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c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. Repeat Exercise 5 using Taylor’s method of order four.

8. Repeat Exercise 6 using Taylor’s method of order four.

9. Given the initial-value problem

y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it with
the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following
values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order four with h = 0.1 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
y at the following values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Taylor’s method of order two with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Use Taylor’s method of order four with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
the following values of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed
due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv′ = −mg− kv|v|.
a. Find the velocity after 0.1, 0.2, . . . , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and
begins falling.

12. Use the Taylor method of order two with h = 0.1 to approximate the solution to

y′ = 1+ t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

5.4 Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of high-
order local truncation error, but the disadvantage of requiring the computation and evaluation
of the derivatives of f (t, y). This is a complicated and time-consuming procedure for most
problems, so the Taylor methods are seldom used in practice.
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Runge-Kutta methods have the high-order local truncation error of the Taylor methods
but eliminate the need to compute and evaluate the derivatives of f (t, y). Before presenting
the ideas behind their derivation, we need to consider Taylor’s Theorem in two variables.
The proof of this result can be found in any standard book on advanced calculus (see, for
example, [Fu], p. 331).

In the later 1800s, Carl Runge
(1856–1927) used methods
similar to those in this section to
derive numerous formulas for
approximating the solution to
initial-value problems.

In 1901, Martin Wilhelm Kutta
(1867–1944) generalized the
methods that Runge developed in
1895 to incorporate systems of
first-order differential equations.
These techniques differ slightly
from those we currently call
Runge-Kutta methods.

Theorem 5.13 Suppose that f (t, y) and all its partial derivatives of order less than or equal to n + 1 are
continuous on D = {(t, y) | a ≤ t ≤ b, c ≤ y ≤ d}, and let (t0, y0) ∈ D. For every
(t, y) ∈ D, there exists ξ between t and t0 and μ between y and y0 with

f (t, y) = Pn(t, y)+ Rn(t, y),

where

Pn(t, y) = f (t0, y0)+
[
(t − t0)

∂f

∂t
(t0, y0)+ (y− y0)

∂f

∂y
(t0, y0)

]

+
[
(t − t0)2

2

∂2f

∂t2
(t0, y0)+ (t − t0)(y− y0)

∂2f

∂t∂y
(t0, y0)

+ (y− y0)
2

2

∂2f

∂y2
(t0, y0)

]
+ · · ·

+
⎡
⎣ 1

n!
n∑

j=0

(
n

j

)
(t − t0)

n−j(y− y0)
j ∂nf

∂tn−j∂y j
(t0, y0)

⎤
⎦

and

Rn(t, y) = 1

(n+ 1)!
n+1∑
j=0

(
n+ 1

j

)
(t − t0)

n+1−j(y− y0)
j ∂n+1f

∂tn+1−j∂y j
(ξ ,μ).

The function Pn(t, y) is called the nth Taylor polynomial in two variables for the
function f about (t0, y0), and Rn(t, y) is the remainder term associated with Pn(t, y).

Example 1 Use Maple to determine P2(t, y), the second Taylor polynomial about (2, 3) for the function

f (t, y) = exp

[
− (t − 2)2

4
− (y− 3)2

4

]
cos(2t + y− 7)

Solution To determine P2(t, y) we need the values of f and its first and second partial
derivatives at (2, 3). The evaluation of the function is easy

f (2, 3) = e
(
−02/4−02/4

)
cos(4+ 3− 7) = 1,

but the computations involved with the partial derivatives are quite tedious. However, higher
dimensional Taylor polynomials are available in the MultivariateCalculus subpackage of
the Student package, which is accessed with the command

with(Student[MultivariateCalculus])
The first option of the TaylorApproximation command is the function, the second specifies
the point (t0, y0) where the polynomial is centered, and the third specifies the degree of the
polynomial. So we issue the command
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TaylorApproximation

(
e−

(t−2)2
4 − (y−3)2

4 cos(2t + y− 7), [t, y] = [2, 3], 2

)
The response from this Maple command is the polynomial

1− 9

4
(t − 2)2 − 2(t − 2)(y− 3)− 3

4
(y− 3)2

A plot option is also available by adding a fourth option to the TaylorApproximation
command in the form output = plot. The plot in the default form is quite crude, however,
because not many points are plotted for the function and the polynomial. A better illustration
is seen in Figure 5.5.

Figure 5.5

y

f (t, y)
t

f(t, y) � exp {�(t � 2)2/4 � (y � 3)2/4} cos (2t � y � 7)

P2(t, y) � 1�     (t � 2)2 � 2(t � 2)(y � 3) �     (y � 3)29
4

3
4

The final parameter in this command indicates that we want the second multivariate
Taylor polynomial, that is, the quadratic polynomial. If this parameter is 2, we get the
quadratic polynomial, and if it is 0 or 1, we get the constant polynomial 1, because there are
no linear terms. When this parameter is omitted, it defaults to 6 and gives the sixth Taylor
polynomial.

