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c. y′ = −(y+ 1)(y+ 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3+ 2(1+ e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1
3 ; actual solution y(t) = (3+ 2t2 + 6et2

)−1/2.

4. Construct an Adams Variable Step-Size Predictor-Corrector Algorithm based on the Adams-Bashforth
five-step method and the Adams-Moulton four-step method. Repeat Exercise 3 using this new method.

5. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a
resistor of constant resistance R0 = 2.1 ohms. A voltage E(t) = 110 sin t is applied at time t = 0.
When the resistor heats up, the resistance becomes a function of the current i,

R(t) = R0 + ki, where k = 0.9,

and the differential equation for i(t) becomes(
1+ 2k

R0
i

)
di

dt
+ 1

R0C
i = 1

R0C

dE
dt

.

Find i(2), assuming that i(0) = 0.

5.8 Extrapolation Methods

Extrapolation was used in Section 4.5 for the approximation of definite integrals, where we
found that by correctly averaging relatively inaccurate trapezoidal approximations exceed-
ingly accurate new approximations were produced. In this section we will apply extrapo-
lation to increase the accuracy of approximations to the solution of initial-value problems.
As we have previously seen, the original approximations must have an error expansion of
a specific form for the procedure to be successful.

To apply extrapolation to solve initial-value problems, we use a technique based on the
Midpoint method:

wi+1 = wi−1 + 2hf (ti,wi), for i ≥ 1. (5.43)

This technique requires two starting values since bothw0 andw1 are needed before the first
midpoint approximation, w2, can be determined. One starting value is the initial condition
for w0 = y(a) = α. To determine the second starting value, w1, we apply Euler’s method.
Subsequent approximations are obtained from (5.43). After a series of approximations of
this type are generated ending at a value t, an endpoint correction is performed that involves
the final two midpoint approximations. This produces an approximation w(t, h) to y(t) that
has the form

y(t) = w(t, h)+
∞∑

k=1

δkh2k , (5.44)

where the δk are constants related to the derivatives of the solution y(t). The important point
is that the δk do not depend on the step size h. The details of this procedure can be found in
the paper by Gragg [Gr].

To illustrate the extrapolation technique for solving

y′(t) = f (t, y), a ≤ t ≤ b, y(a) = α,

assume that we have a fixed step size h. We wish to approximate y(t1) = y(a+ h).
For the first extrapolation step we let h0 = h/2 and use Euler’s method with w0 = α

to approximate y(a+ h0) = y(a+ h/2) as

w1 = w0 + h0f (a,w0).
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322 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

We then apply the Midpoint method with ti−1 = a and ti = a+ h0 = a+ h/2 to produce a
first approximation to y(a+ h) = y(a+ 2h0),

w2 = w0 + 2h0f (a+ h0,w1).

The endpoint correction is applied to obtain the final approximation to y(a+ h) for the step
size h0. This results in the O(h2

0) approximation to y(t1)

y1,1 = 1

2
[w2 + w1 + h0f (a+ 2h0,w2)].

We save the approximation y1,1 and discard the intermediate results w1 and w2.
To obtain the next approximation, y2,1, to y(t1), we let h1 = h/4 and use Euler’s method

with w0 = α to obtain an approximation to y(a+ h1) = y(a+ h/4) which we will call w1:

w1 = w0 + h1f (a,w0).

Next we approximate y(a + 2h1) = y(a + h/2) with w2, y(a + 3h1) = y(a + 3h/4)
with w3, and w4 to y(a+ 4h1) = y(t1) using the Midpoint method.

w2 = w0 + 2h1f (a+ h1,w1),

w3 = w1 + 2h1f (a+ 2h1,w2),

w4 = w2 + 2h1f (a+ 3h1,w3).

The endpoint correction is now applied to w3 and w4 to produce the improved O(h2
1)

approximation to y(t1),

y2,1 = 1

2
[w4 + w3 + h1f (a+ 4h1,w4)].

Because of the form of the error given in (5.44), the two approximations to y(a + h)
have the property that

y(a+ h) = y1,1 + δ1

(
h

2

)2

+ δ2

(
h

2

)4

+ · · · = y1,1 + δ1
h2

4
+ δ2

h4

16
+ · · · ,

and

y(a+ h) = y2,1 + δ1

(
h

4

)2

+ δ2

(
h

4

)4

+ · · · = y2,1 + δ1
h2

16
+ δ2

h4

256
+ · · · .

We can eliminate the O(h2) portion of this truncation error by averaging the two formulas
appropriately. Specifically, if we subtract the first formula from 4 times the second and
divide the result by 3, we have

y(a+ h) = y2,1 + 1

3
(y2,1 − y1,1)− δ2

h4

64
+ · · · .

So the approximation to y(t1) given by

y2,2 = y2,1 + 1

3
(y2,1 − y1,1)

has error of order O(h4).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.8 Extrapolation Methods 323

We next let h2 = h/6 and apply Euler’s method once followed by the Midpoint method
five times. Then we use the endpoint correction to determine the h2 approximation, y3,1, to
y(a+ h) = y(t1). This approximation can be averaged with y2,1 to produce a second O(h4)

approximation that we denote y3,2. Then y3,2 and y2,2 are averaged to eliminate the O(h4)

error terms and produce an approximation with error of order O(h6). Higher-order formulas
are generated by continuing the process.

The only significant difference between the extrapolation performed here and that
used for Romberg integration in Section 4.5 results from the way the subdivisions are
chosen. In Romberg integration there is a convenient formula for representing the Composite
Trapezoidal rule approximations that uses consecutive divisions of the step size by the
integers 1, 2, 4, 8, 16, 32, 64, . . . This procedure permits the averaging process to proceed in
an easily followed manner.

We do not have a means for easily producing refined approximations for initial-value
problems, so the divisions for the extrapolation technique are chosen to minimize the num-
ber of required function evaluations. The averaging procedure arising from this choice of
subdivision, shown in Table 5.16, is not as elementary, but, other than that, the process is
the same as that used for Romberg integration.

Table 5.16 y1,1 = w(t, h0)

y2,1 = w(t, h1) y2,2 = y2,1 + h2
1

h2
0 − h2

1

(y2,1 − y1,1)

y3,1 = w(t, h2) y3,2 = y3,1 + h2
2

h2
1 − h2

2

(y3,1 − y2,1) y3,3 = y3,2 + h2
2

h2
0 − h2

2

(y3,2 − y2,2)

Algorithm 5.6 uses the extrapolation technique with the sequence of integers

q0 = 2, q1 = 4, q2 = 6, q3 = 8, q4 = 12, q5 = 16, q6 = 24, and q7 = 32.

A basic step size h is selected, and the method progresses by using hi = h/qi, for each i =
0, . . . , 7, to approximate y(t+h). The error is controlled by requiring that the approximations
y1,1, y2,2, . . . be computed until | yi,i− yi−1,i−1| is less than a given tolerance. If the tolerance
is not achieved by i = 8, then h is reduced, and the process is reapplied.

Algorithm 5.6 uses nodes of the
form 2n and 2n · 3. Other choices
can be used.

Minimum and maximum values of h, hmin, and hmax, respectively, are specified to
ensure control of the method. If yi,i is found to be acceptable, then w1 is set to yi,i and
computations begin again to determine w2, which will approximate y(t2) = y(a+ 2h). The
process is repeated until the approximation wN to y(b) is determined.

ALGORITHM

5.6
Extrapolation

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;
minimum step size hmin.

OUTPUT T , W , h where W approximates y(t) and step size h was used, or a message
that minimum step size was exceeded.
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324 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Step 1 Initialize the array NK = (2, 4, 6, 8, 12, 16, 24, 32).

Step 2 Set TO = a;
WO = α;
h = hmax;
FLAG = 1. (FLAG is used to exit the loop in Step 4.)

Step 3 For i = 1, 2, . . . , 7
for j = 1, . . . , i

set Qi,j = (NKi+1/NKj)
2. (Note: Qi,j = h2

j /h
2
i+1.)

Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set k = 1;
NFLAG = 0. (When desired accuracy is achieved, NFLAG is

set to 1.)

Step 6 While (k ≤ 8 and NFLAG = 0) do Steps 7–14.

Step 7 Set HK = h/NKk;
T = TO;
W2 = WO;
W3 = W2+ HK · f (T , W2); (Euler’s first step.)
T = TO+ HK .

Step 8 For j = 1, . . . , NKk − 1
set W1 = W2;

W2 = W3;
W3 = W1+ 2HK · f (T , W2); (Midpoint method.)
T = TO+ (j + 1) · HK .

Step 9 Set yk = [W3+W2+ HK · f (T , W3)]/2.
(Endpoint correction to compute yk,1.)

Step 10 If k ≥ 2 then do Steps 11–13.
(Note: yk−1 ≡ yk−1,1, yk−2 ≡ yk−2,2, . . . , y1 ≡ yk−1,k−1 since only
the previous row of the table is saved.)

Step 11 Set j = k;
v = y1. (Save yk−1,k−1.)

Step 12 While (j ≥ 2) do

set yj−1 = yj + yj − yj−1

Qk−1,j−1 − 1
;

(Extrapolation to compute yj−1 ≡ yk,k−j+2.)(
Note: yj−1 =

h2
j−1yj − h2

kyj−1

h2
j−1 − h2

k

.

)

j = j − 1.

Step 13 If |y1 − v| ≤ TOL then set NFLAG = 1.
(y1 is accepted as the new w.)

Step 14 Set k = k + 1.
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Step 15 Set k = k − 1.

Step 16 If NFLAG = 0 then do Steps 17 and 18 (Result rejected.)
else do Steps 19 and 20. (Result accepted.)

Step 17 Set h = h/2. (New value for w rejected, decrease h.)

Step 18 If h < hmin then
OUTPUT (‘hmin exceeded’);
Set FLAG = 0.
(True branch completed, next step is back to Step 4.)

Step 19 Set WO = y1; (New value for w accepted.)
TO = TO+ h;

OUTPUT (TO, WO, h).

Step 20 If TO ≥ b then set FLAG = 0
(Procedure completed successfully.)
else if TO+ h > b then set h = b− TO
(Terminate at t = b.)
else if (k ≤ 3 and h < 0.5(hmax) then set h = 2h.
(Increase step size if possible.)

Step 21 STOP.

Example 1 Use the extrapolation method with maximum step size hmax = 0.2, minimum step size
hmin = 0.01, and tolerance TOL = 10−9 to approximate the solution of the initial-value
problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution For the first step of the extrapolation method we letw0 = 0.5, t0 = 0 and h = 0.2.
Then we compute

h0 = h/2 = 0.1;

w1 = w0 + h0f (t0,w0) = 0.5+ 0.1(1.5) = 0.65;

w2 = w0 + 2h0f (t0 + h0,w1) = 0.5+ 0.2(1.64) = 0.828;

and the first approximation to y(0.2) is

y11 = 1

2
(w2 + w1 + h0f (t0 + 2h0,w2)) = 1

2
(0.828+ 0.65+ 0.1f (0.2, 0.828)) = 0.8284.

