

FIGURE 5
The curve $y=x^{4}-6 x^{2}+4$ and its horizontal tangents

EXAMPLE 5

$$
\begin{aligned}
\frac{d}{d x}\left(x^{8}\right. & \left.+12 x^{5}-4 x^{4}+10 x^{3}-6 x+5\right) \\
& =\frac{d}{d x}\left(x^{8}\right)+12 \frac{d}{d x}\left(x^{5}\right)-4 \frac{d}{d x}\left(x^{4}\right)+10 \frac{d}{d x}\left(x^{3}\right)-6 \frac{d}{d x}(x)+\frac{d}{d x}(5) \\
& =8 x^{7}+12\left(5 x^{4}\right)-4\left(4 x^{3}\right)+10\left(3 x^{2}\right)-6(1)+0 \\
& =8 x^{7}+60 x^{4}-16 x^{3}+30 x^{2}-6
\end{aligned}
$$

EXAMPLE 6 Find the points on the curve $y=x^{4}-6 x^{2}+4$ where the tangent line is horizontal.
sOLUTION Horizontal tangents occur where the derivative is zero. We have

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{4}\right)-6 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(4) \\
& =4 x^{3}-12 x+0=4 x\left(x^{2}-3\right)
\end{aligned}
$$

Thus $d y / d x=0$ if $x=0$ or $x^{2}-3=0$, that is, $x= \pm \sqrt{3}$. So the given curve has horizontal tangents when $x=0, \sqrt{3}$, and $-\sqrt{3}$. The corresponding points are $(0,4)$, $(\sqrt{3},-5)$, and $(-\sqrt{3},-5)$. (See Figure 5.)

EXAMPLE 7 The equation of motion of a particle is $s=2 t^{3}-5 t^{2}+3 t+4$, where s is measured in centimeters and t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

$$
\begin{aligned}
& v(t)=\frac{d s}{d t}=6 t^{2}-10 t+3 \\
& a(t)=\frac{d v}{d t}=12 t-10
\end{aligned}
$$

The acceleration after 2 s is $a(2)=14 \mathrm{~cm} / \mathrm{s}^{2}$.

Exponential Functions

Let's try to compute the derivative of the exponential function $f(x)=b^{x}$ using the definition of a derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{b^{x} b^{h}-b^{x}}{h}=\lim _{h \rightarrow 0} \frac{b^{x}\left(b^{h}-1\right)}{h}
\end{aligned}
$$

The factor b^{x} doesn't depend on h, so we can take it in front of the limit:

$$
f^{\prime}(x)=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
$$

h	$\frac{2^{h}-1}{h}$	$\frac{3^{h}-1}{h}$
0.1	0.7177	1.1612
0.01	0.6956	1.1047
0.001	0.6934	1.0992
0.0001	0.6932	1.0987

In Exercise 1 we will see that e lies between 2.7 and 2.8. Later we will be able to show that, correct to five decimal places,

$$
e \approx 2.71828
$$

Notice that the limit is the value of the derivative of f at 0 , that is,

$$
\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=f^{\prime}(0)
$$

Therefore we have shown that if the exponential function $f(x)=b^{x}$ is differentiable at 0 , then it is differentiable everywhere and

$$
\begin{equation*}
f^{\prime}(x)=f^{\prime}(0) b^{x} \tag{4}
\end{equation*}
$$

This equation says that the rate of change of any exponential function is proportional to the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of $f^{\prime}(0)$ is given in the table at the left for the cases $b=2$ and $b=3$. (Values are stated correct to four decimal places.) It appears that the limits exist and

$$
\begin{aligned}
& \text { for } b=2, \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.69 \\
& \text { for } b=3, \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.10
\end{aligned}
$$

In fact, it can be proved that these limits exist and, correct to six decimal places, the values are

$$
\left.\left.\frac{d}{d x}\left(2^{x}\right)\right|_{x=0} \approx 0.693147 \quad \frac{d}{d x}\left(3^{x}\right)\right|_{x=0} \approx 1.098612
$$