Runge-Kutta Methods of OrderTwo

The first step in deriving a Runge-Kutta method is to determine values for a1,α1, and β1

with the property that a1f (t + α1, y+ β1) approximates

T (2)(t, y) = f (t, y)+ h

2
f ′(t, y),

with error no greater than O(h2), which is same as the order of the local truncation error for
the Taylor method of order two. Since

f ′(t, y) = df

dt
(t, y) = ∂f

∂t
(t, y)+ ∂f

∂y
(t, y) · y′(t) and y′(t) = f (t, y),
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we have

T (2)(t, y) = f (t, y)+ h

2

∂f

∂t
(t, y)+ h

2

∂f

∂y
(t, y) · f (t, y). (5.18)

Expanding f (t + α1, y+ β1) in its Taylor polynomial of degree one about (t, y) gives

a1f (t + α1, y+ β1) = a1f (t, y)+ a1α1
∂f

∂t
(t, y)

+ a1β1
∂f

∂y
(t, y)+ a1 · R1(t + α1, y+ β1), (5.19)

where

R1(t + α1, y+ β1) = α2
1

2

∂2f

∂t2
(ξ ,μ)+ α1β1

∂2f

∂t∂y
(ξ ,μ)+ β

2
1

2

∂2f

∂y2
(ξ ,μ), (5.20)

for some ξ between t and t + α1 and μ between y and y+ β1.
Matching the coefficients of f and its derivatives in Eqs. (5.18) and (5.19) gives the

three equations

f (t, y) : a1 = 1;
∂f

∂t
(t, y) : a1α1 = h

2
; and

∂f

∂y
(t, y) : a1β1 = h

2
f (t, y).

The parameters a1, α1, and β1 are therefore

a1 = 1, α1 = h

2
, and β1 = h

2
f (t, y),

so

T (2)(t, y) = f
(

t + h

2
, y+ h

2
f (t, y)

)
− R1

(
t + h

2
, y+ h

2
f (t, y)

)
,

and from Eq. (5.20),

R1

(
t + h

2
, y+ h

2
f (t, y)

)
= h2

8

∂2f

∂t2
(ξ ,μ)+ h2

4
f (t, y)

∂2f

∂t∂y
(ξ ,μ)

+ h2

8
(f (t, y))2

∂2f

∂y2
(ξ ,μ).

If all the second-order partial derivatives of f are bounded, then

R1

(
t + h

2
, y+ h

2
f (t, y)

)

is O(h2). As a consequence:

• The order of error for this new method is the same as that of the Taylor method of order
two.

The difference-equation method resulting from replacing T (2)(t, y) in Taylor’s method
of order two by f (t + (h/2), y+ (h/2)f (t, y)) is a specific Runge-Kutta method known as
the Midpoint method.
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Midpoint Method

w0 = α,

wi+1 = wi + hf

(
ti + h

2
,wi + h

2
f (ti,wi)

)
, for i = 0, 1, . . . , N − 1.

Only three parameters are present in a1f (t + α1, y + β1) and all are needed in the
match of T (2). So a more complicated form is required to satisfy the conditions for any of
the higher-order Taylor methods.

The most appropriate four-parameter form for approximating

T (3)(t, y) = f (t, y)+ h

2
f ′(t, y)+ h2

6
f ′′(t, y)

is

a1f (t, y)+ a2f (t + α2, y+ δ2f (t, y)); (5.21)

and even with this, there is insufficient flexibility to match the term

h2

6

[
∂f

∂y
(t, y)

]2

f (t, y),

resulting from the expansion of (h2/6)f ′′(t, y). Consequently, the best that can be obtained
from using (5.21) are methods with O(h2) local truncation error.

The fact that (5.21) has four parameters, however, gives a flexibility in their choice,
so a number of O(h2) methods can be derived. One of the most important is the Modified
Euler method, which corresponds to choosing a1 = a2 = 1

2 and α2 = δ2 = h. It has the
following difference-equation form.

Modified Euler Method

w0 = α,

wi+1 = wi + h

2
[f (ti,wi)+ f (ti+1,wi + hf (ti,wi))], for i = 0, 1, . . . , N − 1.

Example 2 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, ti = 0.2i,
and w0 = 0.5 to approximate the solution to our usual example,

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The difference equations produced from the various formulas are

Midpoint method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.218;

Modified Euler method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.216,

for each i = 0, 1, . . . , 9. The first two steps of these methods give

Midpoint method: w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.218 = 0.828;

Modified Euler method: w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.216 = 0.826,
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and

Midpoint method: w2 = 1.22(0.828)− 0.0088(0.2)2 − 0.008(0.2)+ 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826)− 0.0088(0.2)2 − 0.008(0.2)+ 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler
ti y(ti) Method Error Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Runge-Kutta methods are also options within the Maple command InitialValueProblem.
The form and output for Runge-Kutta methods are the same as available under the Euler’s
and Taylor’s methods, as discussed in Sections 5.1 and 5.2.

Higher-Order Runge-Kutta Methods

The term T (3)(t, y) can be approximated with error O(h3) by an expression of the form

f (t + α1, y+ δ1f (t + α2, y+ δ2f (t, y))),

involving four parameters, the algebra involved in the determination of α1, δ1,α2, and δ2 is
quite involved. The most common O(h3) is Heun’s method, given by

w0 = α
wi+1 = wi + h

4

(
f (ti,wi)+ 3f

(
ti + 2h

3 ,wi + 2h
3 f

(
ti + h

3 ,wi + h
3f (ti,wi)

)))
,

for i = 0, 1, . . . , N − 1.