For the second approximation to y(0.2) we compute

h1 = h/4 = 0.05;

w1 = w0 + h1f (t0,w0) = 0.5+ 0.05(1.5) = 0.575;

w2 = w0 + 2h1f (t0 + h1,w1) = 0.5+ 0.1(1.5725) = 0.65725;

w3 = w1 + 2h1f (t0 + 2h1,w2) = 0.575+ 0.1(1.64725) = 0.739725;

w4 = w2 + 2h1f (t0 + 3h1,w3) = 0.65725+ 0.1(1.717225) = 0.8289725.
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326 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Then the endpoint correction approximation is

y21 = 1

2
(w4 + w3 + h1f (t0 + 4h1,w4))

= 1

2
(0.8289725+ 0.739725+ 0.05f (0.2, 0.8289725)) = 0.8290730625.

This gives the first extrapolation approximation

y22 = y21 +
(

(1/4)2

(1/2)2 − (1/4)2
)
(y21 − y11) = 0.8292974167.

The third approximation is found by computing

h2 = h/6 = 0.03;

w1 = w0 + h2f (t0,w0) = 0.55;

w2 = w0 + 2h2f (t0 + h2,w1) = 0.6032592593;

w3 = w1 + 2h2f (t0 + 2h2,w2) = 0.6565876543;

w4 = w2 + 2h2f (t0 + 3h2,w3) = 0.7130317696;

w5 = w3 + 2h2f (t0 + 4h2,w4) = 0.7696045871;

w6 = w4 + 2h2f (t0 + 5h2,w4) = 0.8291535569;

then the end-point correction approximation

y31 = 1

2
(w6 + w5 + h2f (t0 + 6h2,w6) = 0.8291982979.

We can now find two extrapolated approximations,

y32 = y31 +
(

(1/6)2

(1/4)2 − (1/6)2
)
(y31 − y21) = 0.8292984862,

and

y33 = y32 +
(

(1/6)2

(1/2)2 − (1/6)2
)
(y32 − y22) = 0.8292986199.

Because

| y33 − y22| = 1.2× 10−6

does not satisfy the tolerance, we need to compute at least one more row of the extrapo-
lation table. We use h3 = h/8 = 0.025 and calculate w1 by Euler’s method, w2, · · · ,w8

by the moidpoint method and apply the endpoint correction. This will give us the new
approximation y41 which permits us to compute the new extrapolation row

y41 = 0.8292421745 y42 = 0.8292985873 y43 = 0.8292986210 y44 = 0.8292986211

Comparing | y44−y33| = 1.2×10−9 we find that the accuracy tolerance has not been reached.
To obtain the entries in the next row, we use h4 = h/12 = 0.06. First calculatew1 by Euler’s
method, then w2 through w12 by the Midpoint method. Finally use the endpoint correction
to obtain y51. The remaining entries in the fifth row are obtained using extrapolation, and are
shown in Table 5.17. Because y55 = 0.8292986213 is within 10−9 of y44 it is accepted as the
approximation to y(0.2). The procedure begins anew to approximate y(0.4). The complete
set of approximations accurate to the places listed is given in Table 5.18.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.8 Extrapolation Methods 327

Table 5.17

y1,1 = 0.8284000000
y2,1 = 0.8290730625 y2,2 = 0.8292974167
y3,1 = 0.8291982979 y3,2 = 0.8292984862 y3,3 = 0.8292986199
y4,1 = 0.8292421745 y4,2 = 0.8292985873 y4,3 = 0.8292986210 y4,4 = 0.8292986211
y5,1 = 0.8292735291 y5,2 = 0.8292986128 y5,3 = 0.8292986213 y5,4 = 0.8292986213 y5,5 = 0.8292986213

Table 5.18 ti yi = y(ti) wi hi k

0.200 0.8292986210 0.8292986213 0.200 5
0.400 1.2140876512 1.2140876510 0.200 4
0.600 1.6489405998 1.6489406000 0.200 4
0.700 1.8831236462 1.8831236460 0.100 5
0.800 2.1272295358 2.1272295360 0.100 4
0.900 2.3801984444 2.3801984450 0.100 7
0.925 2.4446908698 2.4446908710 0.025 8
0.950 2.5096451704 2.5096451700 0.025 3
1.000 2.6408590858 2.6408590860 0.050 3
1.100 2.9079169880 2.9079169880 0.100 7
1.200 3.1799415386 3.1799415380 0.100 6
1.300 3.4553516662 3.4553516610 0.100 8
1.400 3.7324000166 3.7324000100 0.100 5
1.450 3.8709427424 3.8709427340 0.050 7
1.475 3.9401071136 3.9401071050 0.025 3
1.525 4.0780532154 4.0780532060 0.050 4
1.575 4.2152541820 4.2152541820 0.050 3
1.675 4.4862274254 4.4862274160 0.100 4
1.775 4.7504844318 4.7504844210 0.100 4
1.825 4.8792274904 4.8792274790 0.050 3
1.875 5.0052154398 5.0052154290 0.050 3
1.925 5.1280506670 5.1280506570 0.050 4
1.975 5.2473151731 5.2473151660 0.050 8
2.000 5.3054719506 5.3054719440 0.025 3

The proof that the method presented in Algorithm 5.6 converges involves results from
summability theory; it can be found in the original paper of Gragg [Gr]. A number of other
extrapolation procedures are available, some of which use the variable step-size techniques.
For additional procedures based on the extrapolation process, see the Bulirsch and Stoer
papers [BS1], [BS2], [BS3] or the text by Stetter [Stet]. The methods used by Bulirsch and
Stoer involve interpolation with rational functions instead of the polynomial interpolation
used in the Gragg procedure.

E X E R C I S E S E T 5.8

1. Use the Extrapolation Algorithm with tolerance TOL = 10−4, hmax = 0.25, and hmin = 0.05 to
approximate the solutions to the following initial-value problems. Compare the results to the actual
values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1
5 te3t − 1

25 e3t + 1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1− t).
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328 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Extrapolation Algorithm with TOL = 10−4 to approximate the solutions to the following
initial-value problems:

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.02.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.25 and hmin = 0.02.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.5 and hmin = 0.02.

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with hmax = 0.25 and hmin = 0.02.

3. Use the Extrapolation Algorithm with tolerance TOL = 10−6, hmax = 0.5, and hmin = 0.05 to
approximate the solutions to the following initial-value problems. Compare the results to the actual
values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1+ ln t).

b. y′ = 1+ y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).

c. y′ = −(y+ 1)(y+ 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3+ 2(1+ e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1
3 ; actual solution y(t) = (3+ 2t2 + 6et2

)−1/2.

4. Let P(t) be the number of individuals in a population at time t, measured in years. If the average birth
rate b is constant and the average death rate d is proportional to the size of the population (due to
overcrowding), then the growth rate of the population is given by the logistic equation

dP(t)

dt
= bP(t)− k[P(t)]2,

where d = kP(t). Suppose P(0) = 50, 976, b = 2.9× 10−2, and k = 1.4× 10−7. Find the population
after 5 years.

5.9 Higher-Order Equations and Systems of Differential Equations

This section contains an introduction to the numerical solution of higher-order initial-value
problems. The techniques discussed are limited to those that transform a higher-order equa-
tion into a system of first-order differential equations. Before discussing the transformation
procedure, some remarks are needed concerning systems that involve first-order differential
equations.

An mth-order system of first-order initial-value problems has the form

du1

dt
= f1(t, u1, u2, . . . , um),

du2

dt
= f2(t, u1, u2, . . . , um),

...

dum

dt
= fm(t, u1, u2, . . . , um), (5.45)

for a ≤ t ≤ b, with the initial conditions

u1(a) = α1, u2(a) = α2, . . . , um(a) = αm. (5.46)

The object is to find m functions u1(t), u2(t), . . . , um(t) that satisfy each of the differential
equations together with all the initial conditions.

To discuss existence and uniqueness of solutions to systems of equations, we need to
extend the definition of the Lipschitz condition to functions of several variables.
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5.9 Higher-Order Equations and Systems of Differential Equations 329

Definition 5.16 The function f (t, y1, . . . , ym), defined on the set

D = {(t, u1, . . . , um) | a ≤ t ≤ b and −∞ < ui <∞, for each i = 1, 2, . . . , m}
is said to satisfy a Lipschitz condition on D in the variables u1, u2, . . . , um if a constant
L > 0 exists with

|f (t, u1, . . . , um)− f (t, z1, . . . , zm)| ≤ L
m∑

j=1

|uj − zj|, (5.47)

for all (t, u1, . . . , um) and (t, z1, . . . , zm) in D.

By using the Mean Value Theorem, it can be shown that if f and its first partial
derivatives are continuous on D and if∣∣∣∣∂f (t, u1, . . . , um)

∂ui

∣∣∣∣ ≤ L,

for each i = 1, 2, . . . , m and all (t, u1, . . . , um) in D, then f satisfies a Lipschitz condition on
D with Lipschitz constant L (see [BiR], p. 141). A basic existence and uniqueness theorem
follows. Its proof can be found in [BiR], pp. 152–154.

Theorem 5.17 Suppose that

D = {(t, u1, u2, . . . , um) | a ≤ t ≤ b and −∞ < ui <∞, for each i = 1, 2, . . . , m},
and let fi(t, u1, . . . , um), for each i = 1, 2, . . . , m, be continuous and satisfy a Lipschitz
condition on D. The system of first-order differential equations (5.45), subject to the initial
conditions (5.46), has a unique solution u1(t), . . . , um(t), for a ≤ t ≤ b.

Methods to solve systems of first-order differential equations are generalizations of the
methods for a single first-order equation presented earlier in this chapter. For example, the
classical Runge-Kutta method of order four given by

w0 = α,

k1 = hf (ti,wi),

k2 = hf

(
ti + h

2
,wi + 1

2
k1

)
,

k3 = hf

(
ti + h

2
,wi + 1

2
k2

)
,

k4 = hf (ti+1,wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4), for each i = 0, 1, . . . , N − 1,

used to solve the first-order initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is generalized as follows.
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Let an integer N > 0 be chosen and set h = (b− a)/N . Partition the interval [a, b] into
N subintervals with the mesh points

tj = a+ jh, for each j = 0, 1, . . . , N .

Use the notationwij, for each j = 0, 1, . . . , N and i = 1, 2, . . . , m, to denote an approx-
imation to ui(tj). That is, wij approximates the ith solution ui(t) of (5.45) at the jth mesh
point tj. For the initial conditions, set (see Figure 5.6)

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm. (5.48)

Figure 5.6

y

t

w11w12w13

y

t

w23w22

w21

a � t0 t1 t2 t3 a � t0 t1 t2 t3

u1(a) � α1

u2(a) � α2

u2(t)

u1(t)

y

t

wm3wm2

wm1

a � t0 t1 t2 t3

um(t)

um(a) � αm

Suppose that the values w1, j,w2, j, . . . ,wm, j have been computed. We obtain w1, j+1,
w2, j+1, . . . ,wm, j+1 by first calculating

k1,i = hfi(tj,w1, j,w2, j, . . . ,wm, j), for each i = 1, 2, . . . , m; (5.49)

k2,i = hfi

(
tj + h

2
,w1, j + 1

2
k1,1,w2, j + 1

2
k1,2, . . . ,wm, j + 1

2
k1,m

)
, (5.50)

for each i = 1, 2, . . . , m;

k3,i = hfi

(
tj + h

2
,w1, j + 1

2
k2,1,w2, j + 1

2
k2,2, . . . ,wm, j + 1

2
k2,m

)
, (5.51)

for each i = 1, 2, . . . , m;

k4,i = hfi(tj + h,w1, j + k3,1,w2, j + k3,2, . . . ,wm, j + k3,m), (5.52)

for each i = 1, 2, . . . , m; and then

wi, j+1 = wi, j + 1

6
(k1,i + 2k2,i + 2k3,i + k4,i), (5.53)

for each i = 1, 2, . . . , m. Note that all the values k1,1, k1,2, . . . , k1,m must be computed before
any of the terms of the form k2,i can be determined. In general, each kl,1, kl,2, . . . , kl,m must be
computed before any of the expressions kl+1,i. Algorithm 5.7 implements the Runge-Kutta
fourth-order method for systems of initial-value problems.
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ALGORITHM

5.7
Runge-Kutta Method for Systems of Differential Equations

To approximate the solution of the mth-order system of first-order initial-value problems

u′j = fj(t, u1, u2, . . . , um), a ≤ t ≤ b, with uj(a) = αj,

for j = 1, 2, . . . , m at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; number of equations m; integer N ; initial conditions α1, . . . , αm.

