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who are removed from the affected population at a given time t by isolation, recovery and consequent
immunity, or death. This quite naturally complicates the problem, but it can be shown (see [Ba2]) that
an approximate solution can be given in the form

x(t) = x(0)e−(k1/k2)z(t) and y(t) = m− x(t)− z(t),

where k1 is the infective rate, k2 is the removal rate, and z(t) is determined from the differential
equation

z′(t) = k2

(
m− z(t)− x(0)e−(k1/k2)z(t)

)
.

The authors are not aware of any technique for solving this problem directly, so a numerical procedure
must be applied. Find an approximation to z(30), y(30), and x(30), assuming that m = 100,000,
x(0) = 99,000, k1 = 2× 10−6, and k2 = 10−4.

5.6 Multistep Methods

The methods discussed to this point in the chapter are called one-step methods because the
approximation for the mesh point ti+1 involves information from only one of the previous
mesh points, ti. Although these methods might use function evaluation information at points
between ti and ti+1, they do not retain that information for direct use in future approximations.
All the information used by these methods is obtained within the subinterval over which
the solution is being approximated.

The approximate solution is available at each of the mesh points t0, t1, . . . , ti before the
approximation at ti+1 is obtained, and because the error |wj− y(tj)| tends to increase with j,
so it seems reasonable to develop methods that use these more accurate previous data when
approximating the solution at ti+1.

Methods using the approximation at more than one previous mesh point to determine
the approximation at the next point are called multistep methods. The precise definition of
these methods follows, together with the definition of the two types of multistep methods.

Definition 5.14 An m-step multistep method for solving the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α, (5.23)

has a difference equation for finding the approximation wi+1 at the mesh point ti+1 repre-
sented by the following equation, where m is an integer greater than 1:

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h[bmf (ti+1,wi+1)+ bm−1f (ti,wi)

+ · · · + b0f (ti+1−m,wi+1−m)], (5.24)

for i = m− 1, m, . . . , N − 1, where h = (b− a)/N , the a0, a1, . . . , am−1 and b0, b1, . . . , bm

are constants, and the starting values

w0 = α, w1 = α1, w2 = α2, . . . , wm−1 = αm−1

are specified.

When bm = 0 the method is called explicit, or open, because Eq. (5.24) then gives
wi+1 explicitly in terms of previously determined values. When bm �= 0 the method is called
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5.6 Multistep Methods 303

implicit, or closed, because wi+1 occurs on both sides of Eq. (5.243), so wi+1 is specified
only implicitly.

For example, the equations

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi + h

24
[55f (ti,wi)− 59f (ti−1,wi−1)+ 37f (ti−2,wi−2)− 9f (ti−3,wi−3)],

(5.25)

for each i = 3, 4, . . . , N−1, define an explicit four-step method known as the fourth-order
Adams-Bashforth technique. The equations

The Adams-Bashforth techniques
are due to John Couch Adams
(1819–1892), who did significant
work in mathematics and
astronomy. He developed these
numerical techniques to
approximate the solution of a
fluid-flow problem posed by
Bashforth. w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

24
[9f (ti+1,wi+1)+ 19f (ti,wi)− 5f (ti−1,wi−1)+ f (ti−2,wi−2)], (5.26)

for each i = 2, 3, . . . , N−1, define an implicit three-step method known as the fourth-order
Adams-Moulton technique.Forest Ray Moulton (1872–1952)

was in charge of ballistics at the
Aberdeen Proving Grounds in
Maryland during World War I.
He was a prolific author, writing
numerous books in mathematics
and astronomy, and developed
improved multistep methods for
solving ballistic equations.

The starting values in either (5.25) or (5.26) must be specified, generally by assuming
w0 = α and generating the remaining values by either a Runge-Kutta or Taylor method. We
will see that the implicit methods are generally more accurate then the explicit methods,
but to apply an implicit method such as (5.25) directly, we must solve the implicit equation
for wi+1. This is not always possible,and even when it can be done the solution for wi+1

may not be unique.

Example 1 In Example 3 of Section 5.4 (see Table 5.8 on page 289) we used the Runge-Kutta method
of order four with h = 0.2 to approximate the solutions to the initial value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

The first four approximations were found to be y(0) = w0 = 0.5, y(0.2) ≈ w1 =
0.8292933, y(0.4) ≈ w2 = 1.2140762, and y(0.6) ≈ w3 = 1.6489220. Use these as
starting values for the fourth-order Adams-Bashforth method to compute new approxima-
tions for y(0.8) and y(1.0), and compare these new approximations to those produced by
the Runge-Kutta method of order four.

Solution For the fourth-order Adams-Bashforth we have

y(0.8) ≈ w4 = w3 + 0.2

24
(55f (0.6,w3)− 59f (0.4,w2)+ 37f (0.2,w1)− 9f (0,w0))

= 1.6489220+ 0.2

24
(55f (0.6, 1.6489220)− 59f (0.4, 1.2140762)

+ 37f (0.2, 0.8292933)− 9f (0, 0.5))

= 1.6489220+ 0.0083333(55(2.2889220)− 59(2.0540762)

+ 37(1.7892933)− 9(1.5))

= 2.1272892,
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and

y(1.0) ≈ w5 = w4 + 0.2

24
(55f (0.8,w4)− 59f (0.6,w3)+ 37f (0.4,w2)− 9f (0.2,w1))

= 2.1272892+ 0.2

24
(55f (0.8, 2.1272892)− 59f (0.6, 1.6489220)

+ 37f (0.4, 1.2140762)− 9f (0.2, 0.8292933))

= 2.1272892+ 0.0083333(55(2.4872892)− 59(2.2889220)

+ 37(2.0540762)− 9(1.7892933))

= 2.6410533,

The error for these approximations at t = 0.8 and t = 1.0 are, respectively

|2.1272295− 2.1272892| = 5.97× 10−5 and |2.6410533− 2.6408591| = 1.94× 10−4.