Karl Heun (1859–1929) was a
professor at the Technical
University of Karlsruhe. He
introduced this technique in a
paper published in 1900. [Heu]

Illustration Applying Heun’s method with N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 to approximate
the solution to our usual example,

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.
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gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint
and Modified Euler approximations. �

Table 5.7 Heun’s
ti y(ti) Method Error

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292444 0.0000542
0.4 1.2140877 1.2139750 0.0001127
0.6 1.6489406 1.6487659 0.0001747
0.8 2.1272295 2.1269905 0.0002390
1.0 2.6408591 2.6405555 0.0003035
1.2 3.1799415 3.1795763 0.0003653
1.4 3.7324000 3.7319803 0.0004197
1.6 4.2834838 4.2830230 0.0004608
1.8 4.8151763 4.8146966 0.0004797
2.0 5.3054720 5.3050072 0.0004648

Runge-Kutta methods of order three are not generally used. The most common Runge-
Kutta method in use is of order four in difference-equation form, is given by the following.

Runge-Kutta Order Four
w0 = α,

k1 = hf (ti,wi),

k2 = hf

(
ti + h

2
,wi + 1

2
k1

)
,

k3 = hf

(
ti + h

2
,wi + 1

2
k2

)
,

k4 = hf (ti+1,wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, . . . , N − 1. This method has local truncation error O(h4), provided the
solution y(t) has five continuous derivatives. We introduce the notation k1, k2, k3, k4 into
the method is to eliminate the need for successive nesting in the second variable of f (t, y).
Exercise 32 shows how complicated this nesting becomes.

Algorithm 5.2 implements the Runge-Kutta method of order four.

ALGORITHM

5.2
Runge-Kutta (Order Four)

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.
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Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t,w).

Step 2 For i = 1, 2, . . . , N do Steps 3–5.

Step 3 Set K1 = hf (t,w);
K2 = hf (t + h/2,w + K1/2);
K3 = hf (t + h/2,w + K2/2);
K4 = hf (t + h,w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi.)
t = a+ ih. (Compute ti.)

Step 5 OUTPUT (t,w).

Step 6 STOP.

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and ti = 0.2i to obtain
approximations to the solution of the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The approximation to y(0.2) is obtained by

w0 = 0.5

k1 = 0.2f (0, 0.5) = 0.2(1.5) = 0.3

k2 = 0.2f (0.1, 0.65) = 0.328

k3 = 0.2f (0.1, 0.664) = 0.3308

k4 = 0.2f (0.2, 0.8308) = 0.35816

w1 = 0.5+ 1

6
(0.3+ 2(0.328)+ 2(0.3308)+ 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8.

Table 5.8 Runge-Kutta
Exact Order Four Error

ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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To obtain Runge-Kutta order 4 method results with InitialValueProblem use the option
method = rungekutta, submethod = rk4. The results produced from the following call for
out standard example problem agree with those in Table 5.6.

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = rungekutta, submethod =
rk4, numsteps = 10, output = information, digits = 8)

Computational Comparisons

The main computational effort in applying the Runge-Kutta methods is the evaluation of f .
In the second-order methods, the local truncation error is O(h2), and the cost is two function
evaluations per step. The Runge-Kutta method of order four requires 4 evaluations per step,
and the local truncation error is O(h4). Butcher (see [But] for a summary) has established the
relationship between the number of evaluations per step and the order of the local truncation
error shown in Table 5.9. This table indicates why the methods of order less than five with
smaller step size are used in preference to the higher-order methods using a larger step size.

Table 5.9 Evaluations per step 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 10 ≤ n

Best possible local
truncation error

O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)

One measure of comparing the lower-order Runge-Kutta methods is described as
follows:

• The Runge-Kutta method of order four requires four evaluations per step, whereas Euler’s
method requires only one evaluation. Hence if the Runge-Kutta method of order four is
to be superior it should give more accurate answers than Euler’s method with one-fourth
the step size. Similarly, if the Runge-Kutta method of order four is to be superior to the
second-order Runge-Kutta methods, which require two evaluations per step, it should
give more accuracy with step size h than a second-order method with step size h/2.

The following illustrates the superiority of the Runge-Kutta fourth-order method by
this measure for the initial-value problem that we have been considering.

Illustration For the problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

Euler’s method with h = 0.025, the Midpoint method with h = 0.05, and the Runge-
Kutta fourth-order method with h = 0.1 are compared at the common mesh points of these
methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function evaluations
to determine the values listed in Table 5.10 to approximate y(0.5). In this example, the
fourth-order method is clearly superior. �
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Table 5.10 Modified Runge-Kutta
Euler Euler Order Four

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

E X E R C I S E S E T 5.4

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5; actual solution y(t) = 1
5 te3t − 1

25 e3t +
1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5; actual solution y(t) = t + 1
1−t .