OUTPUT approximations wj to uj(t) at the (N + 1) values of t.

Step 1 Set h = (b− a)/N ;
t = a.

Step 2 For j = 1, 2, . . . , m set wj = αj.

Step 3 OUTPUT (t,w1,w2, . . . ,wm).

Step 4 For i = 1, 2, . . . , N do steps 5–11.

Step 5 For j = 1, 2, . . . , m set
k1,j = hfj(t,w1,w2, . . . ,wm).

Step 6 For j = 1, 2, . . . , m set

k2,j = hfj
(
t + h

2 ,w1 + 1
2 k1,1,w2 + 1

2 k1,2, . . . ,wm + 1
2 k1,m

)
.

Step 7 For j = 1, 2, . . . , m set

k3,j = hfj
(
t + h

2 ,w1 + 1
2 k2,1,w2 + 1

2 k2,2, . . . ,wm + 1
2 k2,m

)
.

Step 8 For j = 1, 2, . . . , m set
k4,j = hfj(t + h,w1 + k3,1,w2 + k3,2, . . . ,wm + k3,m).

Step 9 For j = 1, 2, . . . , m set
wj = wj + (k1,j + 2k2,j + 2k3,j + k4,j)/6.

Step 10 Set t = a+ ih.

Step 11 OUTPUT (t,w1,w2, . . . ,wm).

Step 12 STOP.

Illustration Kirchhoff’s Law states that the sum of all instantaneous voltage changes around a closed
circuit is zero. This law implies that the current I(t) in a closed circuit containing a resistance
of R ohms, a capacitance of C farads, an inductance of L henries, and a voltage source of
E(t) volts satisfies the equation

LI ′(t)+ RI(t)+ 1

C

∫
I(t) dt = E(t).

The currents I1(t) and I2(t) in the left and right loops, respectively, of the circuit shown in
Figure 5.7 are the solutions to the system of equations

2I1(t)+ 6[I1(t)− I2(t)] + 2I ′1(t) = 12,

1

0.5

∫
I2(t) dt + 4I2(t)+ 6[I2(t)− I1(t)] = 0.
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Figure 5.7
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If the switch in the circuit is closed at time t = 0, we have the initial conditions I1(0) = 0
and I2(0) = 0. Solve for I ′1(t) in the first equation, differentiate the second equation, and
substitute for I ′1(t) to get

I ′1 = f1(t, I1, I2) = −4I1 + 3I2 + 6, I1(0) = 0,

I ′2 = f2(t, I1, I2) = 0.6I ′1 − 0.2I2 = −2.4I1 + 1.6I2 + 3.6, I2(0) = 0.

The exact solution to this system is

I1(t) = −3.375e−2t + 1.875e−0.4t + 1.5,

I2(t) = −2.25e−2t + 2.25e−0.4t .

We will apply the Runge-Kutta method of order four to this system with h = 0.1. Since
w1,0 = I1(0) = 0 and w2,0 = I2(0) = 0,

k1,1 = hf1(t0,w1,0,w2,0) = 0.1 f1(0, 0, 0) = 0.1 (−4(0)+ 3(0)+ 6) = 0.6,

k1,2 = hf2(t0,w1,0,w2,0) = 0.1 f2(0, 0, 0) = 0.1 (−2.4(0)+ 1.6(0)+ 3.6) = 0.36,

k2,1 = hf1

(
t0 + 1

2
h,w1,0 + 1

2
k1,1,w2,0 + 1

2
k1,2

)
= 0.1 f1(0.05, 0.3, 0.18)

= 0.1 (−4(0.3)+ 3(0.18)+ 6) = 0.534,

k2,2 = hf2

(
t0 + 1

2
h,w1,0 + 1

2
k1,1,w2,0 + 1

2
k1,2

)
= 0.1 f2(0.05, 0.3, 0.18)

= 0.1 (−2.4(0.3)+ 1.6(0.18)+ 3.6) = 0.3168.

Generating the remaining entries in a similar manner produces

k3,1 = (0.1)f1(0.05, 0.267, 0.1584) = 0.54072,

k3,2 = (0.1)f2(0.05, 0.267, 0.1584) = 0.321264,

k4,1 = (0.1)f1(0.1, 0.54072, 0.321264) = 0.4800912,

k4,2 = (0.1)f2(0.1, 0.54072, 0.321264) = 0.28162944.
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As a consequence,

I1(0.1) ≈ w1,1 = w1,0 + 1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1)

= 0+ 1

6
(0.6+ 2(0.534)+ 2(0.54072)+ 0.4800912) = 0.5382552

and

I2(0.1) ≈ w2,1 = w2,0 + 1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = 0.3196263.

The remaining entries in Table 5.19 are generated in a similar manner. �

Table 5.19 tj w1,j w2,j |I1(tj)− w1,j| |I2(tj)− w2,j|
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285× 10−5 0.5803× 10−5

0.2 0.9684983 0.5687817 0.1514× 10−4 0.9596× 10−5

0.3 1.310717 0.7607328 0.1907× 10−4 0.1216× 10−4

0.4 1.581263 0.9063208 0.2098× 10−4 0.1311× 10−4

0.5 1.793505 1.014402 0.2193× 10−4 0.1240× 10−4

Recall that Maple reserves the
letter D to represent
differentiation.

Maple’s NumericalAnalysis package does not currently approximate the solution to
systems of initial value problems, but systems of first-order differential equations can by
solved using dsolve. The system in the Illustration is defined with

sys 2 := D(u1)(t) = −4u1(t)+ 3u2(t)+ 6, D(u2)(t) = −2.4u1(t)+ 1.6u2(t)+ 3.6

and the initial conditions with

init 2 := u1(0) = 0, u2(0) = 0

The system is solved with the command

sol 2 := dsolve({sys 2, init 2}, {u1(t), u2(t)})
and Maple responds with{

u1(t) = −27

8
e−2t + 15

8
e−

5
2 t + 3

2
, u2(t) = −9

4
e−2t + 9

4
e−

5
2 t
}

To isolate the individual functions we use

r1 := rhs(sol 2[1]); r2 := rhs(sol 2[2])
producing

−27

8
e−2t+15

8
e−

5
2 t + 3

2

−9

4
e−2t+9

4
e−

5
2 t

and to determine the value of the functions at t = 0.5 we use

evalf (subs(t = 0.5, r1)); evalf (subs(t = 0.5, r2))
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giving, in agreement with Table 5.19,

1.793527048

1.014415451

The command dsolve will fail if an explicit solution cannot be found. In that case we
can use the numeric option in dsolve, which applies the Runge-Kutta-Fehlberg technique.
This technique can also be used, of course, when the exact solution can be determined with
dsolve. For example, with the system defined previously,

g := dsolve({sys 2, init 2}, {u1(t), u2(t)}, numeric)

returns

proc(x_ rkf 45) . . . end proc

To approximate the solutions at t = 0.5, enter

g(0.5)

which gives approximations in the form

[t = 0.5, u2(t) = 1.014415563, u1(t) = 1.793527215]

Higher-Order Differential Equations

Many important physical problems—for example, electrical circuits and vibrating systems—
involve initial-value problems whose equations have orders higher than one. New techniques
are not required for solving these problems. By relabeling the variables, we can reduce
a higher-order differential equation into a system of first-order differential equations and
then apply one of the methods we have already discussed.

A general mth-order initial-value problem

y(m)(t) = f (t, y, y′, . . . , y(m−1)), a ≤ t ≤ b,

with initial conditions y(a) = α1, y′(a) = α2, . . . , y(m−1)(a) = αm can be converted into a
system of equations in the form (5.45) and (5.46).

Let u1(t) = y(t), u2(t) = y′(t), . . . , and um(t) = y(m−1)(t). This produces the first-order
system

du1

dt
=dy

dt
= u2,

du2

dt
= dy′

dt
= u3, · · · ,

dum−1

dt
= dy(m−2)

dt
= um,

and

dum

dt
=dy(m−1)

dt
= y(m) = f (t, y, y′, . . . , y(m−1)) = f (t, u1, u2, . . . , um),

with initial conditions

u1(a) = y(a) = α1, u2(a) = y′(a) = α2, . . . , um(a) = y(m−1)(a) = αm.

Example 1 Transform the the second-order initial-value problem

y′′ − 2y′ + 2y = e2t sin t, for 0 ≤ t ≤ 1, with y(0) = −0.4, y′(0) = −0.6

into a system of first order initial-value problems, and use the Runge-Kutta method with
h = 0.1 to approximate the solution.
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Solution Let u1(t) = y(t) and u2(t) = y′(t). This transforms the second-order equation
into the system

u′1(t) = u2(t),

u′2(t) = e2t sin t − 2u1(t)+ 2u2(t),

with initial conditions u1(0) = −0.4, u2(0) = −0.6.
The initial conditions givew1,0 = −0.4 andw2,0 = −0.6. The Runge-Kutta Eqs. (5.49)

through (5.52) on page 330 with j = 0 give

k1,1 = hf1(t0,w1,0,w2,0) = hw2,0 = −0.06,

k1,2 = hf2(t0,w1,0,w2,0) = h
[
e2t0 sin t0 − 2w1,0 + 2w2,0

] = −0.04,

k2,1 = hf1

(
t0 + h

2
,w1,0 + 1

2
k1,1,w2,0 + 1

2
k1,2

)
= h

[
w2,0 + 1

2
k1,2

]
= −0.062,

k2,2 = hf2

(
t0 + h

2
,w1,0 + 1

2
k1,1,w2,0 + 1

2
k1,2

)

= h

[
e2(t0+0.05) sin(t0 + 0.05)− 2

(
w1,0 + 1

2
k1,1

)
+ 2

(
w2,0 + 1

2
k1,2

)]

= −0.03247644757,

k3,1 = h

[
w2,0 + 1

2
k2,2

]
= −0.06162832238,

k3,2 = h

[
e2(t0+0.05) sin(t0 + 0.05)− 2

(
w1,0 + 1

2
k2,1

)
+ 2

(
w2,0 + 1

2
k2,2

)]

= −0.03152409237,

k4,1 = h
[
w2,0 + k3,2

] = −0.06315240924,

and

k4,2 = h
[
e2(t0+0.1) sin(t0 + 0.1)− 2(w1,0 + k3,1)+ 2(w2,0 + k3,2)

] = −0.02178637298.

