 sec2 u

= L  
sec2 u du

ƒ sec u ƒ

4 + x2
= 4 + 4 tan2 u = 4s1 + tan2 ud = 4 sec2 u .

x = 2 tan u,  dx = 2 sec2 u du,  -
p
2

6 u 6
p
2

,

588 Chapter 8: Techniques of Integration

2sec2 u = ƒ sec u ƒ

sec u 7 0 for  -
p

2
6 u 6

p

2

From Fig. 8.4

Taking C¿ = C - ln 2

�

2

x
�4 � x2

FIGURE 8.4 Reference triangle for
(Example 1):

and

sec u =

24 + x2

2
.

tan u =

x
2

x = 2 tan u

cos u 7 0 for  -
p

2
6 u 6

p

2

sin 2u = 2 sin u cos u

Fig. 8.5

�

3 x

�9 � x2

FIGURE 8.5 Reference triangle for
(Example 2):

and

cos u =

29 - x2

3
.

sin u =

x
3

x = 3 sin u
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EXAMPLE 3 Using the Substitution 

Evaluate

Solution We first rewrite the radical as

to put the radicand in the form We then substitute

With these substitutions, we have

A trigonometric substitution can sometimes help us to evaluate an integral containing
an integer power of a quadratic binomial, as in the next example.

EXAMPLE 4 Finding the Volume of a Solid of Revolution

Find the volume of the solid generated by revolving about the x-axis the region bounded
by the curve the x-axis, and the lines and 

Solution We sketch the region (Figure 8.7) and use the disk method:

To evaluate the integral, we set

x2
+ 4 = 4 tan2 u + 4 = 4stan2 u + 1d = 4 sec2 u

x = 2 tan u, dx = 2 sec2 u du, u = tan-1 
x
2

,

V = L
2

0
 p[Rsxd]2 dx = 16pL

2

0
 

dx
sx2

+ 4d2 .

x = 2.x = 0y = 4>sx2
+ 4d ,

 =
1
5 ln ` 5x

2
+

225x2
- 4

2
` + C .

 =
1
5L  sec u du =

1
5 ln ƒ sec u + tan u ƒ + C

 L  
dx225x2

- 4
= L  

dx

52x2
- s4>25d

= L  
s2>5d sec u tan u du

5 # s2>5d tan u

Cx2
- a25 b

2

=
2
5 ƒ tan u ƒ =

2
5 tan u .

=
4
25

 ssec2 u - 1d =
4
25

 tan2 u

x2
- a25 b

2

=
4
25

 sec2 u -
4
25

x =
2
5 sec u,  dx =

2
5 sec u tan u du,  0 6 u 6

p
2

x2
- a2 .

 = 5Cx2
- a25 b

2

 225x2
- 4 = B25 ax2

-
4

25
b

L  
dx225x2

- 4
, x 7

2
5 .

x = a sec u

8.5 Trigonometric Substitutions 589

0 6 u 6 p>2tan u 7 0 for

Fig. 8.6

�

2

5x �25x2 � 4

FIGURE 8.6 If 
then and

we can read the values of the other
trigonometric functions of from this right
triangle (Example 3).

u

u = sec-1 s5x>2d ,0 6 u 6 p>2,
x = s2>5dsec u,

Rsxd =

4

x2
+ 4
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(Figure 8.8). With these substitutions,

EXAMPLE 5 Finding the Area of an Ellipse

Find the area enclosed by the ellipse

Solution Because the ellipse is symmetric with respect to both axes, the total area A is
four times the area in the first quadrant (Figure 8.9). Solving the equation of the ellipse for

we get

or

y =

b
a 2a2

- x2 0 … x … a

y2

b2 = 1 -

x2

a2 =

a2
- x2

a2 ,

y Ú 0,

x2

a2 +

y2

b2 = 1

 = p cp
4

+
1
2
d L 4.04.

 = pL
p>4

0
 s1 + cos 2ud du = p cu +

sin 2u
2
d

0

p>4

 = 16pL
p>4

0
 
2 sec2 u du
16 sec4 u

= pL
p>4

0
 2 cos2 u du

 = 16pL
p>4

0
 
2 sec2 u du
s4 sec2 ud2

 V = 16pL
2

0
 

dx
sx2

+ 4d2

590 Chapter 8: Techniques of Integration

x

y

0 2

1 y � 4
x2 � 4

(a)

2

0

y � 4
x2 � 4

(b)

x

y

FIGURE 8.7 The region (a) and solid (b) in Example 4.

�

2

x�x2 � 4

FIGURE 8.8 Reference triangle for
(Example 4).x = 2 tan u

2 cos2 u = 1 + cos 2u

x

y

0 a–a

–b

b

FIGURE 8.9 The ellipse in

Example 5.

x2

a2 +

y2

b2 = 1

u = p>4 when x = 2
u = 0 when x = 0;
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The area of the ellipse is

If we get that the area of a circle with radius r is  pr2 .a = b = r

 = 2ab cp
2

+ 0 - 0 d = pab .