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25; actual solution y(t) =
1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5; actual solution y(t) = ln(et + e− 1).

b. y′ = 1+ t

1+ y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5; actual solution y(t) = √t2 + 2t + 6− 1.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25; actual solution y(t) =(
t − 2+√2ee−t/2

)2
.

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) =
1
2 t−2(4+ cos 2− cos 2t).

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1+ ln t).

b. y′ = 1+ y/t+ (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2; actual solution y(t) =
−3+ 2(1+ e−2t)−1.

d. y′ = −5y+5t2+2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1; actual solution y(t) = t2+ 1

3 e−5t .

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = 2t + 1

t2 + 1
.

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t

1− 2t
.

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =
√

4− 3e−t2 .
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292 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

5. Repeat Exercise 1 using the Midpoint method.

6. Repeat Exercise 2 using the Midpoint method.

7. Repeat Exercise 3 using the Midpoint method.

8. Repeat Exercise 4 using the Midpoint method.

9. Repeat Exercise 1 using Heun’s method.

10. Repeat Exercise 2 using Heun’s method.

11. Repeat Exercise 3 using Heun’s method.

12. Repeat Exercise 4 using Heun’s method.

13. Repeat Exercise 1 using the Runge-Kutta method of order four.

14. Repeat Exercise 2 using the Runge-Kutta method of order four.

15. Repeat Exercise 3 using the Runge-Kutta method of order four.

16. Repeat Exercise 4 using the Runge-Kutta method of order four.

17. Use the results of Exercise 3 and linear interpolation to approximate values of y(t), and compare the
results to the actual values.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)
18. Use the results of Exercise 4 and linear interpolation to approximate values of y(t), and compare the

results to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)

c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

19. Repeat Exercise 17 using the results of Exercise 7.

20. Repeat Exercise 18 using the results of Exercise 8.

21. Repeat Exercise 17 using the results of Exercise 11.

22. Repeat Exercise 18 using the results of Exercise 12.

23. Repeat Exercise 17 using the results of Exercise 15.

24. Repeat Exercise 18 using the results of Exercise 16.

25. Use the results of Exercise 15 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.
a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)
c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

26. Use the results of Exercise 16 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)
c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

27. Show that the Midpoint method and the Modified Euler method give the same approximations to the
initial-value problem

y′ = −y+ t + 1, 0 ≤ t ≤ 1, y(0) = 1,

for any choice of h. Why is this true?

28. Water flows from an inverted conical tank with circular orifice at the rate

dx

dt
= −0.6πr2

√
2g

√
x

A(x)
,

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone,
and A(x) is the area of the cross section of the tank x units above the orifice. Suppose r = 0.1 ft,
g = 32.1 ft/s2, and the tank has an initial water level of 8 ft and initial volume of 512(π/3) ft3. Use
the Runge-Kutta method of order four to find the following.

a. The water level after 10 min with h = 20 s

b. When the tank will be empty, to within 1 min.
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5.5 Error Control and the Runge-Kutta-Fehlberg Method 293

29. The irreversible chemical reaction in which two molecules of solid potassium dichromate (K2Cr2O7),
two molecules of water (H2O), and three atoms of solid sulfur (S) combine to yield three molecules of
the gas sulfur dioxide (SO2), four molecules of solid potassium hydroxide (KOH), and two molecules
of solid chromic oxide (Cr2O3) can be represented symbolically by the stoichiometric equation:

2K2Cr2O7 + 2H2O+ 3S −→ 4KOH+ 2Cr2O3 + 3SO2.

If n1 molecules of K2Cr2O7, n2 molecules of H2O, and n3 molecules of S are originally available, the
following differential equation describes the amount x(t) of KOH after time t:

dx

dt
= k

(
n1 − x

2

)2 (
n2 − x

2

)2 (
n3 − 3x

4

)3

,

where k is the velocity constant of the reaction. If k = 6.22 × 10−19, n1 = n2 = 2 × 103, and
n3 = 3× 103, use the Runge-Kutta method of order four to determine how many units of potassium
hydroxide will have been formed after 0.2 s?

30. Show that the difference method

w0 = α,

wi+1 = wi + a1f (ti,wi)+ a2f (ti + α2,w1 + δ2f (ti,wi)),

for each i = 0, 1, . . . , N − 1, cannot have local truncation error O(h3) for any choice of constants
a1, a2,α2, and δ2.

31. Show that Heun’s method can be expressed in difference form, similar to that of the Runge-Kutta
method of order four, as

w0 = α,

k1 = hf (ti,wi),

k2 = hf

(
ti + h

3
,wi + 1

3
k1

)
,

k3 = hf

(
ti + 2h

3
,wi + 2

3
k2

)
,

wi+1 = wi + 1

4
(k1 + 3k3),

for each i = 0, 1, . . . , N − 1.
32. The Runge-Kutta method of order four can be written in the form

w0 = α,

wi+1 = wi + h

6
f (ti,wi)+ h

3
f (ti + α1h,wi + δ1hf (ti,wi))

+ h

3
f (ti + α2h,wi + δ2hf (ti + γ2h,wi + γ3hf (ti,wi)))

+ h

6
f (ti + α3h,wi + δ3hf (ti + γ4h,wi + γ5hf (ti + γ6h,wi + γ7hf (ti,wi)))).

