Chapter # 3 Differentiation

3.1: Derivative as a Function

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

We use the notation f(x) rather than simply f in the definition to emphasize the independent variable x, which we are differentiating with respect to. The domain of f' is the set of points in the domain of f for which the limit exists, and the domain may be the same or smaller than the domain of f. If f' exists at a particular x, we say that f is differentiable (has a derivative) at x. If f' exists at every point in the domain of f, we call f differentiable.

EXAMPLE 1 Applying the Definition

Differentiate $f(x) = \frac{x}{x-1}$.

Solution Here we have
$$f(x) = \frac{x}{x-1}$$

and

$$f(x + h) = \frac{(x + h)}{(x + h) - 1}, \text{ so}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \frac{\frac{x + h}{x + h - 1} - \frac{x}{x - 1}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{(x + h)(x - 1) - x(x + h - 1)}{(x + h - 1)(x - 1)} \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - cb}{bd}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h}{(x + h - 1)(x - 1)}$$

$$= \lim_{h \to 0} \frac{-1}{h} \cdot \frac{-1}{(x + h - 1)(x - 1)} = \frac{-1}{(x - 1)^2}.$$

EXAMPLE 2 Derivative of the Square Root Function

- (a) Find the derivative of $y = \sqrt{x}$ for x > 0.
- (b) Find the tangent line to the curve $y = \sqrt{x}$ at x = 4.

Solution

(a) We use the equivalent form to calculate f':

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$
$$= \lim_{z \to x} \frac{\sqrt{z} - \sqrt{x}}{z - x}$$
$$= \lim_{z \to x} \frac{\sqrt{z} - \sqrt{x}}{(\sqrt{z} - \sqrt{x})(\sqrt{z} + \sqrt{x})}$$
$$= \lim_{z \to x} \frac{1}{\sqrt{z} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Notations

There are many ways to denote the derivative of a function y = f(x), where the independent variable is x and the dependent variable is y. Some common alternative notations for the derivative are

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D(f)(x) = D_x f(x).$$

The symbols d/dx and D indicate the operation of differentiation and are called **differentiation operators**. We read dy/dx as "the derivative of y with respect to x," and df/dx and (d/dx)f(x) as "the derivative of f with respect to x." The "prime" notations y' and f' come from notations that Newton used for derivatives. The d/dx notations are similar to those used by Leibniz. The symbol dy/dx should not be regarded as a ratio (until we introduce the idea of "differentials" in Section 3.8).

Be careful not to confuse the notation D(f) as meaning the domain of the function f instead of the derivative function f'. The distinction should be clear from the context.

To indicate the value of a derivative at a specified number x = a, we use the notation

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{d}{dx}f(x)\Big|_{x=a}.$$

For instance, in Example 2b we could write

$$f'(4) = \frac{d}{dx}\sqrt{x}\Big|_{x=4} = \frac{1}{2\sqrt{x}}\Big|_{x=4} = \frac{1}{2\sqrt{4}} = \frac{1}{4}.$$

To evaluate an expression, we sometimes use the right bracket] in place of the vertical bar |.

EXAMPLE 6 $y = \sqrt{x}$ Is Not Differentiable at x = 0

In Example 2 we found that for x > 0,

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}.$$

We apply the definition to examine if the derivative exists at x = 0:

$$\lim_{h\to 0^+}\frac{\sqrt{0+h}-\sqrt{0}}{h}=\lim_{h\to 0^+}\frac{1}{\sqrt{h}}=\infty.$$

Since the (right-hand) limit is not finite, there is no derivative at x = 0. Since the slopes of the secant lines joining the origin to the points (h, \sqrt{h}) on a graph of $y = \sqrt{x}$ approach ∞ , the graph has a *vertical tangent* at the origin.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1 Differentiability Implies Continuity If f has a derivative at x = c, then f is continuous at x = c.

CAUTION The converse of Theorem 1 is false. A function need not have a derivative at a point where it is continuous, as we saw in Example 5.

EXERCISES 3.1

Finding Derivative Functions and Values

Using the definition, calculate the derivatives of the functions in Exercises 1–6. Then find the values of the derivatives as specified.

1. $f(x) = 4 - x^2$; f'(-3), f'(0), f'(1)2. $F(x) = (x - 1)^2 + 1$; F'(-1), F'(0), F'(2)3. $g(t) = \frac{1}{t^2}$; $g'(-1), g'(2), g'(\sqrt{3})$

4.
$$k(z) = \frac{1-z}{2z}; k'(-1), k'(1), k'(\sqrt{2})$$

5. $p(\theta) = \sqrt{3\theta}; p'(1), p'(3), p'(2/3)$
6. $r(s) = \sqrt{2s+1}; r'(0), r'(1), r'(1/2)$

In Exercises 7-12, find the indicated derivatives.