So

w1,1 = w1,0 + 1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) = −0.4617333423

and

w2,1 = w2,0 + 1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = −0.6316312421.

The value w1,1 approximates u1(0.1) = y(0.1) = 0.2e2(0.1)(sin 0.1 − 2 cos 0.1), and
w2,1 approximates u2(0.1) = y′(0.1) = 0.2e2(0.1)(4 sin 0.1− 3 cos 0.1).

The set of values w1,j and w2,j, for j = 0, 1, . . . , 10, are presented in Table 5.20 and
are compared to the actual values of u1(t) = 0.2e2t(sin t − 2 cos t) and u2(t) = u′1(t) =
0.2e2t(4 sin t − 3 cos t).
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Table 5.20

tj y(tj) = u1(tj) w1,j y′(tj) = u2(tj) w2,j |y(tj)− w1,j| |y′(tj)− w2,j|
0.0 −0.40000000 −0.40000000 −0.6000000 −0.60000000 0 0
0.1 −0.46173297 −0.46173334 −0.6316304 −0.63163124 3.7× 10−7 7.75× 10−7

0.2 −0.52555905 −0.52555988 −0.6401478 −0.64014895 8.3× 10−7 1.01× 10−6

0.3 −0.58860005 −0.58860144 −0.6136630 −0.61366381 1.39× 10−6 8.34× 10−7

0.4 −0.64661028 −0.64661231 −0.5365821 −0.53658203 2.03× 10−6 1.79× 10−7

0.5 −0.69356395 −0.69356666 −0.3887395 −0.38873810 2.71× 10−6 5.96× 10−7

0.6 −0.72114849 −0.72115190 −0.1443834 −0.14438087 3.41× 10−6 7.75× 10−7

0.7 −0.71814890 −0.71815295 0.2289917 0.22899702 4.05× 10−6 2.03× 10−6

0.8 −0.66970677 −0.66971133 0.7719815 0.77199180 4.56× 10−6 5.30× 10−6

0.9 −0.55643814 −0.55644290 1.534764 1.5347815 4.76× 10−6 9.54× 10−6

1.0 −0.35339436 −0.35339886 2.578741 2.5787663 4.50× 10−6 1.34× 10−5

In Maple the nth derivative y(n)(t)
is specified by (D@@n)(y)(t).

We can also use dsolve from Maple on higher-order equations. To define the differential
equation in Example 1, use

def 2 := (D@@2)(y)(t)− 2D(y)(t)+ 2y(t) = e2t sin(t)

and to specify the initial conditions use

init 2 := y(0) = −0.4, D(y)(0) = −0.6

The solution is obtained with the command

sol 2 := dsolve({def 2, init 2}, y(t))

to obtain

y(t) = 1

5
e2t(sin(t)− 2 cos(t))

We isolate the solution in function form using

g := rhs(sol 2)

To obtain y(1.0) = g(1.0), enter

evalf (subs(t = 1.0, g))

which gives −0.3533943574.
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve com-

mand with the numeric option. It is employed in the same manner as illustrated for systems
of equations.

The other one-step methods can be extended to systems in a similar way. When error
control methods like the Runge-Kutta-Fehlberg method are extended, each component of
the numerical solution (w1j,w2j, . . . ,wmj) must be examined for accuracy. If any of the
components fail to be sufficiently accurate, the entire numerical solution (w1j,w2j, . . . ,wmj)

must be recomputed.
The multistep methods and predictor-corrector techniques can also be extended to

systems. Again, if error control is used, each component must be accurate. The extension
of the extrapolation technique to systems can also be done, but the notation becomes quite
involved. If this topic is of interest, see [HNW1].

Convergence theorems and error estimates for systems are similar to those considered
in Section 5.10 for the single equations, except that the bounds are given in terms of vector
norms, a topic considered in Chapter 7. (A good reference for these theorems is [Ge1],
pp. 45–72.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.9 Higher-Order Equations and Systems of Differential Equations 337

E X E R C I S E S E T 5.9

1. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of
first-order differential equations, and compare the results to the actual solutions.

a. u′1 = 3u1 + 2u2 − (2t2 + 1)e2t , u1(0) = 1;
u′2 = 4u1 + u2 + (t2 + 2t − 4)e2t , u2(0) = 1; 0 ≤ t ≤ 1; h = 0.2;
actual solutions u1(t) = 1

3 e5t − 1
3 e−t + e2t and u2(t) = 1

3 e5t + 2
3 e−t + t2e2t .

b. u′1 = −4u1 − 2u2 + cos t + 4 sin t, u1(0) = 0;
u′2 = 3u1 + u2 − 3 sin t, u2(0) = −1; 0 ≤ t ≤ 2; h = 0.1;
actual solutions u1(t) = 2e−t − 2e−2t + sin t and u2(t) = −3e−t + 2e−2t .

c. u′1 = u2, u1(0) = 1;
u′2 = −u1 − 2et + 1, u2(0) = 0;
u′3 = −u1 − et + 1, u3(0) = 1; 0 ≤ t ≤ 2; h = 0.5;
actual solutions u1(t) = cos t + sin t − et + 1, u2(t) = − sin t + cos t − et , and u3(t) =
− sin t + cos t.

d. u′1 = u2 − u3 + t, u1(0) = 1;
u′2 = 3t2, u2(0) = 1;
u′3 = u2 + e−t , u3(0) = −1; 0 ≤ t ≤ 1; h = 0.1;
actual solutions u1(t) = −0.05t5 + 0.25t4 + t + 2 − e−t , u2(t) = t3 + 1, and u3(t) =
0.25t4 + t − e−t .

2. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of
first-order differential equations, and compare the results to the actual solutions.

a. u′1 = u1 − u2 + 2, u1(0) = −1;
u′2 = −u1 + u2 + 4t, u2(0) = 0; 0 ≤ t ≤ 1; h = 0.1;

actual solutions u1(t) = −1

2
e2t + t2 + 2t − 1

2
and u2(t) = 1

2
e2t + t2 − 1

2
.

b. u′1 =
1

9
u1 − 2

3
u2 − 1

9
t2 + 2

3
, u1(0) = −3;

u′2 = u2 + 3t − 4, u2(0) = 5; 0 ≤ t ≤ 2; h = 0.2;
actual solutions u1(t) = −3et + t2 and u2(t) = 4et − 3t + 1.

c. u′1 = u1 + 2u2 − 2u3 + e−t , u1(0) = 3;
u′2 = u2 + u3 − 2e−t , u2(0) = −1;
u′3 = u1 + 2u2 + e−t , u3(0) = 1; 0 ≤ t ≤ 1; h = 0.1;

actual solutions u1(t) = −3e−t − 3 sin t+ 6 cos t, u2(t) = 3

2
e−t + 3

10
sin t− 21

10
cos t− 2

5
e2t ,

and u3(t) = −e−t + 12

5
cos t + 9

5
sin t − 2

5
e2t .

d. u′1 = 3u1 + 2u2 − u3 − 1− 3t − 2 sin t, u1(0) = 5;
u′2 = u1 − 2u2 + 3u3 + 6− t + 2 sin t + cos t, u2(0) = −9;
u′3 = 2u1 + 4u3 + 8− 2t, u3(0) = −5; 0 ≤ t ≤ 2; h = 0.2;
actual solutions u1(t) = 2e3t + 3e−2t + 1, u2(t) = −8e−2t + e4t − 2e3t + sin t, and u3(t) =
2e4t − 4e3t − e−2t − 2.

3. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher-
order differential equations, and compare the results to the actual solutions.

a. y′′ − 2y′ + y = tet − t, 0 ≤ t ≤ 1, y(0) = y′(0) = 0, with h = 0.1;
actual solution y(t) = 1

6 t3et − tet + 2et − t − 2.

b. t2y′′ − 2ty′ + 2y = t3 ln t, 1 ≤ t ≤ 2, y(1) = 1, y′(1) = 0, with h = 0.1;
actual solution y(t) = 7

4 t + 1
2 t3 ln t − 3

4 t3.

c. y′′′ + 2y′′ − y′ − 2y = et , 0 ≤ t ≤ 3, y(0) = 1, y′(0) = 2, y′′(0) = 0, with h = 0.2;
actual solution y(t) = 43

36 et + 1
4 e−t − 4

9 e−2t + 1
6 tet .

d. t3y′′′ − t2y′′ + 3ty′ − 4y = 5t3 ln t + 9t3, 1 ≤ t ≤ 2, y(1) = 0, y′(1) = 1, y′′(1) = 3,
with h = 0.1; actual solution y(t) = −t2 + t cos(ln t)+ t sin(ln t)+ t3 ln t.
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4. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher-
order differential equations, and compare the results to the actual solutions.

a. y′′ − 3y′ + 2y = 6e−t , 0 ≤ t ≤ 1, y(0) = y′(0) = 2, with h = 0.1;
actual solution y(t) = 2e2t − et + e−t .

b. t2y′′ + ty′ − 4y = −3t, 1 ≤ t ≤ 3, y(1) = 4, y′(1) = 3, with h = 0.2;
actual solution y(t) = 2t2 + t + t−2.

c. y′′′ + y′′ − 4y′ − 4y = 0, 0 ≤ t ≤ 2, y(0) = 3, y′(0) = −1, y′′(0) = 9, with h = 0.2;
actual solution y(t) = e−t + e2t + e−2t .

d. t3y′′′ + t2y′′ − 2ty′ + 2y = 8t3 − 2, 1 ≤ t ≤ 2, y(1) = 2, y′(1) = 8, y′′(1) = 6, with
h = 0.1; actual solution y(t) = 2t − t−1 + t2 + t3 − 1.

5. Change the Adams Fourth-Order Predictor-Corrector Algorithm to obtain approximate solutions to
systems of first-order equations.

6. Repeat Exercise 2 using the algorithm developed in Exercise 5.

7. Repeat Exercise 1 using the algorithm developed in Exercise 5.

8. Suppose the swinging pendulum described in the lead example of this chapter is 2 ft long and that
g = 32.17 ft/s2. With h = 0.1 s, compare the angle θ obtained for the following two initial-value
problems at t = 0, 1, and 2 s.

a.
d2θ

dt2
+ g

L
sin θ = 0, θ(0) = π

6
, θ ′(0) = 0,

b.
d2θ

dt2
+ g

L
θ = 0, θ(0) = π

6
, θ ′(0) = 0,

9. The study of mathematical models for predicting the population dynamics of competing species has
its origin in independent works published in the early part of the 20th century by A. J. Lotka and
V. Volterra (see, for example, [Lo1], [Lo2], and [Vo]).

Consider the problem of predicting the population of two species, one of which is a predator,
whose population at time t is x2(t), feeding on the other, which is the prey, whose population is x1(t).
We will assume that the prey always has an adequate food supply and that its birth rate at any time
is proportional to the number of prey alive at that time; that is, birth rate (prey) is k1x1(t). The death
rate of the prey depends on both the number of prey and predators alive at that time. For simplicity,
we assume death rate (prey) = k2x1(t)x2(t). The birth rate of the predator, on the other hand, depends
on its food supply, x1(t), as well as on the number of predators available for reproduction purposes.
For this reason, we assume that the birth rate (predator) is k3x1(t)x2(t). The death rate of the predator
will be taken as simply proportional to the number of predators alive at the time; that is, death rate
(predator) = k4x2(t).

