Chapter# 2
Limits and Continuity

Sections Covered: 2.3,2.4,2.6



2.3 Precise Definition of Limit

DEFINITION  Limit of a Function

Let f(x) be defined on an open interval about x;, except possibly at x; itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim f(x) = L,

XX

if, for every number € = (), there exists a corresponding number & = 0 such that
for all x,

0 < |x—xg] <6 — | flx) — L] < €.

‘}J
&
L+eT
Jix) lies
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FIGURE 2.14 The relation of & and € 1n

the definmition of limait.
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How to Find Algebraically a & for a Given f, L, xo, and € = 0
The process of finding a & == () such that for all x

0 = |x — xp] == & — | flx)y — L] = e
can be accomplished 1n two steps.

1. Solve the inegquality | fix) — L| = € to find an open interval (a. #) contain-
ing xgp on which the inequality holds for all x & x.

2. Find a value of & == 0 that places the open interval (xg — &.xp + &) centered
at xp inside the interval (a, b). The inequality | f(x) — L| =< e will hold for all
x ¥ xg in this é-interval.
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Exercise

Finding Deltas Algebraically

Each of Exercises 15-30 gives a function fix) and numbers L, x; and
e = 0. In each case, find an open interval about x; on which the in-
equality | f(x) — L| < e holds. Then give a value for & = 0 such
that for all x satisfying 0 < |x — xg| < & the inequality
flx) — L| = e holds.

.

W fix)=x+1, L=35  x=4  €=00l

16, flx) =2x—2. L=—-6  x=-2. e=1002
T flx)=Vx+ 1, L=1 x=0  e=0l
18. f(x) = Vx, L=1/2, xo=1/4, e=0l
N flx)= V19 —x L=3 xm=10 e=1
20. fix) =Vx—7  L=4  x=23 e=1

A . flx)=1/x, L=1/4, =4 €=005

22, fix)=x% L=3 wm=V3 e=0l
27 fx)=x% L=4, xx=-2, €=05
4. f(x) =1)x, L=-1, xpo=-1, e=0lI
2 fx)=x2-5 L=11, x=4  e=I




2.4: Two sided Limits and Limits at Infinity

One-Sided Limits

To have a limit [ as x approaches ¢, a function f must be defined on both sides of ¢ and its
values f(x) must approach L as x approaches ¢ from either side. Because of this, ordinary
limits are called two-sided.

If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that 1s, a
limit if the approach 1s only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left. it 1s a left-hand limit.



Right Hand Limit

Intuitively, if f(x) is defined on an interval (¢, b), where ¢ < b, and approaches arbi-
trarily close to L as x approaches ¢ from within that interval, then f has right-hand limit L
at c. We write

lim f(x) = L.

x—c”

The symbol “x — ¢™ ™ means that we consider only values of x greater than c.

Left Hand Limit

Similarly, if f(x) is defined on an interval (a. c), where a << ¢ and approaches arbi-

trarily close to M as x approaches ¢ from within that interval, then f has left-hand limit M
at c. We write

Em_ fix) = M.

The symbol “x — ¢~ ” means that we consider only x values less than c.
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THEOREM 6

A function f(x) has a limit as x approaches ¢ if and only if it has lefi-hand and

right-hand limits there and these one-sided limits are equal:

Iim f(x) = L — lim fi(x) = L and lim_ f(x) = L

a— —C —c

THEOREM 7
Hlim[:I SIEH =1 (# in radians) (1)
EXAMPLE 5  Using lim 209 _ 4
g—o 0
. ecosh — 1 . sin2x _ 2
Show that (a) j}l—%T =0 and (b) }1_13':3—53: = 35-

Solution
(a) Using the half-angle formulacosh = 1 — 2 sinz{ﬁl.-"Z] . we calculate

i COSR — 1 _ 2 sin? (h/2)
h—=0 h h—s0 h
= —lim SIEHS:[HH
H—

— —(1)(0) = 0.

Let &

hy2



(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by 2/5:

lim sin2x _ Im (2/3) - sin2x
x—={] 3x x—0 [EI,IIEJ'.SI
_ % lim sin 2x ?“.Iw-w..qu' (1) applies with
x—={) 2x .
2 2
EXAMPLE 7 Using Theorem 8
(a) lim (5 + Il) = lim 5 + lim =  Sum Ruke
=54+0=25 Known limits
(b) Il'_}l-'m 'E'T;'-.-EE _ Illr_lLD TTW"‘"I-E-%-IL
= lir_l}x. TTI-‘I-E' lilzlm%' I1 _m% Product rule

= g7 1"-,5 c0-0=20 Konown limits



Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — £ 00, we can divide the numerator
and denominator by the highest power of x in the denominator. What happens then de-

pends on the degrees of the polynomials involved.