7.
$$\frac{dy}{dx}$$
 if $y = 2x^3$
8. $\frac{dr}{ds}$ if $r = \frac{s^3}{2} + 1$

Differentiation Rules

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

RULE 1 Derivative of a Constant Function

If *f* has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

EXAMPLE 1

If *f* has the constant value f(x) = 8, then

$$\frac{df}{dx} = \frac{d}{dx}(8) = 0.$$

Similarly,

$$\frac{d}{dx}\left(-\frac{\pi}{2}\right) = 0$$
 and $\frac{d}{dx}\left(\sqrt{3}\right) = 0.$

RULE 2 Power Rule for Positive Integers

If *n* is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}$$

RULE 3 Constant Multiple Rule

If *u* is a differentiable function of *x*, and *c* is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$

In particular, if n is a positive integer, then

$$\frac{d}{dx}(cx^n) = cnx^{n-1}$$

EXAMPLE 3

(a) The derivative formula

$$\frac{d}{dx}(3x^2) = 3 \cdot 2x = 6x$$

says that if we rescale the graph of $y = x^2$ by multiplying each *y*-coordinate by 3, then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case

The derivative of the negative of a differentiable function u is the negative of the function's derivative. Rule 3 with c = -1 gives

$$\frac{d}{dx}(-u) = \frac{d}{dx}(-1 \cdot u) = -1 \cdot \frac{d}{dx}(u) = -\frac{du}{dx}.$$

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$

EXAMPLE 4 Derivative of a Sum

$$y = x^4 + 12x$$
$$\frac{dy}{dx} = \frac{d}{dx}(x^4) + \frac{d}{dx}(12x)$$
$$= 4x^3 + 12$$

Combining the Sum Rule with the Constant Multiple Rule gives the **Difference Rule**, which says that the derivative of a *difference* of differentiable functions is the difference of their derivatives.

$$\frac{d}{dx}(u-v) = \frac{d}{dx}[u+(-1)v] = \frac{du}{dx} + (-1)\frac{dv}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

The Sum Rule also extends to sums of more than two functions, as long as there are only finitely many functions in the sum. If u_1, u_2, \ldots, u_n are differentiable at *x*, then so is $u_1 + u_2 + \cdots + u_n$, and

$$\frac{d}{dx}(u_1+u_2+\cdots+u_n)=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_n}{dx}.$$

EXAMPLE 5 Derivative of a Polynomial

$$y = x^{3} + \frac{4}{3}x^{2} - 5x + 1$$

$$\frac{dy}{dx} = \frac{d}{dx}x^{3} + \frac{d}{dx}\left(\frac{4}{3}x^{2}\right) - \frac{d}{dx}(5x) + \frac{d}{dx}(1)$$

$$= 3x^{2} + \frac{4}{3} \cdot 2x - 5 + 0$$

$$= 3x^{2} + \frac{8}{3}x - 5$$

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

The derivative of the product uv is u times the derivative of v plus v times the derivative of u. In *prime notation*, (uv)' = uv' + vu'. In function notation,

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

EXAMPLE 7 Using the Product Rule

Find the derivative of

.

$$y = \frac{1}{x} \left(x^2 + \frac{1}{x} \right).$$

i) Solution We apply the Product Rule with u = 1/x and $v = x^2 + (1/x)$:

$$\frac{d}{dx} \left[\frac{1}{x} \left(x^2 + \frac{1}{x} \right) \right] = \frac{1}{x} \left(2x - \frac{1}{x^2} \right) + \left(x^2 + \frac{1}{x} \right) \left(-\frac{1}{x^2} \right) \qquad \frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}, \text{ and} = 2 - \frac{1}{x^3} - 1 - \frac{1}{x^3} \qquad \frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2} \text{ by} = 2 - \frac{1}{x^3} - 1 - \frac{1}{x^3} \qquad \text{Example 3, Section 2.7.}$$
$$= 1 - \frac{2}{x^3}.$$

EXAMPLE 9 Differentiating a Product in Two Ways

Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

Solution

(a) From the Product Rule with $u = x^2 + 1$ and $v = x^3 + 3$, we find

$$\frac{d}{dx} \left[\left(x^2 + 1 \right) \left(x^3 + 3 \right) \right] = (x^2 + 1)(3x^2) + (x^3 + 3)(2x)$$
$$= 3x^4 + 3x^2 + 2x^4 + 6x$$
$$= 5x^4 + 3x^2 + 6x.$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for y and differentiating the resulting polynomial:

$$y = (x^{2} + 1)(x^{3} + 3) = x^{5} + x^{3} + 3x^{2} + 3x^{2}$$
$$\frac{dy}{dx} = 5x^{4} + 3x^{2} + 6x.$$

This is in agreement with our first calculation.

RULE 6 Derivative Quotient Rule

If *u* and *v* are differentiable at *x* and if $v(x) \neq 0$, then the quotient u/v is differentiable at *x*, and

$$\frac{d}{dx}\left(\frac{u}{\upsilon}\right) = \frac{\upsilon \frac{du}{dx} - u \frac{d\upsilon}{dx}}{\upsilon^2}.$$

In function notation,

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}.$$

Using the Quotient Rule

Find the derivative of

$$y = \frac{t^2 - 1}{t^2 + 1}.$$

Solution

We apply the Quotient Rule with $u = t^2 - 1$ and $v = t^2 + 1$:

$$\frac{dy}{dt} = \frac{(t^2+1)\cdot 2t - (t^2-1)\cdot 2t}{(t^2+1)^2} \qquad \frac{d}{dt} \left(\frac{u}{v}\right) = \frac{v(du/dt) - u(dv/dt)}{v^2} \\
= \frac{2t^3 + 2t - 2t^3 + 2t}{(t^2+1)^2} \\
= \frac{4t}{(t^2+1)^2}.$$

Negative Integer Powers of x

The Power Rule for negative integers is the same as the rule for positive integers.