The corresponding Runge-Kutta approximations had errors

|2.1272027− 2.1272892| = 2.69× 10−5 and |2.6408227− 2.6408591| = 3.64× 10−5.

Adams was particularly
interested in the using his ability
for accurate numerical
calculations to investigate the
orbits of the planets. He predicted
the existence of Neptune by
analyzing the irregularities in the
planet Uranus, and developed
various numerical integration
techniques to assist in the
approximation of the solution of
differential equations.

To begin the derivation of a multistep method, note that the solution to the initial-value
problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

if integrated over the interval [ti, ti+1], has the property that

y(ti+1)− y(ti) =
∫ ti+1

ti

y′(t) dt =
∫ ti+1

ti

f (t, y(t)) dt.

Consequently,

y(ti+1) = y(ti)+
∫ ti+1

ti

f (t, y(t)) dt. (5.27)

However we cannot integrate f (t, y(t)) without knowing y(t), the solution to the prob-
lem, so we instead integrate an interpolating polynomial P(t) to f (t, y(t)), one that is
determined by some of the previously obtained data points (t0,w0), (t1,w1), . . . , (ti,wi).
When we assume, in addition, that y(ti) ≈ wi, Eq. (5.27) becomes

y(ti+1) ≈ wi +
∫ ti+1

ti

P(t) dt. (5.28)

Although any form of the interpolating polynomial can be used for the derivation, it is most
convenient to use the Newton backward-difference formula, because this form more easily
incorporates the most recently calculated data.

To derive an Adams-Bashforth explicit m-step technique, we form the backward-
difference polynomial Pm−1(t) through

(ti, f (ti, y(ti))), (ti−1, f (ti−1, y(ti−1))), . . . , (ti+1−m, f (ti+1−m, y(ti+1−m))).

Since Pm−1(t) is an interpolatory polynomial of degree m−1, some number ξi in (ti+1−m, ti)
exists with

f (t, y(t)) = Pm−1(t)+ f
(m)(ξi, y(ξi))

m! (t − ti)(t − ti−1) · · · (t − ti+1−m).
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Introducing the variable substitution t = ti + sh, with dt = h ds, into Pm−1(t) and the error
term implies that∫ ti+1

ti

f (t, y(t)) dt =
∫ ti+1

ti

m−1∑
k=0

(−1)k
(−s

k

)
∇kf (ti, y(ti)) dt

+
∫ ti+1

ti

f (m)(ξi, y(ξi))

m! (t − ti)(t − ti−1) · · · (t − ti+1−m) dt

=
m−1∑
k=0

∇kf (ti, y(ti))h(−1)k
∫ 1

0

(−s

k

)
ds

+ hm+1

m!
∫ 1

0
s(s+ 1) · · · (s+ m− 1)f (m)(ξi, y(ξi)) ds.

The integrals (−1)k
∫ 1

0

(−s
k

)
ds for various values of k are easily evaluated and are listed in

Table 5.12. For example, when k = 3,

(−1)3
∫ 1

0

(−s

3

)
ds = −

∫ 1

0

(−s)(−s− 1)(−s− 2)

1 · 2 · 3 ds

= 1

6

∫ 1

0
(s3 + 3s2 + 2s) ds

= 1

6

[
s4

4
+ s3 + s2

]1

0

= 1

6

(
9

4

)
= 3

8
.

As a consequence,∫ ti+1

ti

f (t, y(t)) dt = h

[
f (ti, y(ti))+ 1

2
∇f (ti, y(ti))+ 5

12
∇2f (ti, y(ti))+ · · ·

]

+ hm+1

m!
∫ 1

0
s(s+ 1) · · · (s+ m− 1)f (m)(ξi, y(ξi)) ds. (5.29)

Table 5.12

k

∫ 1

0

(−s

k

)
ds

0 1

1
1

2

2
5

12

3
3

8

4
251

720

5
95

288

Because s(s + 1) · · · (s + m − 1) does not change sign on [0, 1], the Weighted Mean
Value Theorem for Integrals can be used to deduce that for some numberμi, where ti+1−m <

μi < ti+1, the error term in Eq. (5.29) becomes

hm+1

m!
∫ 1

0
s(s+ 1) · · · (s+ m− 1)f (m)(ξi, y(ξi)) ds

= hm+1f (m)(μi, y(μi))

m!
∫ 1

0
s(s+ 1) · · · (s+ m− 1) ds.

Hence the error in (5.29) simplifies to

hm+1f (m)(μi, y(μi))(−1)m
∫ 1

0

(−s

m

)
ds. (5.30)

But y(ti+1)− y(ti) =
∫ ti+1

ti
f (t, y(t)) dt, so Eq. (5.27) can be written as

y(ti+1) = y(ti)+ h

[
f (ti, y(ti))+ 1

2
∇f (ti, y(ti))+ 5

12
∇2f (ti, y(ti))+ · · ·

]

+ hm+1f (m)(μi, y(μi))(−1)m
∫ 1

0

(−s

m

)
ds. (5.31)
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Example 2 Use Eq. (5.31) with m = 3 to derive the three-step Adams-Bashforth technique.

Solution We have

y(ti+1) ≈ y(ti)+ h

[
f (ti, y(ti))+ 1

2
∇f (ti, y(ti))+ 5

12
∇2f (ti, y(ti))

]

= y(ti)+ h

{
f (ti, y(ti))+ 1

2
[f (ti, y(ti))− f (ti−1, y(ti−1))]

+ 5

12
[f (ti, y(ti))− 2f (ti−1, y(ti−1))+ f (ti−2, y(ti−2))]

}

= y(ti)+ h

12
[23f (ti, y(ti))− 16f (ti−1, y(ti−1))+ 5f (ti−2, y(ti−2))].

The three-step Adams-Bashforth method is, consequently,

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

12
[23f (ti,wi)− 16f (ti−1,wi−1)] + 5f (ti−2,wi−2)],

for i = 2, 3, . . . , N − 1.