EXAMPLE 8  Numerator and Denominator of Same Degree
3 + {E."f‘-"::h B {3-"&2} Divide numerator and

i X%+ 8 —3

T—*00 Iyl + 2 X—* 00 3 + {-?-,."rl'z] denominator by x?.

_5+ﬂ_ﬂ—i ‘.;11'..--_-|"'i
— 3 + ﬂ - 3 oL PR £.50. |
EXAMPLE @  Degree of Numerator Less Than Degree of Denominator
2 3

lim 11x + 2 = lim (1 ls"llx } + [EJ'II ) Divide numerator and

x—s—oa I3 — ] s—+—00 2 — {1}.-'_,:3} denominator by x7.
_0+0 =10 See Fig. 2.34. |

~2-0
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Find the limits in Exercises 21-36.

'H' lim S| \%EH

=0 \/29
}{ i sin 3y
' yl—IH:l 4y

M’ im tan 2x

—{ X

. XCsC2x
. lim

—0 C0S x

.zﬁ’ ., X T XC0sx
L lim————

t—0 SINXCOsx

_sin(l — cos)
)/f. lim

(=g | — cost

)5« im sin #

= sin 24

< im I3
r—0 Sin &x

22,

M.

26.

18,

30.

i1 1

M. lim

6. 1

IinEI w (k constant)
—

Jm S

lim 6x*(cot x)(cse 2x)
—{

Coxt -y +sinx
lim
—0 2x

_sin(sin k)
Im —————
g— SNk

sin 5x
—0 sindx

. sin 3y cot 5y
m-—-—
y—0  yeotdy

Calculating Limits as x — £ oc

In Exercises 37-42, find the limit of each function (a) as x — =¢ and
(b) as x— —20. (You may wish to visualize your answer with a
graphing calculator or computer.)

2 2
¥ flx)==-3 B fx) =7 -5
A o) = — L 0. glx) = —L
E(—I] 7 + “j,rx] E{-’f] g — Iiﬁl,-".rl}
-5+ (T/x 3 —(2/x
41: fi{l} = l:: JIIIE] 42' }I(I} = l::i ]'_r
3 — (1/x2) 4+ (V2/x?)
Find the limits in Exercises 43-46.
. sin 2x ) cos
#. lim = M. lim =5
& lim 2 —t+ sint 46. lim r+ sinr

f——oa I+ COSt r—oo 2+ T — Ssinr

Limits of Rational Functions

In Exercises 47-56, find the limit of each rational function (a) as
x— 20 and (b) as x — — 20,

- 2r+ 3 2%+ 7
"ﬂix}:j-’f"'? 43.f|{x}=x3—3‘1+x+'?
x+ 1 x+7

M. fix) = S0, =
.ﬂ‘} .1'2 T3 _fl:.ll'] 3_1_2
Tx® |
SV hix) = 52. =
H hix) = 3xt + 6 g(x) = dx + 1




2.6 Continuity

DEFINITION Continuous at a Point
Interior point: A function y = f(x) is continuous at an interior point ¢ of its

domain 1f

lim f(x) = f(e).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint & of its domain if

lim, fix) = fla) or E}ng_ fix) = f(b), respectively.




If a function f 1s not continuous at a point ¢, we say that f 1s discontinuous at ¢ and ¢
is a point of discontinuity of f. Note that ¢ need not be in the domain of /.

A function f 1s right-continuous (continuous from the right) at a point x = ¢ inits
domain if limy—. f(x) = f(c). It is left-continuous (continuous from the left) at ¢ if
lim,—,- f(x) = f(c). Thus, a function is continuous at a left endpoint a of its domain if it
is right-continuous at @ and continuous at a right endpoint b of its domam if 1t 1s left-
continuous at b. A function is continuous at an interior point ¢ of its domain 1f and only 1f
it 1s both right-continuous and left-continuous at ¢ (Figure 2.31).



¥
9

EXAMPLE 2 A Function Continuous Throughout Its Domain | yova_=
. 2
The function f(x) = V4 — x*is continuous at every point of its domain, [-2, 2] (Figure
2.52), including x = —2, where f is right-continuous, and x = 2, where f is lefi-continuous.
N -2 0 2

FIGURE 2.52 A function
that i1s continuous at every
domain point {( Example 2).

EXAMPLE 3 The Unit Step Function Has a Jump Discontinuity

The unit step function U(x), graphed in Figure 2.53, 15 right-continuous at x = (), but 1s o N

neither left-continuous nor continuous there. It has a jump discontinuityatx = (0. m FIGURE 2.53 A function

that 1s nght-continuous,
but not left-continuous, at
the origin. It has a jump

discontinuity there
( Example 3).