Find the values of the constants

α1, α2, α3, δ1, δ2, δ3, γ2, γ3, γ4, γ5, γ6, and γ7.

5.5 Error Control and the Runge-Kutta-Fehlberg Method

In Section 4.6 we saw that the appropriate use of varying step sizes for integral approxima-
tions produced efficient methods. In itself, this might not be sufficient to favor these methods
due to the increased complication of applying them. However, they have another feature

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



294 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

that makes them worthwhile. They incorporate in the step-size procedure an estimate of
the truncation error that does not require the approximation of the higher derivatives of the
function. These methods are called adaptive because they adapt the number and position
of the nodes used in the approximation to ensure that the truncation error is kept within a
specified bound.

You might like to review the
Adaptive Quadrature material in
Section 4.6 before considering
this material.

There is a close connection between the problem of approximating the value of a
definite integral and that of approximating the solution to an initial-value problem. It is
not surprising, then, that there are adaptive methods for approximating the solutions to
initial-value problems and that these methods are not only efficient, but also incorporate the
control of error.

Any one-step method for approximating the solution, y(t), of the initial-value problem

y′ = f (t, y), for a ≤ t ≤ b, with y(a) = α
can be expressed in the form

wi+1 = wi + hiφ(ti,wi, hi), for i = 0, 1, . . . , N − 1,

for some function φ.
An ideal difference-equation method

wi+1 = wi + hiφ(ti,wi, hi), i = 0, 1, . . . , N − 1,

for approximating the solution, y(t), to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

would have the property that, given a tolerance ε > 0, a minimal number of mesh points
could be used to ensure that the global error, | y(ti) − wi|, did not exceed ε for any i =
0, 1, . . . , N . Having a minimal number of mesh points and also controlling the global error
of a difference method is, not surprisingly, inconsistent with the points being equally spaced
in the interval. In this section we examine techniques used to control the error of a difference-
equation method in an efficient manner by the appropriate choice of mesh points.

Although we cannot generally determine the global error of a method, we will see
in Section 5.10 that there is a close connection between the local truncation error and the
global error. By using methods of differing order we can predict the local truncation error
and, using this prediction, choose a step size that will keep it and the global error in check.

To illustrate the technique, suppose that we have two approximation techniques. The
first is obtained from an nth-order Taylor method of the form

y(ti+1) = y(ti)+ hφ(ti, y(ti), h)+ O(hn+1),

and produces approximations with local truncation error τi+1(h) = O(hn). It is given by

w0 = α
wi+1 = wi + hφ(ti,wi, h), for i > 0.

In general, the method is generated by applying a Runge-Kutta modification to the Taylor
method, but the specific derivation is unimportant.

The second method is similar but one order higher; it comes from an (n + 1)st-order
Taylor method of the form

y(ti+1) = y(ti)+ hφ̃(ti, y(ti), h)+ O(hn+2),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.5 Error Control and the Runge-Kutta-Fehlberg Method 295

and produces approximations with local truncation error τ̃i+1(h) = O(hn+1). It is given by

w̃0 = α
w̃i+1 = w̃i + hφ̃(ti, w̃i, h), for i > 0.

We first make the assumption that wi ≈ y(ti) ≈ w̃i and choose a fixed step size h to
generate the approximations wi+1 and w̃i+1 to y(ti+1). Then

τi+1(h) = y(ti+1)− y(ti)

h
− φ(ti, y(ti), h)

= y(ti+1)− wi

h
− φ(ti,wi, h)

= y(ti+1)− [wi + hφ(ti,wi, h)]
h

= 1

h
(y(ti+1)− wi+1).

In a similar manner, we have

τ̃i+1(h) = 1

h
(y(ti+1)− w̃i+1).

As a consequence, we have

τi+1(h) = 1

h
(y(ti+1)− wi+1)

= 1

h
[(y(ti+1)− w̃i+1)+ (w̃i+1 − wi+1)]

= τ̃i+1(h)+ 1

h
(w̃i+1 − wi+1).

But τi+1(h) is O(hn) and τ̃i+1(h) is O(hn+1), so the significant portion of τi+1(h)must come
from

1

h
(w̃i+1 − wi+1) .

This gives us an easily computed approximation for the local truncation error of the O(hn)

method:

τi+1(h) ≈ 1

h
(w̃i+1 − wi+1) .

The object, however, is not simply to estimate the local truncation error but to adjust
the step size to keep it within a specified bound. To do this we now assume that since τi+1(h)
is O(hn), a number K , independent of h, exists with

τi+1(h) ≈ Khn.

Then the local truncation error produced by applying the nth-order method with a new step
size qh can be estimated using the original approximations wi+1 and w̃i+1:

τi+1(qh) ≈ K(qh)n = qn(Khn) ≈ qnτi+1(h) ≈ qn

h
(w̃i+1 − wi+1).