Multistep methods can also be derived using Taylor series. An example of the proce-
dure involved is considered in Exercise 12. A derivation using a Lagrange interpolating
polynomial is discussed in Exercise 11.

The local truncation error for multistep methods is defined analogously to that of
one-step methods. As in the case of one-step methods, the local truncation error provides a
measure of how the solution to the differential equation fails to solve the difference equation.

Definition 5.15 If y(t) is the solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

and

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h[bmf (ti+1,wi+1)+ bm−1f (ti,wi)+ · · · + b0f (ti+1−m,wi+1−m)]
is the (i + 1)st step in a multistep method, the local truncation error at this step is

τi+1(h) = y(ti+1)− am−1y(ti)− · · · − a0y(ti+1−m)

h
(5.32)

− [bmf (ti+1, y(ti+1))+ · · · + b0f (ti+1−m, y(ti+1−m))],
for each i = m− 1, m, . . . , N − 1.

Example 3 Determine the local truncation error for the three-step Adams-Bashforth method derived in
Example 2.

Solution Considering the form of the error given in Eq. (5.30) and the appropriate entry in
Table 5.12 gives

h4f (3)(μi, y(μi))(−1)3
∫ 1

0

(−s

3

)
ds = 3h4

8
f (3)(μi, y(μi)).
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Using the fact thatf (3)(μi, y(μi)) = y(4)(μi) and the difference equation derived in Example
2, we have

τi+1(h) = y(ti+1)− y(ti)

h
− 1

12
[23f (ti, y(ti))− 16f (ti−1, y(ti−1))+ 5f (ti−2, y(ti−2))]

= 1

h

[
3h4

8
f (3)(μi, y(μi))

]
= 3h3

8
y(4)(μi), for some μi ∈ (ti−2, ti+1).

Adams-Bashforth Explicit Methods

Some of the explicit multistep methods together with their required starting values and
local truncation errors are as follows. The derivation of these techniques is similar to the
procedure in Examples 2 and 3.

Adams-Bashforth Two-Step Explicit Method

w0 = α, w1 = α1,

wi+1 = wi + h

2
[3f (ti,wi)− f (ti−1,wi−1)], (5.33)

where i = 1, 2, . . . , N − 1. The local truncation error is τi+1(h) = 5
12 y′′′(μi)h2, for some

μi ∈ (ti−1, ti+1).

Adams-Bashforth Three-Step Explicit Method

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi + h

12
[23f (ti,wi)− 16f (ti−1,wi−1)+ 5f (ti−2,wi−2)], (5.34)

where i = 2, 3, . . . , N − 1. The local truncation error is τi+1(h) = 3
8 y(4)(μi)h3, for some

μi ∈ (ti−2, ti+1).

Adams-Bashforth Four-Step Explicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3, (5.35)

wi+1 = wi + h

24
[55f (ti,wi)− 59f (ti−1,wi−1)+ 37f (ti−2,wi−2)− 9f (ti−3,wi−3)],

where i = 3, 4, . . . , N − 1. The local truncation error is τi+1(h) = 251
720 y(5)(μi)h4, for some

μi ∈ (ti−3, ti+1).

Adams-Bashforth Five-Step Explicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4,

wi+1 = wi + h

720
[1901f (ti,wi)− 2774f (ti−1,wi−1) (5.36)

+ 2616f (ti−2,wi−2)− 1274f (ti−3,wi−3)+ 251f (ti−4,wi−4)],
where i = 4, 5, . . . , N − 1. The local truncation error is τi+1(h) = 95

288 y(6)(μi)h5, for some
μi ∈ (ti−4, ti+1).
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Adams-Moulton Implicit Methods

Implicit methods are derived by using (ti+1, f (ti+1, y(ti+1))) as an additional interpolation
node in the approximation of the integral∫ ti+1

ti

f (t, y(t)) dt.

Some of the more common implicit methods are as follows.

Adams-Moulton Two-Step Implicit Method

w0 = α, w1 = α1,

wi+1 = wi + h

12
[5f (ti+1,wi+1)+ 8f (ti,wi)− f (ti−1,wi−1)], (5.37)

where i = 1, 2, . . . , N − 1. The local truncation error is τi+1(h) = − 1
24 y(4)(μi)h3, for some

μi ∈ (ti−1, ti+1).

Adams-Moulton Three-Step Implicit Method

w0 = α, w1 = α1, w2 = α2, (5.38)

wi+1 = wi + h

24
[9f (ti+1,wi+1)+ 19f (ti,wi)− 5f (ti−1,wi−1)+ f (ti−2,wi−2)],

where i = 2, 3, . . . , N−1. The local truncation error is τi+1(h) = − 19
720 y(5)(μi)h4, for some

μi ∈ (ti−2, ti+1).

Adams-Moulton Four-Step Implicit Method

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi + h

720
[251f (ti+1,wi+1)+ 646f (ti,wi) (5.39)

− 264f (ti−1,wi−1)+ 106f (ti−2,wi−2)− 19f (ti−3,wi−3)],
where i = 3, 4, . . . , N−1. The local truncation error is τi+1(h) = − 3

160 y(6)(μi)h5, for some
μi ∈ (ti−3, ti+1).

It is interesting to compare an m-step Adams-Bashforth explicit method with an (m−1)-
step Adams-Moulton implicit method. Both involve m evaluations of f per step, and both
have the terms y(m+1)(μi)hm in their local truncation errors. In general, the coefficients of
the terms involving f in the local truncation error are smaller for the implicit methods than
for the explicit methods. This leads to greater stability and smaller round-off errors for the
implicit methods.