Continuity Test
A function f(x) is continuous at x = ¢ if and only if it meets the following three
conditions.

1. f(c) exists (c lies in the domain of f)
2. lim,—, f(x) exists ( f has a limit as x — ¢)
3. limy— f(x) = f(c) (the limit equals the function value)




Continuous Functions

A function is continuous on an interval if and only if it is continuous at every point of the
interval. For example, the semicircle function graphed in Figure 2.52 is continuous on the
interval [—2. 2], which 1s its domain. A continuous function 1s one that is continuous at
every point of its domain. A continuous function need not be continuous on every interval.

For example, vy = 1/x is not continuous on [—1, 1] (Figure 2.56), but it is continuous over
its domain ( —oo, 0) L (0, 0o).

EXAMPLE 5  Identifying Continuous Functions

(a) The function y = 1/x (Figure 2.56) is a continuous function because it is continuous

at every point of its domain. It has a point of discontinuity at x = 0, however, because
it 1s not defined there.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. O



THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Sums: f+g

2. Differences: f—g

3. Products: f-g

4. Constant multiples: k- f, for any number k

5. Quotients: f/g provided g(c) = 0

6. Powers: "%, provided it is defined on an open interval

containing ¢, where r and s are integers

EXAMPLE 6  Polynomial and Rational Functions Are Continuous

(a) Every polynomial P(x) = g,x" + a,_x"' + --- + g is continuous because
lim P(x) = P(c) by Theorem 2, Section 2.2.
I—c

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)/(Q(x) is continuous
wherever it is defined ((Q(c) # 0) by the Quotient Rule in Theorem 9.

EXAMPLE 7 Continuity of the Absolute Value Function

The function f(x) = |x|is continuous at every value of x. If x = 0, we have f(x) = x, a
polynomial. If x <~ 0, we have f(x) = —x, another polynomial. Finally, at the origin,
lim,_g|x| = 0 = |0|. L




Composites

All composites of continuous functions are continuous. The idea is that if f(x) 1s continu-

ous at x = ¢ and g(x) is continuous at x = f(c), then g = f is continuous at x = ¢ (Figure

2.57). In this case, the limit as x — ¢ 18 g(f(c)).

E-f
ff"_’_bc-ntinunus at C___h___"““*
g
f""_E_ﬂntinJc_:EE"‘“--x ___,.---""_____ Continuous
at ¢ S at fic)
P - e
: fic) E(fic))

FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions
If f is continuous at ¢ and g is continuous at f(c), then the composite g = f is
continuous at c.




EXAMPLE 8  Applying Theorems 9 and 10

Show that the following functions are continuous everywhere on their respective domains.

2/3
_ doa o x
(a) y= Va —2x — 5 {h}y—l+x4
x — 2 X sinx
e d F =
() » 11—2‘ @)y x4+ 2
Solution

(a)

(b)

(c)

(d)

The square root function is continuous on [0, ©<) because it is a rational power of the
continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then
the composite of the polynomial f(x) = x> — 2x — 5 with the square root function
g(t) = V't

The numerator i1s a rational power of the identity function: the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

The quotient (x — 2)/(x* — 2) is continuous for all x # + VE_, and the function is
the composition of this quotient with the continuous absolute value function (Exam-
ple 7).

Because the sine function is everywhere-continuous (Exercise 62), the numerator
term x sin x is the product of continuous functions, and the denominator term x* + 2
is an everywhere-positive polynomial. The given function is the composite of a quo-

tient of continuous functions with the continuous absolute value function (Figure
2.58). ]



At what points are the functions in Exercises 13-28 continuous’

EXERCISE 2.6

l 1
y=_T"5 "3
x+ |
y=7
¥ —4x 43
. v=|x—1| + sinx
_ cosX
y==
. ¥ =cscx
xtanx
y==
x4+ 1
. y=V2k+3
cy=(x-17

)
14 y=—— 14
YTk +2)

+ 3
16, y = —
T - 10
] x?
By =5+1"2
x4+ 2
m'f_-:ns_r
I?..y=tan?
Vit + 1
W y=—2 T
Y | + sin’x

26. y = V3xr — 1
28, y=(2 —x)1P

Composite Functions

Find the limits m Exercises 29-34. Are the functions contimuous at the
pomnt being approached”

29, lim sin(x - sinx)

=T
30. i sin| 3-cos (tan
r|_|a'1'[1:|s1n(2a:ns[an ))

31, lim sec (ysec’y - tan’y - 1)

i

32, lim tan{ = cos sinx'-ﬂ)
= (4 ( )

33, lim ms( T—)
=0 A9 - Jsec 2t

M. lim Veselx + 53 tanx

=76




