Subject: Calculus 1 Topic: Functions and their Graphs

Course Instructor: Hajra Nadeem

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

A symbolic way to say " y is a function of x " is by writing

$$
y=f(x) \quad(" y \text { equals } f \text { of } x ")
$$

In this notation, the symbol f represents the function. The letter x, called the independent variable, represents the input value of f, and y, the dependent variable, represents the corresponding output value of f at x.

Domain and Range of Functions

The set D of all possible input values is called the domain of the function. The set of all values of $f(x)$ as x varies throughout D is called the range of the function. The range may not include every element in the set Y.

FIGURE 1.22 A diagram showing a function as a kind of machine.

EXAMPLE 1 Identifying Domain and Range

Verify the domains and ranges of these functions.

Function	Domain (x)	Range (y)
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{4-x}$	$(-\infty, 4]$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

Solution The formula $y=x^{2}$ gives a real y-value for any real number x, so the domain is $(-\infty, \infty)$. The range of $y=x^{2}$ is $[0, \infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root, $y=(\sqrt{y})^{2}$ for $y \geq 0$.

The formula $y=1 / x$ gives a real y-value for every x except $x=0$. We cannot divide any number by zero. The range of $y=1 / x$, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since $y=1 /(1 / y)$.

The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y=\sqrt{1-x^{2}}$ gives a real y-value for every x in the closed interval from -1 to 1 . Outside this domain, $1-x^{2}$ is negative and its square root is not a real number. The values of $1-x^{2}$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1-x^{2}}$ is $[0,1]$.

When the range of a function is a set of real numbers, the function is said to be realvalued. The domains and ranges of many real-valued functions of a real variable are intervals or combinations of intervals. The intervals may be open, closed, or half open, and may be finite or infinite.

Graphs of the Functions

In set notation, the graph is

$$
\begin{aligned}
& \{(x, f(x)) \mid x \in D\} . \\
& \{(x, y) \mid x \in D\}
\end{aligned}
$$

EXAMPLE 2 Sketching a Graph

Graph the function $y=x^{2}$ over the interval $[-2,2]$.
Solution

1. Make a table of $x y$-pairs that satisfy the function rule, in this case the equation $y=x^{2}$.

x	$y=x^{2}$
-2	4
-1	1
0	0
1	1
$\frac{3}{2}$	$\frac{9}{4}$
2	4

2. Plot the points (x, y) whose coordinates appear in the table. Use fractions when they are convenient computationally.

3. Draw a smooth curve through the plotted points. Label the curve with its equation.

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its domain. One example is the absolute value function

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x, & x<0
\end{aligned}\right.
$$

whose graph is given in Figure 1.29. Here are some other examples.

FIGURE 1.29 The absolute value function has domain $(-\infty, \infty)$ and range $[0, \infty)$.

EXAMPLE 5 Graphing Piecewise-Defined Functions
The function

$$
f(x)=\left\{\begin{array}{cl}
-x, & x<0 \\
x^{2}, & 0 \leq x \leq 1 \\
1, & x>1
\end{array}\right.
$$

is defined on the entire real line but has values given by different formulas depending on the position of x. The values of f are given by: $y=-x$ when $x<0, y=x^{2}$ when $0 \leq x \leq 1$, and $y=1$ when $x>1$. The function, however, is just one function whose domain is the entire set of real numbers (Figure 1.30).

FIGURE 1.30 To graph the function $y=f(x)$ shown here, we apply different formulas to different parts of its domain (Example 5).

EXERCISES 1.3

Functions

In Exercises 1-6, find the domain and range of each function.

1. $f(x)=1+x^{2}$
2. $f(x)=1-\sqrt{x}$
3. $F(t)=\frac{1}{\sqrt{t}}$
4. $F(t)=\frac{1}{1+\sqrt{t}}$
5. $g(z)=\sqrt{4-z^{2}}$
6. $g(z)=\frac{1}{\sqrt{4-z^{2}}}$

Functions and Graphs

Find the domain and graph the functions in Exercises 15-20.
15. $f(x)=5-2 x$
16. $f(x)=1-2 x-x^{2}$
vi. $g(x)=\sqrt{|x|}$
48. $g(x)=\sqrt{-x}$
*. $F(t)=t| | t \mid$
20. $G(t)=1 /|t|$

Piecewise-Defined Functions

Graph the functions in Exercises 23-26.
23. $f(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
24. $g(x)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
25. $F(x)= \begin{cases}3-x, & x \leq 1 \\ 2 x, & x>1\end{cases}$
26. $G(x)= \begin{cases}1 / x, & x<0 \\ x, & 0 \leq x\end{cases}$