Since x′1(t) and x′2(t) represent the change in the prey and predator populations, respectively,
with respect to time, the problem is expressed by the system of nonlinear differential equations

x′1(t) = k1x1(t)− k2x1(t)x2(t) and x′2(t) = k3x1(t)x2(t)− k4x2(t).

Solve this system for 0 ≤ t ≤ 4, assuming that the initial population of the prey is 1000 and of the
predators is 500 and that the constants are k1 = 3, k2 = 0.002, k3 = 0.0006, and k4 = 0.5. Sketch a
graph of the solutions to this problem, plotting both populations with time, and describe the physical
phenomena represented. Is there a stable solution to this population model? If so, for what values x1

and x2 is the solution stable?

10. In Exercise 9 we considered the problem of predicting the population in a predator-prey model.
Another problem of this type is concerned with two species competing for the same food supply. If
the numbers of species alive at time t are denoted by x1(t) and x2(t), it is often assumed that, although
the birth rate of each of the species is simply proportional to the number of species alive at that time,
the death rate of each species depends on the population of both species. We will assume that the
population of a particular pair of species is described by the equations

dx1(t)

dt
= x1(t)[4− 0.0003x1(t)− 0.0004x2(t)] and

dx2(t)

dt
= x2(t)[2− 0.0002x1(t)− 0.0001x2(t)].
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5.10 Stability 339

If it is known that the initial population of each species is 10,000, find the solution to this system for
0 ≤ t ≤ 4. Is there a stable solution to this population model? If so, for what values of x1 and x2 is
the solution stable?

5.10 Stability

A number of methods have been presented in this chapter for approximating the solution
to an initial-value problem. Although numerous other techniques are available, we have
chosen the methods described here because they generally satisfied three criteria:

• Their development is clear enough so that you can understand how and why they work.

• One or more of the methods will give satisfactory results for most of the problems that
are encountered by students in science and engineering.

• Most of the more advanced and complex techniques are based on one or a combination
of the procedures described here.

One-Step Methods

In this section, we discuss why these methods are expected to give satisfactory results when
some similar methods do not. Before we begin this discussion, we need to present two
definitions concerned with the convergence of one-step difference-equation methods to the
solution of the differential equation as the step size decreases.

Definition 5.18 A one-step difference-equation method with local truncation error τi(h) at the ith step is
said to be consistent with the differential equation it approximates if

lim
h→0

max
1≤i≤N

|τi(h)| = 0.

A one-step method is consistent
if the difference equation for the
method approaches the
differential equation as the step
size goes to zero.

Note that this definition is a local definition since, for each of the values τi(h), we
are assuming that the approximation wi−1 and the exact solution y(ti−1) are the same. A
more realistic means of analyzing the effects of making h small is to determine the global
effect of the method. This is the maximum error of the method over the entire range of the
approximation, assuming only that the method gives the exact result at the initial value.

Definition 5.19 A one-step difference-equation method is said to be convergent with respect to the differ-
ential equation it approximates if

lim
h→0

max
1≤i≤N

|wi − y(ti)| = 0,

where y(ti) denotes the exact value of the solution of the differential equation and wi is the
approximation obtained from the difference method at the ith step.

A method is convergent if the
solution to the difference
equation approaches the solution
to the differential equation as the
step size goes to zero.

Example 1 Show that Euler’s method is convergent.

Solution Examining Inequality (5.10) on page 271, in the error-bound formula for Euler’s
method, we see that under the hypotheses of Theorem 5.9,

max
1≤i≤N

|wi − y(ti)| ≤ Mh

2L
|eL(b−a) − 1|.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



340 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

However, M, L, a, and b are all constants and

lim
h→0

max
1≤i≤N

|wi − y(ti)| ≤ lim
h→0

Mh

2L

∣∣eL(b−a) − 1
∣∣ = 0.

So Euler’s method is convergent with respect to a differential equation satisfying the con-
ditions of this definition. The rate of convergence is O(h).

A consistent one-step method has the property that the difference equation for the
method approaches the differential equation when the step size goes to zero. So the local
truncation error of a consistent method approaches zero as the step size approaches zero.

The other error-bound type of problem that exists when using difference methods to
approximate solutions to differential equations is a consequence of not using exact results.
In practice, neither the initial conditions nor the arithmetic that is subsequently performed
is represented exactly because of the round-off error associated with finite-digit arithmetic.
In Section 5.2 we saw that this consideration can lead to difficulties even for the convergent
Euler’s method.

To analyze this situation, at least partially, we will try to determine which methods are
stable, in the sense that small changes or perturbations in the initial conditions produce
correspondingly small changes in the subsequent approximations.

A method is stable when the
results depend continuously on
the initial data.

The concept of stability of a one-step difference equation is somewhat analogous to
the condition of a differential equation being well-posed, so it is not surprising that the
Lipschitz condition appears here, as it did in the corresponding theorem for differential
equations, Theorem 5.6 in Section 5.1.

Part (i) of the following theorem concerns the stability of a one-step method. The
proof of this result is not difficult and is considered in Exercise 1. Part (ii) of Theorem 5.20
concerns sufficient conditions for a consistent method to be convergent. Part (iii) justifies the
remark made in Section 5.5 about controlling the global error of a method by controlling
its local truncation error and implies that when the local truncation error has the rate of
convergence O(hn), the global error will have the same rate of convergence. The proofs of
parts (ii) and (iii) are more difficult than that of part (i), and can be found within the material
presented in [Ge1], pp. 57–58.

Theorem 5.20 Suppose the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is approximated by a one-step difference method in the form

w0 = α,

wi+1 = wi + hφ(ti,wi, h).

Suppose also that a number h0 > 0 exists and that φ(t,w, h) is continuous and satisfies a
Lipschitz condition in the variable w with Lipschitz constant L on the set

D = {(t,w, h) | a ≤ t ≤ b and −∞ < w <∞, 0 ≤ h ≤ h0}.
Then

(i) The method is stable;

(ii) The difference method is convergent if and only if it is consistent, which is
equivalent to

φ(t, y, 0) = f (t, y), for all a ≤ t ≤ b;
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(iii) If a function τ exists and, for each i = 1, 2, . . . , N , the local truncation error
τi(h) satisfies |τi(h)| ≤ τ(h) whenever 0 ≤ h ≤ h0, then

|y(ti)− wi| ≤ τ(h)
L

eL(ti−a).

Example 2 The Modified Euler method is given by w0 = α,

wi+1 = wi + h

2

[
f (ti,wi)+ f (ti+1,wi + hf (ti,wi))

]
, for i = 0, 1, . . . , N − 1.

Verify that this method is stable by showing that it satisfies the hypothesis of Theorem 5.20.

Solution For this method,

φ(t,w, h) = 1

2
f (t,w)+ 1

2
f (t + h,w + hf (t,w)).

If f satisfies a Lipschitz condition on {(t,w) | a ≤ t ≤ b and −∞ < w <∞} in the
variable w with constant L, then, since

φ(t,w, h)− φ(t,w, h) = 1

2
f (t,w)+ 1

2
f (t + h,w + hf (t,w))

− 1

2
f (t,w)− 1

2
f (t + h,w + hf (t,w)),

the Lipschitz condition on f leads to

|φ(t,w, h)− φ(t,w, h)| ≤ 1

2
L|w − w| + 1

2
L |w + hf (t,w)− w − hf (t,w)|

≤ L|w − w| + 1

2
L |hf (t,w)− hf (t,w)|

≤ L|w − w| + 1

2
hL2|w − w|

=
(

L + 1

2
hL2

)
|w − w|.

Therefore, φ satisfies a Lipschitz condition in w on the set

{(t,w, h) | a ≤ t ≤ b,−∞ < w <∞, and 0 ≤ h ≤ h0},
for any h0 > 0 with constant

L′ = L + 1

2
h0L2.

Finally, if f is continuous on {(t,w) | a ≤ t ≤ b,−∞ < w < ∞}, then φ is
continuous on

{(t,w, h) | a ≤ t ≤ b,−∞ < w <∞, and 0 ≤ h ≤ h0};
so Theorem 5.20 implies that the Modified Euler method is stable. Letting h = 0, we have

φ(t,w, 0) = 1

2
f (t,w)+ 1

2
f (t + 0,w + 0 · f (t,w)) = f (t,w),

so the consistency condition expressed in Theorem 5.20, part (ii), holds. Thus, the method
is convergent. Moreover, we have seen that for this method the local truncation error is
O(h2), so the convergence of the Modified Euler method is also O(h2).
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Multistep Methods

For multistep methods, the problems involved with consistency, convergence, and stability
are compounded because of the number of approximations involved at each step. In the one-
step methods, the approximationwi+1 depends directly only on the previous approximation
wi, whereas the multistep methods use at least two of the previous approximations, and the
usual methods that are employed involve more.

The general multistep method for approximating the solution to the initial-value
problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α, (5.54)

has the form

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h,wi+1,wi, . . . ,wi+1−m),

(5.55)

for each i = m − 1, m, . . . , N − 1, where a0, a1, . . . , am+1 are constants and, as usual,
h = (b− a)/N and ti = a+ ih.

The local truncation error for a multistep method expressed in this form is

τi+1(h) = y(ti+1)− am−1y(ti)− · · · − a0y(ti+1−m)

h

− F(ti, h, y(ti+1), y(ti), . . . , y(ti+1−m)),

for each i = m − 1, m, . . . , N − 1. As in the one-step methods, the local truncation er-
ror measures how the solution y to the differential equation fails to satisfy the difference
equation.

For the four-step Adams-Bashforth method, we have seen that

τi+1(h) = 251

720
y(5)(μi)h

4, for some μi ∈ (ti−3, ti+1),

whereas the three-step Adams-Moulton method has

τi+1(h) = − 19

720
y(5)(μi)h

4, for some μi ∈ (ti−2, ti+1),

provided, of course, that y ∈ C5[a, b].
Throughout the analysis, two assumptions will be made concerning the function F:

• If f ≡ 0 (that is, if the differential equation is homogeneous), then F ≡ 0 also.

• F satisfies a Lipschitz condition with respect to {wj}, in the sense that a constant L exists
and, for every pair of sequences {vj}Nj=0 and {ṽj}Nj=0 and for i = m− 1, m, . . ., N − 1, we
have

|F(ti, h, vi+1, . . . , vi+1−m)− F(ti, h, ṽi+1, . . . , ṽi+1−m)| ≤ L
m∑

j=0

|vi+1−j − ṽi+1−j|.

The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of
these conditions, provided f satisfies a Lipschitz condition. (See Exercise 2.)

The concept of convergence for multistep methods is the same as that for one-step
methods.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.10 Stability 343

• A multistep method is convergent if the solution to the difference equation approaches
the solution to the differential equation as the step size approaches zero. This means that
limh→0 max0≤i≤N | wi − y(ti)| = 0.