To bound τi+1(qh) by ε, we choose q so that

qn

h
|w̃i+1 − wi+1| ≈ |τi+1(qh)| ≤ ε;
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that is, so that

q ≤
(

εh

|w̃i+1 − wi+1|
)1/n

. (5.22)

Erwin Fehlberg developed this
and other error control techniques
while working for the NASA
facility in Huntsville, Alabama
during the 1960s. He received
the Exceptional Scientific
Achievement Medal from NASA
in 1969.

Runge-Kutta-Fehlberg Method

One popular technique that uses Inequality (5.22) for error control is the Runge-Kutta-
Fehlberg method. (See [Fe].) This technique uses a Runge-Kutta method with local trun-
cation error of order five,

w̃i+1 = wi + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6,

to estimate the local error in a Runge-Kutta method of order four given by

wi+1 = wi + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5,

where the coefficient equations are

k1 = hf (ti,wi),

k2 = hf

(
ti + h

4
,wi + 1

4
k1

)
,

k3 = hf

(
ti + 3h

8
,wi + 3

32
k1 + 9

32
k2

)
,

k4 = hf

(
ti + 12h

13
,wi + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)
,

k5 = hf

(
ti + h,wi + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)
,

k6 = hf

(
ti + h

2
,wi − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)
.

An advantage to this method is that only six evaluations of f are required per step. Arbitrary
Runge-Kutta methods of orders four and five used together (see Table 5.9 on page 290)
require at least four evaluations of f for the fourth-order method and an additional six for
the fifth-order method, for a total of at least ten function evaluations. So the Runge-Kutta-
Fehlberg method has at least a 40% decrease in the number of function evaluations over the
use of a pair of arbitrary fourth- and fifth-order methods.

In the error-control theory, an initial value of h at the ith step is used to find the first values
ofwi+1 and w̃i+1, which leads to the determination of q for that step, and then the calculations
were repeated. This procedure requires twice the number of function evaluations per step
as without the error control. In practice, the value of q to be used is chosen somewhat
differently in order to make the increased function-evaluation cost worthwhile. The value
of q determined at the ith step is used for two purposes:

• When q < 1: to reject the initial choice of h at the ith step and repeat the calculations
using qh, and

• When q ≥ 1: to accept the computed value at the ith step using the step size h, but change
the step size to qh for the (i + 1)st step.
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Because of the penalty in terms of function evaluations that must be paid if the steps are
repeated, q tends to be chosen conservatively. In fact, for the Runge-Kutta-Fehlberg method
with n = 4, a common choice is

q =
(

εh

2|w̃i+1 − wi+1|
)1/4

= 0.84

(
εh

|w̃i+1 − wi+1|
)1/4

.

In Algorithm 5.3 for the Runge-Kutta-Fehlberg method, Step 9 is added to eliminate
large modifications in step size. This is done to avoid spending too much time with small step
sizes in regions with irregularities in the derivatives of y, and to avoid large step sizes, which
can result in skipping sensitive regions between the steps. The step-size increase procedure
could be omitted completely from the algorithm, and the step-size decrease procedure used
only when needed to bring the error under control.

ALGORITHM

5.3
Runge-Kutta-Fehlberg

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax;
minimum step size hmin.

OUTPUT t,w, h where w approximates y(t) and the step size h was used, or a message
that the minimum step size was exceeded.

Step 1 Set t = a;
w = α;
h = hmax;
FLAG = 1;

OUTPUT (t,w).

Step 2 While (FLAG = 1) do Steps 3–11.

Step 3 Set K1 = hf (t,w);

K2 = hf
(
t + 1

4 h,w + 1
4 K1

)
;

K3 = hf
(
t + 3

8 h,w + 3
32 K1 + 9

32 K2
)
;

K4 = hf
(
t + 12

13 h,w + 1932
2197 K1 − 7200

2197 K2 + 7296
2197 K3

)
;

K5 = hf
(
t + h,w + 439

216 K1 − 8K2 + 3680
513 K3 − 845

4104 K4
)
;

K6 = hf
(
t + 1

2 h,w − 8
27 K1 + 2K2 − 3544

2565 K3 + 1859
4104 K4 − 11

40 K5
)
.

Step 4 Set R = 1
h | 1

360 K1 − 128
4275 K3 − 2197

75240 K4 + 1
50 K5 + 2

55 K6|.
(Note: R = 1

h |w̃i+1 − wi+1|.)
Step 5 If R ≤ TOL then do Steps 6 and 7.

Step 6 Set t = t + h; (Approximation accepted.)

w = w + 25
216 K1 + 1408

2565 K3 + 2197
4104 K4 − 1

5 K5.
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Step 7 OUTPUT (t,w, h).
Step 8 Set δ = 0.84(TOL/R)1/4.

Step 9 If δ ≤ 0.1 then set h = 0.1h
else if δ ≥ 4 then set h = 4h

else set h = δh. (Calculate new h.)

Step 10 If h > hmax then set h = hmax.

Step 11 If t ≥ b then set FLAG = 0
else if t + h > b then set h = b− t

else if h < hmin then
set FLAG = 0;

OUTPUT (‘minimum h exceeded’).
(Procedure completed unsuccessfully.)