Example 4 Consider the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use the exact values given from y(t) = (t + 1)2 − 0.5et as starting values and h = 0.2 to
compare the approximations from (a) by the explicit Adams-Bashforth four-step method
and (b) the implicit Adams-Moulton three-step method.
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Solution (a) The Adams-Bashforth method has the difference equation

wi+1 = wi + h

24
[55f (ti,wi)− 59f (ti−1,wi−1)+ 37f (ti−2,wi−2)− 9f (ti−3,wi−3)],

for i = 3, 4, . . . , 9. When simplified using f (t, y) = y − t2 + 1, h = 0.2, and ti = 0.2i, it
becomes

wi+1 = 1

24
[35wi − 11.8wi−1 + 7.4wi−2 − 1.8wi−3 − 0.192i2 − 0.192i + 4.736].

(b) The Adams-Moulton method has the difference equation

wi+1 = wi + h

24
[9f (ti+1,wi+1)+ 19f (ti,wi)− 5f (ti−1,wi−1)+ f (ti−2,wi−2)],

for i = 2, 3, . . . , 9. This reduces to

wi+1 = 1

24
[1.8wi+1 + 27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736].

To use this method explicitly, we meed to solve the equation explicitly solve for wi+1.
This gives

wi+1 = 1

22.2
[27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736],

for i = 2, 3, . . . , 9.
The results in Table 5.13 were obtained using the exact values from y(t) = (t + 1)2 −

0.5et for α, α1, α2, and α3 in the explicit Adams-Bashforth case and for α, α1, and α2 in
the implicit Adams-Moulton case. Note that the implicit Adams-Moulton method gives
consistently better results.

Table 5.13 Adams- Adams-
Bashforth Moulton

ti Exact wi Error wi Error

0.0 0.5000000
0.2 0.8292986
0.4 1.2140877
0.6 1.6489406 1.6489341 0.0000065
0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132

Multistep methods are available as options of the InitialValueProblem command, in a
manner similar to that of the one step methods. The command for the Adam Bashforth Four
Step method applied to our usual example has the form

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforth,
submethod = step4, numsteps = 10, output = information, digits = 8)

The output from this method is similar to the results in Table 5.13 except that the exact
values were used in Table 5.13 and approximations were used as starting values for the
Maple approximations.

To apply the Adams-Mouton Three Step method to this problem, the options would be
changed to method = adamsmoulton, submethod = step3.
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Predictor-Corrector Methods

In Example 4 the implicit Adams-Moulton method gave better results than the explicit
Adams-Bashforth method of the same order. Although this is generally the case, the implicit
methods have the inherent weakness of first having to convert the method algebraically to
an explicit representation for wi+1. This procedure is not always possible, as can be seen
by considering the elementary initial-value problem

y′ = ey, 0 ≤ t ≤ 0.25, y(0) = 1.

Because f (t, y) = ey, the three-step Adams-Moulton method has

wi+1 = wi + h

24
[9ewi+1 + 19ewi − 5ewi−1 + ewi−2 ]

as its difference equation, and this equation cannot be algebraically solved for wi+1.
We could use Newton’s method or the secant method to approximate wi+1, but this

complicates the procedure considerably. In practice, implicit multistep methods are not used
as described above. Rather, they are used to improve approximations obtained by explicit
methods. The combination of an explicit method to predict and an implicit to improve the
prediction is called a predictor-corrector method.

Consider the following fourth-order method for solving an initial-value problem. The
first step is to calculate the starting values w0, w1, w2, and w3 for the four-step explicit
Adams-Bashforth method. To do this, we use a fourth-order one-step method, the Runge-
Kutta method of order four. The next step is to calculate an approximation, w4p, to y(t4)
using the explicit Adams-Bashforth method as predictor:

w4p = w3 + h

24
[55f (t3,w3)− 59f (t2,w2)+ 37f (t1,w1)− 9f (t0,w0)].

This approximation is improved by inserting w4p in the right side of the three-step implicit
Adams-Moulton method and using that method as a corrector. This gives

w4 = w3 + h

24
[9f (t4,w4p)+ 19f (t3,w3)− 5f (t2,w2)+ f (t1,w1)].

The only new function evaluation required in this procedure is f (t4,w4p) in the corrector
equation; all the other values of f have been calculated for earlier approximations.

The value w4 is then used as the approximation to y(t4), and the technique of using the
Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is
repeated to find w5p and w5, the initial and final approximations to y(t5). This process is
continued until we obtain an approximation wc to y(tN ) = y(b).

Improved approximations to y(ti+1)might be obtained by iterating the Adams-Moulton
formula, but these converge to the approximation given by the implicit formula rather than
to the solution y(ti+1). Hence it is usually more efficient to use a reduction in the step size
if improved accuracy is needed.

Algorithm 5.4 is based on the fourth-order Adams-Bashforth method as predictor and
one iteration of the Adams-Moulton method as corrector, with the starting values obtained
from the fourth-order Runge-Kutta method.
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ALGORITHM

5.4
Adams Fourth-Order Predictor-Corrector

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b− a)/N ;
t0 = a;
w0 = α;

OUTPUT (t0,w0).

Step 2 For i = 1, 2, 3, do Steps 3–5.
(Compute starting values using Runge-Kutta method.)

Step 3 Set K1 = hf (ti−1,wi−1);
K2 = hf (ti−1 + h/2,wi−1 + K1/2);
K3 = hf (ti−1 + h/2,wi−1 + K2/2);
K4 = hf (ti−1 + h,wi−1 + K3).

Step 4 Set wi = wi−1 + (K1 + 2K2 + 2K3 + K4)/6;
ti = a+ ih.

Step 5 OUTPUT (ti,wi).

Step 6 For i = 4, . . . , N do Steps 7–10.

Step 7 Set t = a+ ih;
w = w3 + h[55f (t3,w3)− 59f (t2,w2)+ 37f (t1,w1)

− 9f (t0,w0)]/24; (Predict wi.)
w = w3 + h[9f (t,w)+ 19f (t3,w3)− 5f (t2,w2)

+ f (t1,w1)]/24. (Correct wi.)

Step 8 OUTPUT (t,w).

Step 9 For j = 0, 1, 2
set tj = tj+1; (Prepare for next iteration.)
wj = wj+1.