 = 2ab cu +

sin 2u
2
d

0

p>2
 = 4abL

p>2
0

  
1 + cos 2u

2   du

 = 4abL
p>2

0
 cos2 u du

 = 4 
b
aL

p>2
0

 a cos u # a cos u du

 A = 4L
a

0
 
b
a 2a2

- x2 dx

8.5 Trigonometric Substitutions 591

u = p>2 when x = a
u = 0 when x = 0;
x = a sin u, dx = a cos u du,
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8.5 Trigonometric Substitutions 591

EXERCISES 8.5

Basic Trigonometric Substitutions
Evaluate the integrals in Exercises 1–28.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. L  
x2 dx

sx2
- 1d5>2 , x 7 1L  

dx

sx2
- 1d3>2 , x 7 1

L
1

0
 

dx

s4 - x2d3>2L
23>2

0
 

4x2 dx

s1 - x2d3>2

L  
29 - w2

w2  dwL  
8 dw

w224 - w2

L  
dx

x22x2
+ 1L  

x3 dx2x2
+ 4

L  
2 dx

x32x2
- 1

 , x 7 1L  
dx

x22x2
- 1

 , x 7 1

L  
2y2

- 25

y3  dy, y 7 5L  
2y2

- 49
y  dy, y 7 7

L  
5 dx225x2

- 9
 , x 7

3
5L  

dx24x2
- 49

 , x 7

7
2

L  21 - 9t2 dtL  225 - t2 dt

L
1>222

0
 

2 dx21 - 4x2L
3>2

0
 

dx29 - x2

L
2

0
 

dx

8 + 2x2L
2

-2
 

dx

4 + x2

L  
3 dy21 + 9y2L  

dy29 + y2

23. 24.

25. 26.

27. 28.

In Exercises 29–36, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.

29. 30.

31. 32.

33. 34.

35. 36.

Initial Value Problems
Solve the initial value problems in Exercises 37–40 for y as a function
of x.

37.

38.

39.

40. sx2
+ 1d2 

dy

dx
= 2x2

+ 1, ys0d = 1

sx2
+ 4d 

dy

dx
= 3, ys2d = 0

2x2
- 9 

dy

dx
= 1, x 7 3, ys5d = ln 3

x 
dy

dx
= 2x2

- 4, x Ú 2, ys2d = 0

L  
dx21 - x2L  

x dx2x2
- 1

L  
dx

1 + x2L  
dx

x2x2
- 1

L
e

1
 

dy

y21 + sln yd2L
1>4

1>12
 

2 dt1t + 4t1t

L
ln s4>3d

ln s3>4d
 

e t dt

s1 + e 2td3>2L
 ln 4

0
 

et dt2e2t
+ 9

L  
s1 - r 2d5>2

r 8  drL  
y2 dy

s1 - y2d5>2

L  
6 dt

s9t2
+ 1d2L  

8 dx

s4x2
+ 1d2

L  
s1 - x2d1>2

x4  dxL  
s1 - x2d3>2

x6  dx
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Applications
41. Find the area of the region in the first quadrant that is enclosed by

the coordinate axes and the curve 

42. Find the volume of the solid generated by revolving about the x-
axis the region in the first quadrant enclosed by the coordinate
axes, the curve and the line 

The Substitution 
The substitution

(1)

reduces the problem of integrating a rational expression in sin x and
cos x to a problem of integrating a rational function of z. This in turn
can be integrated by partial fractions.

From the accompanying figure

we can read the relation

To see the effect of the substitution, we calculate

(2)

and

(3) sin x =

2z
1 + z 2 .

 = 2 tan 
x
2

# 1
sec2 sx>2d

=

2 tan sx>2d

1 + tan2 sx>2d

 sin x = 2 sin 
x
2

 cos 
x
2

= 2 
sin sx>2d
cos sx>2d

# cos2 ax
2
b

 cos x =

1 - z 2

1 + z 2 , 

 =

2
1 + tan2 sx>2d

- 1 =

2
1 + z2 - 1

 cos x = 2 cos2 ax
2
b - 1 =

2
sec2 sx>2d

- 1

tan 
x
2

=

sin x
1 + cos x

.

A

P(cos x, sin x)

sin x
x

cos x1 0

1

2
x

z = tan 
x
2

z = tan sx>2d

x = 1.y = 2>s1 + x2d ,

y = 29 - x2>3.

Finally, so

(4)

Examples

a.

b.

Use the substitutions in Equations (1)–(4) to evaluate the integrals in
Exercises 43–50. Integrals like these arise in calculating the average
angular velocity of the output shaft of a universal joint when the input
and output shafts are not aligned.

43. 44.

45. 46.

47. 48.

49. 50.

Use the substitution to evaluate the integrals in Exercises
51 and 52.

51. 52. L  csc u duL  sec u du

z = tan su>2d

L  
cos t dt

1 - cos tL  
dt

sin t - cos t

L
2p>3
p>2  

cos u du
sin u cos u + sin uL

p>2
0

 
du

2 + cos u

L
p>2
p>3  

dx
1 - cos xL

p>2
0

 
dx

1 + sin x

L  
dx

1 + sin x + cos xL  
dx

1 - sin x

 =

223
 tan-1 

1 + 2 tan sx>2d23
+ C

 =

223
 tan-1 

2z + 123
+ C

 =

1
a tan-1 aua b + C

 = L  
du

u2
+ a2

 = L  
dz

z2
+ z + 1

= L  
dz

sz + s1>2dd2
+ 3>4

 L  
1

2 + sin x
 dx = L  

1 + z 2

2 + 2z + 2z 2  
2 dz

1 + z 2

 = tan ax
2
b + C

 = L  dz = z + C

 L  
1

1 + cos x
 dx = L  

1 + z2

2
 

2 dz

1 + z2

dx =

2 dz

1 + z2 .

x = 2 tan-1 z ,
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