Step 12 (The procedure is complete.)
STOP.

Example 1 Use the Runge-Kutta-Fehlberg method with a tolerance TOL = 10−5, a maximum step size
hmax = 0.25, and a minimum step size hmin = 0.01 to approximate the solution to the
initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

and compare the results with the exact solution y(t) = (t + 1)2 − 0.5et .

Solution We will work through the first step of the calculations and then apply Algorithm
5.3 to determine the remaining results. The initial condition gives t0 = 0 and w0 = 0.5. To
determine w1 using h = 0.25, the maximum allowable stepsize, we compute

k1 = hf (t0,w0) = 0.25
(
0.5− 02 + 1

) = 0.375;

k2 = hf

(
t0 + 1

4
h,w0 + 1

4
k1

)
= 0.25

(
1

4
0.25, 0.5+ 1

4
0.375

)
= 0.3974609;

k3 = hf

(
t0 + 3

8
h,w0 + 3

32
k1 + 9

32
k2

)

= 0.25

(
0.09375, 0.5+ 3

32
0.375+ 9

32
0.3974609

)
= 0.4095383;

k4 = hf

(
t0 + 12

13
h,w0 + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)

= 0.25

(
0.2307692, 0.5+ 1932

2197
0.375− 7200

2197
0.3974609+ 7296

2197
0.4095383

)

= 0.4584971;

k5 = hf

(
t0 + h,w0 + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)

= 0.25

(
0.25, 0.5+ 439

216
0.375− 8(0.3974609)+ 3680

513
0.4095383− 845

4104
0.4584971

)

= 0.4658452;
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k6 = hf

(
t0 + 1

2
h,w0 − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)

= 0.25

(
0.125, 0.5− 8

27
0.375+ 2(0.3974609)− 3544

2565
0.4095383

+ 1859

4104
0.4584971− 11

40
0.4658452

)

= 0.4204789.

The two approximations to y(0.25) are then found to be

w̃1 = w0 + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6

= 0.5+ 16

135
0.375+ 6656

12825
0.4095383+ 28561

56430
0.4584971− 9

50
0.4658452

+ 2

55
0.4204789

= 0.9204870,

and

w1 = w0 + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5

= 0.5+ 25

216
0.375+ 1408

2565
0.4095383+ 2197

4104
0.4584971− 1

5
0.4658452

= 0.9204886.

This also implies that

R = 1

0.25

∣∣∣∣ 1

360
k1 − 128

4275
k3 − 2197

75240
k4 + 1

50
k5 + 2

55
k6

∣∣∣∣
= 4

∣∣∣∣ 1

360
0.375− 128

4275
0.4095383− 2197

75240
0.4584971+ 1

50
0.4658452+ 2

55
0.4204789

∣∣∣∣
= 0.00000621388,

and

q = 0.84
( ε

R

)1/4 = 0.84

(
0.00001

0.00000621388

)1/4

= 0.9461033291.

Since q < 1 we can accept the approximation 0.9204886 for y(0.25) but we should adjust
the step size for the next iteration to h = 0.9461033291(0.25) ≈ 0.2365258. However,
only the leading 5 digits of this result would be expected to be accurate because R has only
about 5 digits of accuracy. Because we are effectively subtracting the nearly equal numbers
wi and w̃i when we compute R, there is a good likelihood of round-off error. This is an
additional reason for being conservative when computing q.

The results from the algorithm are shown in Table 5.11. Increased accuracy has been
used to ensure that the calculations are accurate to all listed places. The last two columns
in Table 5.11 show the results of the fifth-order method. For small values of t, the error is
less than the error in the fourth-order method, but the error exceeds that of the fourth-order
method when t increases.
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Table 5.11

RKF-4 RKF-5
ti yi = y(ti) wi hi Ri |yi − wi| ŵi |yi − ŵi|

0 0.5 0.5 0.5
0.2500000 0.9204873 0.9204886 0.2500000 6.2× 10−6 1.3× 10−6 0.9204870 2.424× 10−7

0.4865522 1.3964884 1.3964910 0.2365522 4.5× 10−6 2.6× 10−6 1.3964900 1.510× 10−6

0.7293332 1.9537446 1.9537488 0.2427810 4.3× 10−6 4.2× 10−6 1.9537477 3.136× 10−6

0.9793332 2.5864198 2.5864260 0.2500000 3.8× 10−6 6.2× 10−6 2.5864251 5.242× 10−6

1.2293332 3.2604520 3.2604605 0.2500000 2.4× 10−6 8.5× 10−6 3.2604599 7.895× 10−6

1.4793332 3.9520844 3.9520955 0.2500000 7× 10−7 1.11× 10−5 3.9520954 1.096× 10−5

1.7293332 4.6308127 4.6308268 0.2500000 1.5× 10−6 1.41× 10−5 4.6308272 1.446× 10−5

1.9793332 5.2574687 5.2574861 0.2500000 4.3× 10−6 1.73× 10−5 5.2574871 1.839× 10−5

2.0000000 5.3054720 5.3054896 0.0206668 1.77× 10−5 5.3054896 1.768× 10−5

An implementation of the Runge-Kutta-Fehlberg method is also available in Maple
using the InitialValueProblem command. However, it differs from our presentation because
it does not require the specification of a tolerance for the solution. For our example problem
it is called with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = rungekutta, submethod =
rkf, numsteps = 10, output = information, digits = 8)

As usual, the information is placed in a table that is accessed by double clicking on the
output. The results can be printed in the method outlined in precious sections.