Step 10 Set t3 = t;
w3 = w.

Step 11 STOP.

Example 5 Apply the Adams fourth-order predictor-corrector method with h = 0.2 and starting values
from the Runge-Kutta fourth order method to the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution This is continuation and modification of the problem considered in Example 1
at the beginning of the section. In that example we found that the starting approximations
from Runge-Kutta are
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y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

and the fourth-order Adams-Bashforth method gave

y(0.8) ≈ w4p = w3 + 0.2

24
(55f (0.6,w3)− 59f (0.4,w2)+ 37f (0.2,w1)− 9f (0,w0))

= 1.6489220+ 0.2

24
(55f (0.6, 1.6489220)− 59f (0.4, 1.2140762)

+ 37f (0.2, 0.8292933)− 9f (0, 0.5))

= 1.6489220+ 0.0083333(55(2.2889220)− 59(2.0540762)

+ 37(1.7892933)− 9(1.5))

= 2.1272892.

We will now use w4p as the predictor of the approximation to y(0.8) and determine the
corrected value w4, from the implicit Adams-Moulton method. This gives

y(0.8) ≈ w4 = w3 + 0.2

24

(
9f (0.8,w4p)+ 19f (0.6,w3)− 5f (0.4,w2)+ f (0.2,w1)

)
= 1.6489220+ 0.2

24
(9f (0.8, 2.1272892)+ 19f (0.6, 1.6489220)

− 5f (0.4, 1.2140762)+ f (0.2, 0.8292933))

= 1.6489220+ 0.0083333(9(2.4872892)+ 19(2.2889220)− 5(2.0540762)

+ (1.7892933))

= 2.1272056.

Now we use this approximation to determine the predictor, w5p, for y(1.0) as

y(1.0)≈w5p=w4 + 0.2

24
(55f (0.8,w4)− 59f (0.6,w3)+ 37f (0.4,w2)− 9f (0.2,w1))

=2.1272056+ 0.2

24
(55f (0.8, 2.1272056)− 59f (0.6, 1.6489220)

+ 37f (0.4, 1.2140762)− 9f (0.2, 0.8292933))

=2.1272056+0.0083333(55(2.4872056)−59(2.2889220)+37(2.0540762)

− 9(1.7892933))

=2.6409314,

and correct this with

y(1.0) ≈ w5 = w4 + 0.2

24

(
9f (1.0,w5p)+ 19f (0.8,w4)− 5f (0.6,w3)+ f (0.4,w2)

)
= 2.1272056+ 0.2

24
(9f (1.0, 2.6409314)+ 19f (0.8, 2.1272892)

− 5f (0.6, 1.6489220)+ f (0.4, 1.2140762))
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= 2.1272056+ 0.0083333(9(2.6409314)+ 19(2.4872056)− 5(2.2889220)

+ (2.0540762))

= 2.6408286.

In Example 1 we found that using the explicit Adams-Bashforth method alone produced
results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8)
and y(1.0) are accurate to within

|2.1272295− 2.1272056| = 2.39× 10−5 and |2.6408286− 2.6408591| = 3.05× 10−5.

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to within

|2.1272027− 2.1272892| = 2.69× 10−5 and |2.6408227− 2.6408591| = 3.64× 10−5.

The remaining predictor-corrector approximations were generated using Algorithm 5.4 and
are shown in Table 5.14.

Table 5.14 Error
ti yi = y(ti) wi |yi − wi|

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Adams Fourth Order Predictor-Corrector method is implemented in Maple for the
example problem with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforthmoulton,
submethod = step4, numsteps = 10, output = information, digits = 8)

and generates the same values as in Table 5.14.
Other multistep methods can be derived using integration of interpolating polynomials

over intervals of the form [tj, ti+1], for j ≤ i−1, to obtain an approximation to y(ti+1). When
an interpolating polynomial is integrated over [ti−3, ti+1], the result is the explicit Milne’s
method:

wi+1 = wi−3 + 4h

3
[2f (ti,wi)− f (ti−1,wi−1)+ 2f (ti−2,wi−2)],

which has local truncation error 14
45 h4y(5)(ξi), for some ξi ∈ (ti−3, ti+1).

Edward Arthur Milne
(1896–1950) worked in ballistic
research during World War I, and
then for the Solar Physics
Observatory at Cambridge. In
1929 he was appointed the
W. W. Rouse Ball chair at
Wadham College in Oxford.

Milne’s method is occasionally used as a predictor for the implicit Simpson’s method,

wi+1 = wi−1 + h

3
[f (ti+1,wi+1)+ 4f (ti,wi)+ f (ti−1,wi−1)],

which has local truncation error−(h4/90)y(5)(ξi), for some ξi ∈ (ti−1, ti+1), and is obtained
by integrating an interpolating polynomial over [ti−1, ti+1].

Simpson’s name is associated
with this technique because it is
based on Simpson’s rule for
integration.
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The local truncation error involved with a predictor-corrector method of the Milne-
Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method. But
the technique has limited use because of round-off error problems, which do not occur with
the Adams procedure. Elaboration on this difficulty is given in Section 5.10.

E X E R C I S E S E T 5.6

1. Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value
problems. In each case use exact starting values, and compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.2; actual solution y(t) = 1
5 te3t − 1

25 e3t +
1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.2; actual solution y(t) = t + 1
1−t .

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.2; actual solution y(t) =
1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value
problems. In each case use starting values obtained from the Runge-Kutta method of order four.
Compare the results to the actual values.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1 actual solution y(t) = 2t + 1

t2 + 2
.

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1 actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2 actual solution y(t) = 2t

1− t
.

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1 actual solution y(t) =
√

4− 3e−t2 .

3. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value
problems. In each case use starting values obtained from the Runge-Kutta method of order four.
Compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t

1+ ln t
.

b. y′ = 1+y/t+ (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.1; actual solution y(t) =
−3+ 2/(1+ e−2t).

d. y′ = −5y+5t2+2t, 0 ≤ t ≤ 1, y(0) = 1/3, with h = 0.1; actual solution y(t) = t2+ 1
3 e−5t .