For consistency, however, a slightly different situation occurs. Again, we want a multi-
step method to be consistent provided that the difference equation approaches the differential
equation as the step size approaches zero; that is, the local truncation error approaches zero
at each step as the step size approaches zero. The additional condition occurs because of
the number of starting values required for multistep methods. Since usually only the first
starting value, w0 = α, is exact, we need to require that the errors in all the starting values
{αi} approach zero as the step size approaches zero. So

lim
h→0
|τi(h)| = 0, for all i = m, m+ 1, . . . , N and (5.56)

lim
h→0
|αi − y(ti)| = 0, for all i = 1, 2, . . . , m− 1, (5.57)

must be true for a multistep method in the form (5.55) to be consistent. Note that (5.57)
implies that a multistep method will not be consistent unless the one-step method generating
the starting values is also consistent.

The following theorem for multistep methods is similar to Theorem 5.20, part (iii),
and gives a relationship between the local truncation error and global error of a multistep
method. It provides the theoretical justification for attempting to control global error by
controlling local truncation error. The proof of a slightly more general form of this theorem
can be found in [IK], pp. 387–388.

Theorem 5.21 Suppose the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is approximated by an explicit Adams predictor-corrector method with an m-step Adams-
Bashforth predictor equation

wi+1 = wi + h[bm−1f (ti,wi)+ · · · + b0f (ti+1−m,wi+1−m)],
with local truncation error τi+1(h), and an (m− 1)-step implicit Adams-Moulton corrector
equation

wi+1 = wi + h
[
b̃m−1f (ti,wi+1)+ b̃m−2f (ti,wi)+ · · · + b̃0f (ti+2−m,wi+2−m)

]
,

with local truncation error τ̃i+1(h). In addition, suppose that f (t, y) and fy(t, y) are contin-
uous on D = {(t, y) | a ≤ t ≤ b and−∞ < y <∞} and that fy is bounded. Then the local
truncation error σi+1(h) of the predictor-corrector method is

σi+1(h) = τ̃i+1(h)+ τi+1(h)b̃m−1
∂f

∂y
(ti+1, θi+1),

where θi+1 is a number between zero and hτi+1(h).
Moreover, there exist constants k1 and k2 such that

|wi − y(ti)| ≤
[

max
0≤j≤m−1

∣∣wj − y(tj)
∣∣+ k1σ(h)

]
ek2(ti−a),

where σ(h) = maxm≤j≤N |σj(h)|.
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Before discussing connections between consistency, convergence, and stability for mul-
tistep methods, we need to consider in more detail the difference equation for a multistep
method. In doing so, we will discover the reason for choosing the Adams methods as our
standard multistep methods.

Associated with the difference equation (5.55) given at the beginning of this discussion,

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h,wi+1,wi, . . . ,wi+1−m),

is a polynomial, called the characteristic polynomial of the method, given by

P(λ) = λm − am−1λ
m−1 − am−2λ

m−2 − · · · − a1λ− a0. (5.58)

The stability of a multistep method with respect to round-off error is dictated the by
magnitudes of the zeros of the characteristic polynomial. To see this, consider applying the
standard multistep method (5.55) to the trivial initial-value problem

y′ ≡ 0, y(a) = α, where α �= 0. (5.59)

This problem has exact solution y(t) ≡ α. By examining Eqs. (5.27) and (5.28) in Section
5.6 (see page 304), we can see that any multistep method will, in theory, produce the exact
solutionwn = α for all n. The only deviation from the exact solution is due to the round-off
error of the method.

The right side of the differential equation in (5.59) has f (t, y) ≡ 0, so by assumption
(1), we have F(ti, h,wi+1,wi+2, . . . ,wi+1−m) = 0 in the difference equation (5.55). As a
consequence, the standard form of the difference equation becomes

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m. (5.60)

Suppose λ is one of the zeros of the characteristic polynomial associated with (5.55).
Then wn = λn for each n is a solution to (5.59) since

λi+1 − am−1λ
i − am−2λ

i−1 − · · · − a0λ
i+1−m = λi+1−m[λm − am−1λ

m−1 − · · · − a0] = 0.

In fact, if λ1, λ2, . . . , λm are distinct zeros of the characteristic polynomial for (5.55), it can
be shown that every solution to (5.60) can be expressed in the form

wn =
m∑

i=1

ciλ
n
i , (5.61)

for some unique collection of constants c1, c2, . . . , cm.
Since the exact solution to (5.59) is y(t) = α, the choicewn = α, for all n, is a solution

to (5.60). Using this fact in (5.60) gives

0 = α − αam−1 − αam−2 − · · · − αa0 = α[1− am−1 − am−2 − · · · − a0].
This implies that λ = 1 is one of the zeros of the characteristic polynomial (5.58). We will
assume that in the representation (5.61) this solution is described by λ1 = 1 and c1 = α, so
all solutions to (5.59) are expressed as

wn = α +
m∑

i=2

ciλ
n
i . (5.62)

If all the calculations were exact, all the constants c2, c3, . . . , cm would be zero. In practice,
the constants c2, c3, . . . , cm are not zero due to round-off error. In fact, the round-off error
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grows exponentially unless |λi| ≤ 1 for each of the roots λ2, λ3, . . . , λm. The smaller the
magnitude of these roots, the more stable the method with respect to the growth of round-off
error.

In deriving (5.62), we made the simplifying assumption that the zeros of the char-
acteristic polynomial are distinct. The situation is similar when multiple zeros occur. For
example, if λk = λk+1 = · · · = λk+p for some k and p, it simply requires replacing the sum

ckλ
n
k + ck+1λ

n
k+1 + · · · + ck+pλ

n
k+p

in (5.62) with

ckλ
n
k + ck+1nλn−1

k + ck+2n(n− 1)λn−2
k + · · · + ck+p[n(n− 1) · · · (n− p+ 1)]λn−p

k .

(5.63)

(See [He2], pp. 119–145.) Although the form of the solution is modified, the round-off error
if |λk| > 1 still grows exponentially.

Although we have considered only the special case of approximating initial-value
problems of the form (5.59), the stability characteristics for this equation determine the
stability for the situation when f (t, y) is not identically zero. This is because the solution to
the homogeneous equation (5.59) is embedded in the solution to any equation. The following
definitions are motivated by this discussion.

Definition 5.22 Let λ1, λ2, . . . , λm denote the (not necessarily distinct) roots of the characteristic equation

P(λ) = λm − am−1λ
m−1 − · · · − a1λ− a0 = 0

associated with the multistep difference method

w0 = α, w1 = α1, . . . , wm−1 = αm−1

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h,wi+1,wi, . . . ,wi+1−m).

If |λi| ≤ 1, for each i = 1, 2, . . . , m, and all roots with absolute value 1 are simple roots,
then the difference method is said to satisfy the root condition.

Definition 5.23 (i) Methods that satisfy the root condition and have λ = 1 as the only root of the
characteristic equation with magnitude one are called strongly stable.

(ii) Methods that satisfy the root condition and have more than one distinct root with
magnitude one are called weakly stable.

(iii) Methods that do not satisfy the root condition are called unstable.

Consistency and convergence of a multistep method are closely related to the round-off
stability of the method. The next theorem details these connections. For the proof of this
result and the theory on which it is based, see [IK], pp. 410–417.

Theorem 5.24 A multistep method of the form

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m + hF(ti, h,wi+1,wi, . . . ,wi+1−m)

is stable if and only if it satisfies the root condition. Moreover, if the difference method
is consistent with the differential equation, then the method is stable if and only if it is
convergent.
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Example 3 The fourth-order Adams-Bashforth method can be expressed as

wi+1 = wi + hF(ti, h,wi+1,wi, . . . ,wi−3),

where

F(ti, h,wi+1, , . . . ,wi−3) = h

24
[55f (ti,wi)− 59f (ti−1,wi−1)

+ 37f (ti−2,wi−2)− 9f (ti−3,wi−3)];
Show that this method is strongly stable.

Solution In this case we have m = 4, a0 = 0, a1 = 0, a2 = 0, and a3 = 1, so the
characteristic equation for this Adams-Bashforth method is

0 = P(λ) = λ4 − λ3 = λ3(λ− 1).

This polynomial has roots λ1 = 1, λ2 = 0, λ3 = 0, and λ4 = 0. Hence it satisfies the root
condition and is strongly stable.

The Adams-Moulton method has a similar characteristic polynomial, P(λ) = λ3− λ2,
with zeros λ1 = 1, λ2 = 0, and λ3 = 0, and is also strongly stable.

Example 4 Show that the fourth-order Milne’s method, the explicit multistep method given by

wi+1 = wi−3 + 4h

3

[
2f (ti,wi)− f (ti−1,wi−1)+ 2f (ti−2,wi−2)

]
satisfies the root condition, but it is only weakly stable.

Solution The characteristic equation for this method, 0 = P(λ) = λ4 − 1, has four roots
with magnitude one: λ1 = 1, λ2 = −1, λ3 = i, and λ4 = −i. Because all the roots have
magnitude 1, the method satisfies the root condition. However, there are multiple roots with
magnitude 1, so the method is only weakly stable.

Example 5 Apply the strongly stable fourth-order Adams-Bashforth method and the weakly stable
Milne’s method with h = 0.1 to the initial-value problem

y′ = −6y+ 6, 0 ≤ t ≤ 1, y(0) = 2,

which has the exact solution y(t) = 1+ e−6t .

Solution The results in Table 5.21 show the effects of a weakly stable method versus a
strongly stable method for this problem.

Table 5.21 Adams-Bashforth Milne’s
Exact Method Error Method Error

ti y(ti) wi |yi − wi| wi |yi − wi|
0.10000000 1.5488116 1.5488116
0.20000000 1.3011942 1.3011942
0.30000000 1.1652989 1.1652989
0.40000000 1.0907180 1.0996236 8.906× 10−3 1.0983785 7.661× 10−3

0.50000000 1.0497871 1.0513350 1.548× 10−3 1.0417344 8.053× 10−3

0.60000000 1.0273237 1.0425614 1.524× 10−2 1.0486438 2.132× 10−2

0.70000000 1.0149956 1.0047990 1.020× 10−2 0.9634506 5.154× 10−2

0.80000000 1.0082297 1.0359090 2.768× 10−2 1.1289977 1.208× 10−1

0.90000000 1.0045166 0.9657936 3.872× 10−2 0.7282684 2.762× 10−1

1.00000000 1.0024788 1.0709304 6.845× 10−2 1.6450917 6.426× 10−1
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The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order
predictor-corrector technique in Section 5.6 over the Milne-Simpson method of the same
order is that both the Adams-Bashforth and Adams-Moulton methods are strongly stable.
They are more likely to give accurate approximations to a wider class of problems than
is the predictor-corrector based on the Milne and Simpson techniques, both of which are
weakly stable.

E X E R C I S E S E T 5.10

1. To prove Theorem 5.20, part (i), show that the hypotheses imply that there exists a constant K > 0
such that

|ui − vi| ≤ K|u0 − v0|, for each 1 ≤ i ≤ N ,

whenever {ui}Ni=1 and {vi}Ni=1 satisfy the difference equation wi+1 = wi + hφ(ti,wi, h).

2. For the Adams-Bashforth and Adams-Moulton methods of order four,

a. Show that if f = 0, then

F(ti, h,wi+1, . . . ,wi+1−m) = 0.

b. Show that if f satisfies a Lipschitz condition with constant L, then a constant C exists with

|F(ti, h,wi+1, . . . ,wi+1−m)− F(ti, h, vi+1, . . . , vi+1−m)| ≤ C
m∑

j=0

|wi+1−j − vi+1−j|.