E X E R C I S E S E T 5.5

1. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−4, hmax = 0.25, and hmin = 0.05
to approximate the solutions to the following initial-value problems. Compare the results to the actual
values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0; actual solution y(t) = 1
5 te3t − 1

25 e3t + 1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1; actual solution y(t) = t + 1/(1− t).

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1; actual solution y(t) = 1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Runge-Kutta Fehlberg Algorithm with tolerance TOL = 10−4 to approximate the solution to
the following initial-value problems.

a. y′ = (y/t)2 + y/t, 1 ≤ t ≤ 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.02.

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with hmax = 0.25 and hmin = 0.02.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with hmax = 0.5 and hmin = 0.02.

d. y′ = t2, 0 ≤ t ≤ 2, y(0) = 0, with hmax = 0.5 and hmin = 0.02.

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−6, hmax = 0.5, and hmin = 0.05 to
approximate the solutions to the following initial-value problems. Compare the results to the actual
values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 4, y(1) = 1; actual solution y(t) = t/(1+ ln t).

b. y′ = 1+ y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0; actual solution y(t) = t tan(ln t).

c. y′ = −(y+ 1)(y+ 3), 0 ≤ t ≤ 3, y(0) = −2; actual solution y(t) = −3+ 2(1+ e−2t)−1.

d. y′ = (t + 2t3)y3 − ty, 0 ≤ t ≤ 2, y(0) = 1
3 ; actual solution y(t) = (3+ 2t2 + 6et2

)−1/2.
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4. The Runge-Kutta-Verner method (see [Ve]) is based on the formulas

wi+1 = wi + 13

160
k1 + 2375

5984
k3 + 5

16
k4 + 12

85
k5 + 3

44
k6 and

w̃i+1 = wi + 3

40
k1 + 875

2244
k3 + 23

72
k4 + 264

1955
k5 + 125

11592
k7 + 43

616
k8,

where

k1 = hf (ti,wi),

k2 = hf

(
ti + h

6
,wi + 1

6
k1

)
,

k3 = hf

(
ti + 4h

15
,wi + 4

75
k1 + 16

75
k2

)
,

k4 = hf

(
ti + 2h

3
,wi + 5

6
k1 − 8

3
k2 + 5

2
k3

)
,

k5 = hf

(
ti + 5h

6
,wi − 165

64
k1 + 55

6
k2 − 425

64
k3 + 85

96
k4

)
,

k6 = hf

(
ti + h,wi + 12

5
k1 − 8k2 + 4015

612
k3 − 11

36
k4 + 88

255
k5

)
,

k7 = hf

(
ti + h

15
,wi − 8263

15000
k1 + 124

75
k2 − 643

680
k3 − 81

250
k4 + 2484

10625
k5

)
,

k8 = hf

(
ti + h,wi + 3501

1720
k1 − 300

43
k2 + 297275

52632
k3 − 319

2322
k4 + 24068

84065
k5 + 3850

26703
k7

)
.

The sixth-order method w̃i+1 is used to estimate the error in the fifth-order method wi+1. Construct
an algorithm similar to the Runge-Kutta-Fehlberg Algorithm, and repeat Exercise 3 using this new
method.

5. In the theory of the spread of contagious disease (see [Ba1] or [Ba2]), a relatively elementary dif-
ferential equation can be used to predict the number of infective individuals in the population at any
time, provided appropriate simplification assumptions are made. In particular, let us assume that all
individuals in a fixed population have an equally likely chance of being infected and once infected
remain in that state. Suppose x(t) denotes the number of susceptible individuals at time t and y(t)
denotes the number of infectives. It is reasonable to assume that the rate at which the number of
infectives changes is proportional to the product of x(t) and y(t) because the rate depends on both the
number of infectives and the number of susceptibles present at that time. If the population is large
enough to assume that x(t) and y(t) are continuous variables, the problem can be expressed

y′(t) = kx(t)y(t),

where k is a constant and x(t) + y(t) = m, the total population. This equation can be rewritten
involving only y(t) as

y′(t) = k(m− y(t))y(t).

a. Assuming that m = 100,000, y(0) = 1000, k = 2 × 10−6, and that time is measured in days,
find an approximation to the number of infective individuals at the end of 30 days.

b. The differential equation in part (a) is called a Bernoulli equation and it can be transformed into
a linear differential equation in u(t) = (y(t))−1. Use this technique to find the exact solution to
the equation, under the same assumptions as in part (a), and compare the true value of y(t) to
the approximation given there. What is limt→∞ y(t) ? Does this agree with your intuition?

6. In the previous exercise, all infected individuals remained in the population to spread the disease.
A more realistic proposal is to introduce a third variable z(t) to represent the number of individuals
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