4. Use all the Adams-Moulton methods to approximate the solutions to the Exercises 1(a), 1(c), and
1(d). In each case use exact starting values, and explicitly solve for wi+1. Compare the results to the
actual values.

5. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 1.

6. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 2.

7. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 3.

8. Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. Repeat
Exercise 7 with p = 2, 3, and 4 iterations. Which choice of p gives the best answer for each initial-value
problem?

9. The initial-value problem

y′ = ey, 0 ≤ t ≤ 0.20, y(0) = 1

has solution

y(t) = 1− ln(1− et).
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Applying the three-step Adams-Moulton method to this problem is equivalent to finding the fixed
point wi+1 of

g(w) = wi + h

24
(9ew + 19ewi − 5ewi−1 + ewi−2 ) .

a. With h = 0.01, obtain wi+1 by functional iteration for i = 2, . . . , 19 using exact starting values
w0,w1, and w2. At each step use wi to initially approximate wi+1.

b. Will Newton’s method speed the convergence over functional iteration?

10. Use the Milne-Simpson Predictor-Corrector method to approximate the solutions to the initial-value
problems in Exercise 3.

11. a. Derive the Adams-Bashforth Two-Step method by using the Lagrange form of the interpolating
polynomial.

b. Derive the Adams-Bashforth Four-Step method by using Newton’s backward-difference form
of the interpolating polynomial.

12. Derive the Adams-Bashforth Three-Step method by the following method. Set

y(ti+1) = y(ti)+ ahf (ti, y(ti))+ bhf (ti−1, y(ti−1))+ chf (ti−2, y(ti−2)).

Expand y(ti+1), f (ti−2, y(ti−2)), and f (ti−1, y(ti−1)) in Taylor series about (ti, y(ti)), and equate the
coefficients of h, h2 and h3 to obtain a, b, and c.

13. Derive the Adams-Moulton Two-Step method and its local truncation error by using an appropriate
form of an interpolating polynomial.

14. Derive Simpson’s method by applying Simpson’s rule to the integral

y(ti+1)− y(ti−1) =
∫ ti+1

ti−1

f (t, y(t)) dt.

15. Derive Milne’s method by applying the open Newton-Cotes formula (4.29) to the integral

y(ti+1)− y(ti−3) =
∫ ti+1

ti−3

f (t, y(t)) dt.

16. Verify the entries in Table 5.12 on page 305.

5.7 Variable Step-Size Multistep Methods

The Runge-Kutta-Fehlberg method is used for error control because at each step it provides,
at little additional cost, two approximations that can be compared and related to the local
truncation error. Predictor-corrector techniques always generate two approximations at each
step, so they are natural candidates for error-control adaptation.

To demonstrate the error-control procedure, we construct a variable step-size predictor-
corrector method using the four-step explicit Adams-Bashforth method as predictor and the
three-step implicit Adams-Moulton method as corrector.

The Adams-Bashforth four-step method comes from the relation

y(ti+1) = y(ti)+ h

24
[55f (ti, y(ti))− 59f (ti−1, y(ti−1))

+ 37f (ti−2, y(ti−2))− 9f (ti−3, y(ti−3))] + 251

720
y(5)(μ̂i)h

5,

for some μ̂i ∈ (ti−3, ti+1). The assumption that the approximations w0,w1, . . . ,wi are all
exact implies that the Adams-Bashforth local truncation error is

y(ti+1)− wi+1,p

h
= 251

720
y(5)(μ̂i)h

4. (5.40)
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A similar analysis of the Adams-Moulton three-step method, which comes from

y(ti+1) = y(ti)+ h

24
[9f (ti+1, y(ti+1))+ 19f (ti, y(ti))− 5f (ti−1, y(ti−1))

+ f (ti−2, y(ti−2))] − 19

720
y(5)(μ̃i)h

5,

for some μ̃i ∈ (ti−2, ti+1), leads to the local truncation error

y(ti+1)− wi+1

h
= − 19

720
y(5)(μ̃i)h

4. (5.41)

To proceed further, we must make the assumption that for small values of h, we have

y(5)(μ̂i) ≈ y(5)(μ̃i).

The effectiveness of the error-control technique depends directly on this assumption.
If we subtract Eq. (5.40) from Eq. (5.39), we have

wi+1 − wi+1,p

h
= h4

720
[251y(5)(μ̂i)+ 19y(5)(μ̃i)] ≈ 3

8
h4y(5)(μ̃i),

so

y(5)(μ̃i) ≈ 8

3h5
(wi+1 − wi+1,p). (5.42)

Using this result to eliminate the term involving y(5)(μ̃i)h4 from Eq. (5.41) gives the
approximation to the Adams-Moulton local truncation error

|τi+1(h)| = | y(ti+1)− wi+1|
h

≈ 19h4

720
· 8

3h5
|wi+1 − wi+1,p| = 19|wi+1 − wi+1,p|

270h
.

Suppose we now reconsider (Eq. 5.41) with a new step size qh generating new approx-
imations ŵi+1,p and ŵi+1. The object is to choose q so that the local truncation error given
in Eq. (5.41) is bounded by a prescribed tolerance ε. If we assume that the value y(5)(μ) in
Eq. (5.41) associated with qh is also approximated using Eq. (5.42), then

| y(ti + qh)− ŵi+1|
qh

= 19q4h4

720
| y(5)(μ)| ≈ 19q4h4

720

[
8

3h5
|wi+1 − wi+1,p|

]

= 19q4

270

|wi+1 − wi+1,p|
h

,

and we need to choose q so that

| y(ti + qh)− ŵi+1|
qh

≈ 19q4

270

|wi+1 − wi+1,p|
h

< ε.