3. Use the results of Exercise 32 in Section 5.4 to show that the Runge-Kutta method of order four is
consistent.

4. Consider the differential equation

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

a. Show that

y′(ti) = −3y(ti)+ 4y(ti+1)− y(ti+2)

2h
+ h2

3
y′′′(ξ1),

for some ξ , where ti < ξi < ti+2.

b. Part (a) suggests the difference method

wi+2 = 4wi+1 − 3wi − 2hf (ti,wi), for i = 0, 1, . . . , N − 2.

Use this method to solve

y′ = 1− y, 0 ≤ t ≤ 1, y(0) = 0,

with h = 0.1. Use the starting values w0 = 0 and w1 = y(t1) = 1− e−0.1.

c. Repeat part (b) with h = 0.01 and w1 = 1− e−0.01.

d. Analyze this method for consistency, stability, and convergence.

5. Given the multistep method

wi+1 = −3

2
wi + 3wi−1 − 1

2
wi−2 + 3hf (ti,wi), for i = 2, . . . , N − 1,

with starting values w0, w1, w2:

a. Find the local truncation error.

b. Comment on consistency, stability, and convergence.
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6. Obtain an approximate solution to the differential equation

y′ = −y, 0 ≤ t ≤ 10, y(0) = 1

using Milne’s method with h = 0.1 and then h = 0.01, with starting values w0 = 1 and w1 = e−h in
both cases. How does decreasing h from h = 0.1 to h = 0.01 affect the number of correct digits in
the approximate solutions at t = 1 and t = 10?

7. Investigate stability for the difference method

wi+1 = −4wi + 5wi−1 + 2h[f (ti,wi)+ 2hf (ti−1,wi−1)],
for i = 1, 2, . . . , N − 1, with starting values w0, w1.

8. Consider the problem y′ = 0, 0 ≤ t ≤ 10, y(0) = 0, which has the solution y ≡ 0. If the difference
method of Exercise 4 is applied to the problem, then

wi+1 = 4wi − 3wi−1, for i = 1, 2, . . . , N − 1,

w0 = 0, and w1 = α1.

Suppose w1 = α1 = ε, where ε is a small rounding error. Compute wi exactly for i = 2, 3, . . . , 6 to
find how the error ε is propagated.

5.11 Stiff Differential Equations

All the methods for approximating the solution to initial-value problems have error terms that
involve a higher derivative of the solution of the equation. If the derivative can be reasonably
bounded, then the method will have a predictable error bound that can be used to estimate the
accuracy of the approximation. Even if the derivative grows as the steps increase, the error
can be kept in relative control, provided that the solution also grows in magnitude. Problems
frequently arise, however, when the magnitude of the derivative increases but the solution
does not. In this situation, the error can grow so large that it dominates the calculations.
Initial-value problems for which this is likely to occur are called stiff equations and are
quite common, particularly in the study of vibrations, chemical reactions, and electrical
circuits.

Stiff systems derive their name
from the motion of spring and
mass systems that have large
spring constants.

Stiff differential equations are characterized as those whose exact solution has a term
of the form e−ct , where c is a large positive constant. This is usually only a part of the
solution, called the transient solution. The more important portion of the solution is called
the steady-state solution. The transient portion of a stiff equation will rapidly decay to zero
as t increases, but since the nth derivative of this term has magnitude cne−ct , the derivative
does not decay as quickly. In fact, since the derivative in the error term is evaluated not
at t, but at a number between zero and t, the derivative terms can increase as t increases–
and very rapidly indeed. Fortunately, stiff equations generally can be predicted from the
physical problem from which the equation is derived and, with care, the error can be kept
under control. The manner in which this is done is considered in this section.

Illustration The system of initial-value problems

u′1 = 9u1 + 24u2 + 5 cos t − 1

3
sin t, u1(0) = 4

3

u′2 = −24u1 − 51u2 − 9 cos t + 1

3
sin t, u2(0) = 2

3
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has the unique solution

u1(t) = 2e−3t − e−39t + 1

3
cos t, u2(t) = −e−3t + 2e−39t − 1

3
cos t.

The transient term e−39t in the solution causes this system to be stiff. Applying Algorithm
5.7, the Runge-Kutta Fourth-Order Method for Systems, gives results listed in Table 5.22.
When h = 0.05, stability results and the approximations are accurate. Increasing the step
size to h = 0.1, however, leads to the disastrous results shown in the table. �

Table 5.22 w1(t) w1(t) w2(t) w2(t)
t u1(t) h = 0.05 h = 0.1 u2(t) h = 0.05 h = 0.1

0.1 1.793061 1.712219 −2.645169 −1.032001 −0.8703152 7.844527
0.2 1.423901 1.414070 −18.45158 −0.8746809 −0.8550148 38.87631
0.3 1.131575 1.130523 −87.47221 −0.7249984 −0.7228910 176.4828
0.4 0.9094086 0.9092763 −934.0722 −0.6082141 −0.6079475 789.3540
0.5 0.7387877 9.7387506 −1760.016 −0.5156575 −0.5155810 3520.00
0.6 0.6057094 0.6056833 −7848.550 −0.4404108 −0.4403558 15697.84
0.7 0.4998603 0.4998361 −34989.63 −0.3774038 −0.3773540 69979.87
0.8 0.4136714 0.4136490 −155979.4 −0.3229535 −0.3229078 311959.5
0.9 0.3416143 0.3415939 −695332.0 −0.2744088 −0.2743673 1390664.
1.0 0.2796748 0.2796568 −3099671. −0.2298877 −0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations, the
approximation characteristics of a particular numerical method applied to a stiff system can
be predicted by examining the error produced when the method is applied to a simple test
equation,

y′ = λy, y(0) = α, where λ < 0. (5.64)

The solution to this equation is y(t) = αeλt , which contains the transient solution eλt . The
steady-state solution is zero, so the approximation characteristics of a method are easy to
determine. (A more complete discussion of the round-off error associated with stiff systems
requires examining the test equation when λ is a complex number with negative real part;
see [Ge1], p. 222.)

First consider Euler’s method applied to the test equation. Letting h = (b− a)/N and
tj = jh, for j = 0, 1, 2, . . . , N , Eq. (5.8) on page 266 implies that

w0 = α, and wj+1 = wj + h(λwj) = (1+ hλ)wj,

so

wj+1 = (1+ hλ)j+1w0 = (1+ hλ)j+1α, for j = 0, 1, . . . , N − 1. (5.65)

Since the exact solution is y(t) = αeλt , the absolute error is

| y(tj)− wj| =
∣∣ejhλ − (1+ hλ) j

∣∣ |α| = ∣∣(ehλ) j − (1+ hλ) j
∣∣ |α|,

and the accuracy is determined by how well the term 1+hλ approximates ehλ. When λ < 0,
the exact solution (ehλ) j decays to zero as j increases, but by Eq.(5.65), the approximation
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will have this property only if |1 + hλ| < 1 , which implies that −2 < hλ < 0. This
effectively restricts the step size h for Euler’s method to satisfy h < 2/|λ|.

Suppose now that a round-off error δ0 is introduced in the initial condition for Euler’s
method,

w0 = α + δ0.

At the jth step the round-off error is

δj = (1+ hλ) jδ0.

Since λ < 0, the condition for the control of the growth of round-off error is the same as
the condition for controlling the absolute error, |1+ hλ| < 1, which implies that h < 2/|λ|.
So

• Euler’s method is expected to be stable for

y′ = λy, y(0) = α, where λ < 0,

only if the step size h is less than 2/|λ|.

The situation is similar for other one-step methods. In general, a function Q exists with
the property that the difference method, when applied to the test equation, gives

wi+1 = Q(hλ)wi. (5.66)

The accuracy of the method depends upon how well Q(hλ) approximates ehλ, and the error
will grow without bound if |Q(hλ)| > 1. An nth-order Taylor method, for example, will
have stability with regard to both the growth of round-off error and absolute error, provided
h is chosen to satisfy ∣∣∣∣1+ hλ+ 1

2
h2λ2 + · · · + 1

n!h
nλn

∣∣∣∣ < 1.

Exercise 10 examines the specific case when the method is the classical fourth-order Runge-
Kutta method,which is essentially a Taylor method of order four.

When a multistep method of the form (5.54) is applied to the test equation, the result is

wj+1 = am−1wj + · · · + a0wj+1−m + hλ(bmwj+1 + bm−1wj + · · · + b0wj+1−m),

for j = m− 1, . . . , N − 1, or

(1− hλbm)wj+1 − (am−1 + hλbm−1)wj − · · · − (a0 + hλb0)wj+1−m = 0.

Associated with this homogeneous difference equation is a characteristic polynomial

Q(z, hλ) = (1− hλbm)z
m − (am−1 + hλbm−1)z

m−1 − · · · − (a0 + hλb0).

This polynomial is similar to the characteristic polynomial (5.58), but it also incorporates
the test equation. The theory here parallels the stability discussion in Section 5.10.

Suppose w0, . . . ,wm−1 are given, and, for fixed hλ, let β1, . . . ,βm be the zeros of the
polynomial Q(z, hλ). If β1, . . . ,βm are distinct, then c1, . . . , cm exist with

wj =
m∑

k=1

ck(βk)
j, for j = 0, . . . , N . (5.67)

If Q(z, hλ) has multiple zeros,wj is similarly defined. (See Eq. (5.63) in Section 5.10.) Ifwj

is to accurately approximate y(tj) = ejhλ = (ehλ) j, then all zeros βk must satisfy |βk| < 1;
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otherwise, certain choices of α will result in ck �= 0, and the term ck(βk)
j will not decay to

zero.

Illustration The test differential equation

y′ = −30y, 0 ≤ t ≤ 1.5, y(0) = 1

3

has exact solution y = 1
3 e−30t . Using h = 0.1 for Euler’s Algorithm 5.1, Runge-Kutta

Fourth-Order Algorithm 5.2, and the Adams Predictor-Corrector Algorithm 5.4, gives the
results at t = 1.5 in Table 5.23. �

Table 5.23 Exact solution 9.54173× 10−21

Euler’s method −1.09225× 104

Runge-Kutta method 3.95730× 101

Predictor-corrector method 8.03840× 105

The inaccuracies in the Illustration are due to the fact that |Q(hλ)| > 1 for Euler’s
method and the Runge-Kutta method and that Q(z, hλ) has zeros with modulus exceeding
1 for the predictor-corrector method. To apply these methods to this problem, the step
size must be reduced. The following definition is used to describe the amount of step-size
reduction that is required.

Definition 5.25 The region R of absolute stability for a one-step method is R = {hλ ∈ C | |Q(hλ)| < 1},
and for a multistep method, it is R = {hλ ∈ C | |βk| < 1, for all zeros βk of Q(z, hλ)}.

Equations (5.66) and (5.67) imply that a method can be applied effectively to a stiff
equation only if hλ is in the region of absolute stability of the method, which for a given
problem places a restriction on the size of h. Even though the exponential term in the exact
solution decays quickly to zero, λh must remain within the region of absolute stability
throughout the interval of t values for the approximation to decay to zero and the growth of
error to be under control. This means that, although h could normally be increased because
of truncation error considerations, the absolute stability criterion forces h to remain small.
Variable step-size methods are especially vulnerable to this problem because an examination
of the local truncation error might indicate that the step size could increase. This could
inadvertently result in λh being outside the region of absolute stability.