RULE 7 Power Rule for Negative Integers If *n* is a negative integer and $x \neq 0$, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

EXAMPLE 11

(a)
$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}(x^{-1}) = (-1)x^{-2} = -\frac{1}{x^2}$$

(b) $\frac{d}{dx}\left(\frac{4}{x^3}\right) = 4\frac{d}{dx}(x^{-3}) = 4(-3)x^{-4} = -\frac{12}{x^4}$

Agrees with Example 3, Section 2.7

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. Notationally,

$$f''(x) = \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

The symbol D^2 means the operation of differentiation is performed twice. If $y = x^6$, then $y' = 6x^5$ and we have

$$y'' = \frac{dy'}{dx} = \frac{d}{dx} \left(6x^5 \right) = 30x^4.$$

Thus $D^2(x^6) = 30x^4$.

If y" is differentiable, its derivative, $y''' = dy''/dx = d^3y/dx^3$ is the **third derivative** of y with respect to x. The names continue as you imagine, with

$$y^{(n)} = \frac{d}{dx}y^{(n-1)} = \frac{d^{n}y}{dx^{n}} = D^{n}y$$

denoting the *n*th derivative of *y* with respect to *x* for any positive integer *n*.

EXAMPLE 14 Finding Higher Derivatives The first four derivatives of $y = x^3 - 3x^2 + 2$ are

> First derivative: $y' = 3x^2 - 6x$ Second derivative: y'' = 6x - 6Third derivative: y''' = 6Fourth derivative: $y^{(4)} = 0$.

The function has derivatives of all orders, the fifth and later derivatives all being zero.

Exercise

Derivative Calculations

In Exercises 1–12, find the first and second derivatives.

1. $y = -x^2 + 3$	2. $y = x^2 + x + 8$
3. $s = 5t^3 - 3t^5$	4. $w = 3z^7 - 7z^3 + 21z^2$
5. $y = \frac{4x^3}{3} - x$	6. $y = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{4}$
7. $w = 3z^{-2} - \frac{1}{z}$	8. $s = -2t^{-1} + \frac{4}{t^2}$
9. $y = 6x^2 - 10x - 5x^{-2}$	10. $y = 4 - 2x - x^{-3}$
11. $r = \frac{1}{3s^2} - \frac{5}{2s}$	12. $r = \frac{12}{\theta} - \frac{4}{\theta^3} + \frac{1}{\theta^4}$

In Exercises 13–16, find y' (a) by applying the Product Rule and (b) by multiplying the factors to produce a sum of simpler terms to differentiate.

13.
$$y = (3 - x^2)(x^3 - x + 1)$$
 14. $y = (x - 1)(x^2 + x + 1)$
15. $y = (x^2 + 1)\left(x + 5 + \frac{1}{x}\right)$ 16. $y = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x} + 1\right)$

Find the derivatives of the functions in Exercises 17–28.

17.
$$y = \frac{2x+5}{3x-2}$$

18. $z = \frac{2x+1}{x^2-1}$
19. $g(x) = \frac{x^2-4}{x+0.5}$
20. $f(t) = \frac{t^2-1}{t^2+t-2}$
21. $v = (1-t)(1+t^2)^{-1}$
22. $w = (2x-7)^{-1}(x+5)$
23. $f(s) = \frac{\sqrt{s}-1}{\sqrt{s}+1}$
24. $u = \frac{5x+1}{2\sqrt{x}}$
25. $v = \frac{1+x-4\sqrt{x}}{x}$
26. $r = 2\left(\frac{1}{\sqrt{\theta}} + \sqrt{\theta}\right)$
27. $y = \frac{1}{(x^2-1)(x^2+x+1)}$
28. $y = \frac{(x+1)(x+2)}{(x-1)(x-2)}$

Find the derivatives of all orders of the functions in Exercises 29 and 30.

29.
$$y = \frac{x^4}{2} - \frac{3}{2}x^2 - x$$
 30. $y = \frac{x^5}{120}$

Find the first and second derivatives of the functions in Exercises 31–38.

31.
$$y = \frac{x^3 + 7}{x}$$

32. $s = \frac{t^2 + 5t - 1}{t^2}$
33. $r = \frac{(\theta - 1)(\theta^2 + \theta + 1)}{\theta^3}$
34. $u = \frac{(x^2 + x)(x^2 - x + 1)}{x^4}$
35. $w = \left(\frac{1 + 3z}{3z}\right)(3 - z)$
36. $w = (z + 1)(z - 1)(z^2 + 1)$