That is, choose q so that

q <

(
270

19

hε

|wi+1 − wi+1,p|
)1/4

≈ 2

(
hε

|wi+1 − wi+1,p|
)1/4

.
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A number of approximation assumptions have been made in this development, so in
practice q is chosen conservatively, often as

q = 1.5

(
hε

|wi+1 − wi+1,p|
)1/4

.

A change in step size for a multistep method is more costly in terms of function
evaluations than for a one-step method, because new equally-spaced starting values must
be computed. As a consequence, it is common practice to ignore the step-size change
whenever the local truncation error is between ε/10 and ε, that is, when

ε

10
< |τi+1(h)| = | y(ti+1)− wi+1|

h
≈ 19|wi+1 − wi+1,p|

270h
< ε.

In addition, q is given an upper bound to ensure that a single unusually accurate approx-
imation does not result in too large a step size. Algorithm 5.5 incorporates this safeguard
with an upper bound of 4.

Remember that the multistep methods require equal step sizes for the starting values.
So any change in step size necessitates recalculating new starting values at that point. In
Steps 3, 16, and 19 of Algorithm 5.5 this is done by calling a Runge-Kutta subalgorithm
(Algorithm 5.2), which has been set up in Step 1.

ALGORITHM

5.5
Adams Variable Step-Size Predictor-Corrector

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α
with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;
minimum step size hmin.

OUTPUT i, ti,wi, h where at the ith step wi approximates y(ti) and the step size h was
used, or a message that the minimum step size was exceeded.

Step 1 Set up a subalgorithm for the Runge-Kutta fourth-order method to be called
RK4(h, v0, x0, v1, x1, v2, x2, v3, x3) that accepts as input a step size h and
starting values v0 ≈ y(x0) and returns {(xj, vj) | j = 1, 2, 3} defined by the
following:

for j = 1, 2, 3
set K1 = hf (xj−1, vj−1);

K2 = hf (xj−1 + h/2, vj−1 + K1/2)
K3 = hf (xj−1 + h/2, vj−1 + K2/2)
K4 = hf (xj−1 + h, vj−1 + K3)

vj = vj−1 + (K1 + 2K2 + 2K3 + K4)/6;
xj = x0 + jh.

Step 2 Set t0 = a;
w0 = α;
h = hmax;
FLAG = 1; (FLAG will be used to exit the loop in Step 4.)
LAST = 0; (LAST will indicate when the last value is calculated.)

OUTPUT (t0,w0).
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Step 3 Call RK4(h,w0, t0,w1, t1,w2, t2,w3, t3);
Set NFLAG = 1; (Indicates computation from RK4.)

i = 4;
t = t3 + h.

Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set WP = wi−1 + h

24
[55f (ti−1,wi−1)− 59f (ti−2,wi−2)

+ 37f (ti−3,wi−3)− 9f (ti−4,wi−4)]; (Predict wi.)

WC = wi−1 + h

24
[9f (t, WP)+ 19f (ti−1,wi−1)

− 5f (ti−2,wi−2)+ f (ti−3,wi−3)]; (Correct wi.)

σ = 19|WC −WP|/(270h).

Step 6 If σ ≤ TOL then do Steps 7–16 (Result accepted.)
else do Steps 17–19. (Result rejected.)

Step 7 Set wi = WC; (Result accepted.)
ti = t.

Step 8 If NFLAG = 1 then for j = i − 3, i − 2, i − 1, i
OUTPUT (j, tj,wj, h);
(Previous results also accepted.)

else OUTPUT (i, ti,wi, h).
(Previous results already accepted.)

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20.)
else do Steps 10–16.

Step 10 Set i = i + 1;
NFLAG = 0.

Step 11 If σ ≤ 0.1 TOL or ti−1 + h > b then do Steps 12–16.
(Increase h if it is more accurate than required or decrease
h to include b as a mesh point.)

Step 12 Set q = (TOL/(2σ))1/4.

Step 13 If q > 4 then set h = 4h
else set h = qh.

Step 14 If h > hmax then set h = hmax.

Step 15 If ti−1 + 4h > b then
set h = (b− ti−1)/4;

LAST = 1.

Step 16 Call RK4(h,wi−1, ti−1,wi, ti,wi+1, ti+1,wi+2, ti+2);
Set NFLAG = 1;

i = i + 3. (True branch completed. Next step is 20.)

Step 17 Set q = (TOL/(2σ))1/4. (False branch from Step 6: Result rejected.)

Step 18 If q < 0.1 then set h = 0.1h
else set h = qh.
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5.7 Variable Step-Size Multistep Methods 319

Step 19 If h < hmin then set FLAG = 0;
OUTPUT (‘hmin exceeded’)

else
if NFLAG = 1 then set i = i − 3;
(Previous results also rejected.)
Call RK4(h,wi−1, ti−1,wi, ti,wi+1, ti+1,wi+2, ti+2);
set i = i + 3;

NFLAG = 1.

Step 20 Set t = ti−1 + h.

Step 21 STOP.

Example 1 Use Adams variable step-size predictor-corrector method with maximum step size hmax =
0.2, minimum step size hmin = 0.01, and tolerance TOL = 10−5 to approximate the
solution of the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution We begin with h = hmax = 0.2, and obtain w0, w1, w2 and w3 using Runge-
Kutta, then findwp4 andwc4 by applying the predictor-corrector method. These calculations
were done in Example 5 of Section 5.6 where it was determined that the Runge-Kutta
approximations are

y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

The predictor and corrector gave

y(0) = w0 = 0.5, y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and

y(0.6) ≈ w3 = 1.6489220.

y(0.8) ≈ w4p = w3 + 0.2

24
(55f (0.6,w3)− 59f (0.4,w2)+ 37f (0.2,w1)− 9f (0,w0))

= 2.1272892,

and

y(0.8) ≈ w4 = w3 + 0.2

24

(
9f (0.8,w4p)+ 19f (0.6,w3)− 5f (0.42,w2)+ f (0.2,w1)

)
= 2.1272056.