Thus, from Equation 4, we have

$$
\frac{d}{d x}\left(2^{x}\right) \approx(0.69) 2^{x} \quad \frac{d}{d x}\left(3^{x}\right) \approx(1.10) 3^{x}
$$

Of all possible choices for the base b in Equation 4, the simplest differentiation formula occurs when $f^{\prime}(0)=1$. In view of the estimates of $f^{\prime}(0)$ for $b=2$ and $b=3$, it seems reasonable that there is a number b between 2 and 3 for which $f^{\prime}(0)=1$. It is traditional to denote this value by the letter e. (In fact, that is how we introduced e in Section 1.4.) Thus we have the following definition.

Definition of the Number e

$$
e \text { is the number such that } \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Geometrically, this means that of all the possible exponential functions $y=b^{x}$, the function $f(x)=e^{x}$ is the one whose tangent line at $(0,1)$ has a slope $f^{\prime}(0)$ that is exactly 1. (See Figures 6 and 7.)

TEC Visual 3.1 uses the slope-ascope to illustrate this formula.

FIGURE 8

FIGURE 9

FIGURE 6

FIGURE 7

If we put $b=e$ and, therefore, $f^{\prime}(0)=1$ in Equation 4, it becomes the following important differentiation formula.

Derivative of the Natural Exponential Function

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Thus the exponential function $f(x)=e^{x}$ has the property that it is its own derivative. The geometrical significance of this fact is that the slope of a tangent line to the curve $y=e^{x}$ is equal to the y-coordinate of the point (see Figure 7).

EXAMPLE 8 If $f(x)=e^{x}-x$, find f^{\prime} and $f^{\prime \prime}$. Compare the graphs of f and f^{\prime}.
SOLUTION Using the Difference Rule, we have

$$
f^{\prime}(x)=\frac{d}{d x}\left(e^{x}-x\right)=\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}(x)=e^{x}-1
$$

In Section 2.8 we defined the second derivative as the derivative of f^{\prime}, so

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(e^{x}-1\right)=\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}(1)=e^{x}
$$

The function f and its derivative f^{\prime} are graphed in Figure 8. Notice that f has a horizontal tangent when $x=0$; this corresponds to the fact that $f^{\prime}(0)=0$. Notice also that, for $x>0, f^{\prime}(x)$ is positive and f is increasing. When $x<0, f^{\prime}(x)$ is negative and f is decreasing.

EXAMPLE 9 At what point on the curve $y=e^{x}$ is the tangent line parallel to the line $y=2 x$?

SOLUTION Since $y=e^{x}$, we have $y^{\prime}=e^{x}$. Let the x-coordinate of the point in question be a. Then the slope of the tangent line at that point is e^{a}. This tangent line will be parallel to the line $y=2 x$ if it has the same slope, that is, 2 . Equating slopes, we get

$$
e^{a}=2 \quad a=\ln 2
$$

Therefore the required point is $\left(a, e^{a}\right)=(\ln 2,2)$. (See Figure 9.)

3.1 EXERCISES

1. (a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits

$$
\lim _{h \rightarrow 0} \frac{2.7^{h}-1}{h} \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{2.8^{h}-1}{h}
$$

correct to two decimal places. What can you conclude about the value of e ?
2. (a) Sketch, by hand, the graph of the function $f(x)=e^{x}$, paying particular attention to how the graph crosses the y-axis. What fact allows you to do this?
(b) What types of functions are $f(x)=e^{x}$ and $g(x)=x^{e}$? Compare the differentiation formulas for f and g.
(c) Which of the two functions in part (b) grows more rapidly when x is large?