The region of absolute stability of a method is generally the critical factor in producing
accurate approximations for stiff systems, so numerical methods are sought with as large
a region of absolute stability as possible. A numerical method is said to be A-stable if its
region R of absolute stability contains the entire left half-plane.

The Implicit Trapezoidal method, given byThis method is implicit because it
involves wj+1 on both sides of the
equation. w0 = α, (5.68)

wj+1 = wj + h

2

[
f (tj+1,wj+1)+ f (tj,wj)

]
, 0 ≤ j ≤ N − 1,

is an A-stable method (see Exercise 15) and is the only A-stable multistep method. Although
the Trapezoidal method does not give accurate approximations for large step sizes, its error
will not grow exponentially.
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The techniques commonly used for stiff systems are implicit multistep methods. Gen-
erallywi+1 is obtained by solving a nonlinear equation or nonlinear system iteratively, often
by Newton’s method. Consider, for example, the Implicit Trapezoidal method

wj+1 = wj + h

2
[f (tj+1,wj+1)+ f (tj,wj)].

Having computed tj, tj+1, and wj, we need to determine wj+1, the solution to

F(w) = w − wj − h

2
[f (tj+1,w)+ f (tj,wj)] = 0. (5.69)

To approximate this solution, select w(0)j+1, usually as wj, and generate w(k)j+1 by applying
Newton’s method to (5.69),

w
(k)
j+1 = w(k−1)

j+1 −
F(w(k−1)

j+1 )

F ′(w(k−1)
j+1 )

= w(k−1)
j+1 −

w
(k−1)
j+1 − wj − h

2 [f (tj,wj)+ f (tj+1,w(k−1)
j+1 )]

1− h
2fy(tj+1,w(k−1)

j+1 )

until |w(k)j+1 − w(k−1)
j+1 | is sufficiently small. This is the procedure that is used in Algorithm

5.8. Normally only three or four iterations per step are required, because of the quadratic
convergence of Newton’s mehod.

The Secant method can be used as an alternative to Newton’s method in Eq. (5.69),
but then two distinct initial approximations to wj+1 are required. To employ the Secant
method, the usual practice is to letw(0)j+1 = wj and obtainw(1)j+1 from some explicit multistep
method. When a system of stiff equations is involved, a generalization is required for either
Newton’s or the Secant method. These topics are considered in Chapter 10.

ALGORITHM

5.8
Trapezoidal with Newton Iteration

To approximate the solution of the initial-value problem

y′ = f (t, y), for a ≤ t ≤ b, with y(a) = α
at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α; tolerance TOL; maximum number
of iterations M at any one step.

OUTPUT approximation w to y at the (N + 1) values of t or a message of failure.

Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t,w).

Step 2 For i = 1, 2, . . . , N do Steps 3–7.

Step 3 Set k1 = w + h
2f (t,w);

w0 = k1;
j = 1;
FLAG = 0.
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Step 4 While FLAG = 0 do Steps 5–6.

Step 5 Set w = w0 −
w0 − h

2
f (t + h,w0)− k1

1− h

2
fy(t + h,w0)

.

Step 6 If |w − w0| < TOL then set FLAG = 1
else set j = j + 1;

w0 = w;
if j > M then

OUTPUT (‘The maximum number of
iterations exceeded’);

STOP.

Step 7 Set t = a+ ih;
OUTPUT (t,w).

Step 8 STOP.

Illustration The stiff initial-value problem

y′ = 5e5t(y− t)2 + 1, 0 ≤ t ≤ 1, y(0) = −1

has solution y(t) = t−e−5t . To show the effects of stiffness, the Implicit Trapezoidal method
and the Runge-Kutta fourth-order method are applied both with N = 4, giving h = 0.25,
and with N = 5, giving h = 0.20.

The Trapezoidal method performs well in both cases using M = 10 and TOL = 10−6,
as does Runge-Kutta with h = 0.2. However, h = 0.25 is outside the region of absolute
stability of the Runge-Kutta method, which is evident from the results in Table 5.24. �

Table 5.24 Runge–Kutta Method Trapezoidal Method

h = 0.2 h = 0.2
ti wi |y(ti)− wi| wi |y(ti)− wi|

0.0 −1.0000000 0 −1.0000000 0
0.2 −0.1488521 1.9027× 10−2 −0.1414969 2.6383× 10−2

0.4 0.2684884 3.8237× 10−3 0.2748614 1.0197× 10−2

0.6 0.5519927 1.7798× 10−3 0.5539828 3.7700× 10−3

0.8 0.7822857 6.0131× 10−4 0.7830720 1.3876× 10−3

1.0 0.9934905 2.2845× 10−4 0.9937726 5.1050× 10−4

h = 0.25 h = 0.25
ti wi |y(ti)− wi| wi |y(ti)− wi|

0.0 −1.0000000 0 −1.0000000 0
0.25 0.4014315 4.37936× 10−1 0.0054557 4.1961× 10−2

0.5 3.4374753 3.01956× 100 0.4267572 8.8422× 10−3

0.75 1.44639× 1023 1.44639× 1023 0.7291528 2.6706× 10−3

1.0 Overflow 0.9940199 7.5790× 10−4

We have presented here only brief introduction to what the reader frequently encoun-
tering stiff differential equations should know. For further details, consult [Ge2], [Lam], or
[SGe].
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E X E R C I S E S E T 5.11

1. Solve the following stiff initial-value problems using Euler’s method, and compare the results with
the actual solution.

a. y′ = −9y, 0 ≤ t ≤ 1, y(0) = e, with h = 0.1; actual solution y(t) = e1−9t .

b. y′ = −20(y−t2)+2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1; actual solution y(t) = t2+ 1

3 e−20t .

c. y′ = −20y + 20 sin t + cos t, 0 ≤ t ≤ 2, y(0) = 1, with h = 0.25; actual solution
y(t) = sin t + e−20t .

d. y′ = 50/y−50y, 0 ≤ t ≤ 1, y(0) = √2, with h = 0.1; actual solution y(t) = (1+e−100t)1/2.

2. Solve the following stiff initial-value problems using Euler’s method, and compare the results with
the actual solution.

a. y′ = −5y+ 6et , 0 ≤ t ≤ 1, y(0) = 2, with h = 0.1; actual solution y(t) = e−5t + et .

b. y′ = −10y+10t+1, 0 ≤ t ≤ 1, y(0) = e, with h = 0.1; actual solution y(t) = e−10t+1+ t.

c. y′ = −15(y − t−3) − 3/t4, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.25; actual solution
y(t) = −e−15t + t−3.

d. y′ = −20y + 20 cos t − sin t, 0 ≤ t ≤ 2, y(0) = 0, with h = 0.25; actual solution
y(t) = −e−20t + cos t.

3. Repeat Exercise 1 using the Runge-Kutta fourth-order method.

4. Repeat Exercise 2 using the Runge-Kutta fourth-order method.

5. Repeat Exercise 1 using the Adams fourth-order predictor-corrector method.

6. Repeat Exercise 2 using the Adams fourth-order predictor-corrector method.

7. Repeat Exercise 1 using the Trapezoidal Algorithm with TOL = 10−5.

8. Repeat Exercise 2 using the Trapezoidal Algorithm with TOL = 10−5.

9. Solve the following stiff initial-value problem using the Runge-Kutta fourth-order method with (a)
h = 0.1 and (b) h = 0.025.

u′1 = 32u1 + 66u2 + 2

3
t + 2

3
, 0 ≤ t ≤ 0.5, u1(0) = 1

3
;

u′2 = −66u1 − 133u2 − 1

3
t − 1

3
, 0 ≤ t ≤ 0.5, u2(0) = 1

3
.

Compare the results to the actual solution,

u1(t) = 2

3
t + 2

3
e−t − 1

3
e−100t and u2(t) = −1

3
t − 1

3
e−t + 2

3
e−100t .

10. Show that the fourth-order Runge-Kutta method,

k1 = hf (ti,wi),

k2 = hf (ti + h/2,wi + k1/2),

k3 = hf (ti + h/2,wi + k2/2),

k4 = hf (ti + h,wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

when applied to the differential equation y′ = λy, can be written in the form

wi+1 =
(

1+ hλ+ 1

2
(hλ)2 + 1

6
(hλ)3 + 1

24
(hλ)4

)
wi.

11. Discuss consistency, stability, and convergence for the Implicit Trapezoidal method

wi+1 = wi + h

2
(f (ti+1,wi+1)+ f (ti,wi)) , for i = 0, 1, . . . , N − 1,
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with w0 = α applied to the differential equation

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

12. The Backward Euler one-step method is defined by

wi+1 = wi + hf (ti+1,wi+1), for i = 0, . . . , N − 1.

Show that Q(hλ) = 1/(1− hλ) for the Backward Euler method.

13. Apply the Backward Euler method to the differential equations given in Exercise 1. Use Newton’s
method to solve for wi+1.

14. Apply the Backward Euler method to the differential equations given in Exercise 2. Use Newton’s
method to solve for wi+1.

15. a. Show that the Implicit Trapezoidal method is A-stable.

b. Show that the Backward Euler method described in Exercise 12 is A-stable.

5.12 Survey of Methods and Software

In this chapter we have considered methods to approximate the solutions to initial-value
problems for ordinary differential equations. We began with a discussion of the most elemen-
tary numerical technique, Euler’s method. This procedure is not sufficiently accurate to be
of use in applications, but it illustrates the general behavior of the more powerful techniques,
without the accompanying algebraic difficulties. The Taylor methods were then considered
as generalizations of Euler’s method. They were found to be accurate but cumbersome
because of the need to determine extensive partial derivatives of the defining function of
the differential equation. The Runge-Kutta formulas simplified the Taylor methods, without
increasing the order of the error. To this point we had considered only one-step methods,
techniques that use only data at the most recently computed point.

Multistep methods are discussed in Section 5.6, where explicit methods of Adams-
Bashforth type and implicit methods of Adams-Moulton type were considered. These cul-
minate in predictor-corrector methods, which use an explicit method, such as an Adams-
Bashforth, to predict the solution and then apply a corresponding implicit method, like an
Adams-Moulton, to correct the approximation.

Section 5.9 illustrated how these techniques can be used to solve higher-order initial-
value problems and systems of initial-value problems.

The more accurate adaptive methods are based on the relatively uncomplicated one-step
and multistep techniques. In particular, we saw in Section 5.5 that the Runge-Kutta-Fehlberg
method is a one-step procedure that seeks to select mesh spacing to keep the local error
of the approximation under control. The Variable Step-Size Predictor-Corrector method
presented in Section 5.7 is based on the four-step Adams-Bashforth method and three-step
Adams-Moulton method. It also changes the step size to keep the local error within a given
tolerance. The Extrapolation method discussed in Section 5.8 is based on a modification
of the Midpoint method and incorporates extrapolation to maintain a desired accuracy of
approximation.

The final topic in the chapter concerned the difficulty that is inherent in the approxima-
tion of the solution to a stiff equation, a differential equation whose exact solution contains
a portion of the form e−λt , where λ is a positive constant. Special caution must be taken
with problems of this type, or the results can be overwhelmed by round-off error.

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff prob-
lems when moderate accuracy is required. The extrapolation procedures are recommended
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