We now need to determine if these approximations are sufficiently accurate or if there needs
to be a change in the step size. First we find

δ = 19

270h
|w4 − w4p| = 19

270(0.2)
|2.1272056− 2.1272892| = 2.941× 10−5.

Because this exceeds the tolerance of 10−5 a new step size is needed and the new step size is

qh =
(

10−5

2δ

)1/4

=
(

10−5

2(2.941× 10−5)

)1/4

(0.2) = 0.642(0.2) ≈ 0.128.
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320 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

As a consequence, we need to begin the procedure again computing the Runge-Kutta values
with this step size, and then use the predictor-corrector method with this same step size to
compute the new values of w4p and w4. We then need to run the accuracy check on these
approximations to see that we have been successful. Table 5.15 shows that this second run
is successful and lists the all results obtained using Algorithm 5.5.

Table 5.15 ti y(ti) wi hi σi |y(ti)− wi|
0 0.5 0.5
0.1257017 0.7002323 0.7002318 0.1257017 4.051× 10−6 0.0000005
0.2514033 0.9230960 0.9230949 0.1257017 4.051× 10−6 0.0000011
0.3771050 1.1673894 1.1673877 0.1257017 4.051× 10−6 0.0000017
0.5028066 1.4317502 1.4317480 0.1257017 4.051× 10−6 0.0000022
0.6285083 1.7146334 1.7146306 0.1257017 4.610× 10−6 0.0000028
0.7542100 2.0142869 2.0142834 0.1257017 5.210× 10−6 0.0000035
0.8799116 2.3287244 2.3287200 0.1257017 5.913× 10−6 0.0000043
1.0056133 2.6556930 2.6556877 0.1257017 6.706× 10−6 0.0000054
1.1313149 2.9926385 2.9926319 0.1257017 7.604× 10−6 0.0000066
1.2570166 3.3366642 3.3366562 0.1257017 8.622× 10−6 0.0000080
1.3827183 3.6844857 3.6844761 0.1257017 9.777× 10−6 0.0000097
1.4857283 3.9697541 3.9697433 0.1030100 7.029× 10−6 0.0000108
1.5887383 4.2527830 4.2527711 0.1030100 7.029× 10−6 0.0000120
1.6917483 4.5310269 4.5310137 0.1030100 7.029× 10−6 0.0000133
1.7947583 4.8016639 4.8016488 0.1030100 7.029× 10−6 0.0000151
1.8977683 5.0615660 5.0615488 0.1030100 7.760× 10−6 0.0000172
1.9233262 5.1239941 5.1239764 0.0255579 3.918× 10−8 0.0000177
1.9488841 5.1854932 5.1854751 0.0255579 3.918× 10−8 0.0000181
1.9744421 5.2460056 5.2459870 0.0255579 3.918× 10−8 0.0000186
2.0000000 5.3054720 5.3054529 0.0255579 3.918× 10−8 0.0000191

E X E R C I S E S E T 5.7

1. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10−4,
hmax = 0.25, and hmin = 0.025 to approximate the solutions to the given initial-value problems.
Compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1
5 te3t − 1

25 e3t + 1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1− t).

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with TOL = 10−4 to approximate
the solutions to the following initial-value problems:

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.01.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.2 and hmin = 0.01.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.4 and hmin = 0.01.

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with hmax = 0.2 and hmin = 0.01.

3. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10−6,
hmax = 0.5, and hmin = 0.02 to approximate the solutions to the given initial-value problems.
Compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1+ ln t).

b. y′ = 1+ y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).
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c. y′ = −(y+ 1)(y+ 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3+ 2(1+ e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1
3 ; actual solution y(t) = (3+ 2t2 + 6et2

)−1/2.

4. Construct an Adams Variable Step-Size Predictor-Corrector Algorithm based on the Adams-Bashforth
five-step method and the Adams-Moulton four-step method. Repeat Exercise 3 using this new method.

5. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a
resistor of constant resistance R0 = 2.1 ohms. A voltage E(t) = 110 sin t is applied at time t = 0.
When the resistor heats up, the resistance becomes a function of the current i,

R(t) = R0 + ki, where k = 0.9,

and the differential equation for i(t) becomes(
1+ 2k

R0
i

)
di

dt
+ 1

R0C
i = 1

R0C

dE
dt

.

Find i(2), assuming that i(0) = 0.

5.8 Extrapolation Methods

Extrapolation was used in Section 4.5 for the approximation of definite integrals, where we
found that by correctly averaging relatively inaccurate trapezoidal approximations exceed-
ingly accurate new approximations were produced. In this section we will apply extrapo-
lation to increase the accuracy of approximations to the solution of initial-value problems.
As we have previously seen, the original approximations must have an error expansion of
a specific form for the procedure to be successful.

To apply extrapolation to solve initial-value problems, we use a technique based on the
Midpoint method:

wi+1 = wi−1 + 2hf (ti,wi), for i ≥ 1. (5.43)

This technique requires two starting values since bothw0 andw1 are needed before the first
midpoint approximation, w2, can be determined. One starting value is the initial condition
for w0 = y(a) = α. To determine the second starting value, w1, we apply Euler’s method.
Subsequent approximations are obtained from (5.43). After a series of approximations of
this type are generated ending at a value t, an endpoint correction is performed that involves
the final two midpoint approximations. This produces an approximation w(t, h) to y(t) that
has the form

y(t) = w(t, h)+
∞∑

k=1

δkh2k , (5.44)

where the δk are constants related to the derivatives of the solution y(t). The important point
is that the δk do not depend on the step size h. The details of this procedure can be found in
the paper by Gragg [Gr].

To illustrate the extrapolation technique for solving

y′(t) = f (t, y), a ≤ t ≤ b, y(a) = α,

assume that we have a fixed step size h. We wish to approximate y(t1) = y(a+ h).
For the first extrapolation step we let h0 = h/2 and use Euler’s method with w0 = α

to approximate y(a+ h0) = y(a+ h/2) as

w1 = w0 + h0f (a,w0).
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