3-32 Differentiate the function.
3. $f(x)=2^{40}$
5. $f(x)=5.2 x+2.3$
7. $f(t)=2 t^{3}-3 t^{2}-4 t$
9. $g(x)=x^{2}(1-2 x)$
11. $g(t)=2 t^{-3 / 4}$
13. $F(r)=\frac{5}{r^{3}}$
15. $R(a)=(3 a+1)^{2}$
17. $S(p)=\sqrt{p}-p$
19. $y=3 e^{x}+\frac{4}{\sqrt[3]{x}}$
21. $h(u)=A u^{3}+B u^{2}+C u$
23. $y=\frac{x^{2}+4 x+3}{\sqrt{x}}$
25. $j(x)=x^{2.4}+e^{2.4}$
27. $G(q)=\left(1+q^{-1}\right)^{2}$
29. $f(v)=\frac{\sqrt[3]{v}-2 v e^{v}}{v}$
31. $z=\frac{A}{y^{10}}+B e^{y}$
4. $f(x)=e^{5}$
6. $g(x)=\frac{7}{4} x^{2}-3 x+12$
8. $f(t)=1.4 t^{5}-2.5 t^{2}+6.7$
10. $H(u)=(3 u-1)(u+2)$
12. $B(y)=c y^{-6}$
14. $y=x^{5 / 3}-x^{2 / 3}$
16. $h(t)=\sqrt[4]{t}-4 e^{t}$
18. $y=\sqrt[3]{x}(2+x)$
20. $S(R)=4 \pi R^{2}$
22. $y=\frac{\sqrt{x}+x}{x^{2}}$
24. $G(t)=\sqrt{5 t}+\frac{\sqrt{7}}{t}$
26. $k(r)=e^{r}+r^{e}$
28. $F(z)=\frac{A+B z+C z^{2}}{z^{2}}$
30. $D(t)=\frac{1+16 t^{2}}{(4 t)^{3}}$
32. $y=e^{x+1}+1$

33-36 Find an equation of the tangent line to the curve at the given point.
33. $y=2 x^{3}-x^{2}+2, \quad(1,3)$
34. $y=2 e^{x}+x, \quad(0,2)$
35. $y=x+\frac{2}{x}, \quad(2,3)$
36. $y=\sqrt[4]{x}-x, \quad(1,0)$

37-38 Find equations of the tangent line and normal line to the curve at the given point.
37. $y=x^{4}+2 e^{x}, \quad(0,2)$
38. $y^{2}=x^{3}, \quad(1,1)$

39-40 Find an equation of the tangent line to the curve at the given point. Illustrate by graphing the curve and the tangent line on the same screen.
39. $y=3 x^{2}-x^{3}, \quad(1,2)$
40. $y=x-\sqrt{x}, \quad(1,0)$
\#1-42 Find $f^{\prime}(x)$. Compare the graphs of f and f^{\prime} and use them to explain why your answer is reasonable.
41. $f(x)=x^{4}-2 x^{3}+x^{2}$
42. $f(x)=x^{5}-2 x^{3}+x-1$
43. (a) Graph the function

$$
f(x)=x^{4}-3 x^{3}-6 x^{2}+7 x+30
$$

in the viewing rectangle $[-3,5]$ by $[-10,50]$.
(b) Using the graph in part (a) to estimate slopes, make a rough sketch, by hand, of the graph of f^{\prime}. (See Example 2.8.1.)
(c) Calculate $f^{\prime}(x)$ and use this expression, with a graphing device, to graph f^{\prime}. Compare with your sketch in part (b).
44. (a) Graph the function $g(x)=e^{x}-3 x^{2}$ in the viewing rectangle $[-1,4]$ by $[-8,8]$.
(b) Using the graph in part (a) to estimate slopes, make a rough sketch, by hand, of the graph of g^{\prime}. (See Example 2.8.1.)
(c) Calculate $g^{\prime}(x)$ and use this expression, with a graphing device, to graph g^{\prime}. Compare with your sketch in part (b).

45-46 Find the first and second derivatives of the function.
45. $f(x)=0.001 x^{5}-0.02 x^{3}$
46. $G(r)=\sqrt{r}+\sqrt[3]{r}$

47-48 Find the first and second derivatives of the function. Check to see that your answers are reasonable by comparing the graphs of f, f^{\prime}, and $f^{\prime \prime}$.
47. $f(x)=2 x-5 x^{3 / 4}$
48. $f(x)=e^{x}-x^{3}$

