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5.2 Euler’s Method

Euler’s method is the most elementary approximation technique for solving initial-value
problems. Although it is seldom used in practice, the simplicity of its derivation can be
used to illustrate the techniques involved in the construction of some of the more advanced
techniques, without the cumbersome algebra that accompanies these constructions.

The object of Euler’s method is to obtain approximations to the well-posed initial-value
problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α. (5.6)

A continuous approximation to the solution y(t) will not be obtained; instead, approx-
imations to y will be generated at various values, called mesh points, in the interval [a, b].
Once the approximate solution is obtained at the points, the approximate solution at other
points in the interval can be found by interpolation.

We first make the stipulation that the mesh points are equally distributed throughout
the interval [a, b]. This condition is ensured by choosing a positive integer N and selecting
the mesh points

ti = a+ ih, for each i = 0, 1, 2, . . . , N .

The common distance between the points h = (b− a)/N = ti+1− ti is called the step size.
The use of elementary difference
methods to approximate the
solution to differential equations
was one of the numerous
mathematical topics that was first
presented to the mathematical
public by the most prolific of
mathematicians, Leonhard Euler
(1707–1783).

We will use Taylor’s Theorem to derive Euler’s method. Suppose that y(t), the unique
solution to (5.6), has two continuous derivatives on [a, b], so that for each i = 0, 1, 2, . . . ,
N − 1,

y(ti+1) = y(ti)+ (ti+1 − ti)y
′(ti)+ (ti+1 − ti)2

2
y′′(ξi),

for some number ξi in (ti, ti+1). Because h = ti+1 − ti, we have

y(ti+1) = y(ti)+ hy′(ti)+ h2

2
y′′(ξi),

and, because y(t) satisfies the differential equation (5.6),

y(ti+1) = y(ti)+ hf (ti, y(ti))+ h2

2
y′′(ξi). (5.7)

Euler’s method constructs wi ≈ y(ti), for each i = 1, 2, . . . , N , by deleting the remain-
der term. Thus Euler’s method is

w0 = α,

wi+1 = wi + hf (ti,wi), for each i = 0, 1, . . . , N − 1. (5.8)

Illustration In Example 1 we will use an algorithm for Euler’s method to approximate the solution to

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

at t = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5.
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5.2 Euler’s Method 267

For this problem f (t, y) = y− t2 + 1, so

w0 = y(0) = 0.5;

w1 = w0 + 0.5
(
w0 − (0.0)2 + 1

) = 0.5+ 0.5(1.5) = 1.25;

w2 = w1 + 0.5
(
w1 − (0.5)2 + 1

) = 1.25+ 0.5(2.0) = 2.25;

w3 = w2 + 0.5
(
w2 − (1.0)2 + 1

) = 2.25+ 0.5(2.25) = 3.375;

and

y(2) ≈ w4 = w3 + 0.5
(
w3 − (1.5)2 + 1

) = 3.375+ 0.5(2.125) = 4.4375. �

Equation (5.8) is called the difference equation associated with Euler’s method. As
we will see later in this chapter, the theory and solution of difference equations parallel,
in many ways, the theory and solution of differential equations. Algorithm 5.1 implements
Euler’s method.

ALGORITHM

5.1
Euler’s

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t,w).

Step 2 For i = 1, 2, . . . , N do Steps 3, 4.

Step 3 Set w = w + hf (t,w); (Compute wi.)
t = a+ ih. (Compute ti.)

Step 4 OUTPUT (t,w).

Step 5 STOP.

To interpret Euler’s method geometrically, note that when wi is a close approximation
to y(ti), the assumption that the problem is well-posed implies that

f (ti,wi) ≈ y′(ti) = f (ti, y(ti)).
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268 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The graph of the function highlighting y(ti) is shown in Figure 5.2. One step in Euler’s
method appears in Figure 5.3, and a series of steps appears in Figure 5.4.

Figure 5.2
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Example 1 Euler’s method was used in the first illustration with h = 0.5 to approximate the solution
to the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use Algorithm 5.1 with N = 10 to determine approximations, and compare these with the
exact values given by y(t) = (t + 1)2 − 0.5et .

Solution With N = 10 we have h = 0.2, ti = 0.2i, w0 = 0.5, and

wi+1 = wi + h(wi − t2
i + 1) = wi + 0.2[wi − 0.04i2 + 1] = 1.2wi − 0.008i2 + 0.2,

for i = 0, 1, . . . , 9. So

w1 = 1.2(0.5)− 0.008(0)2 + 0.2 = 0.8; w2 = 1.2(0.8)− 0.008(1)2 + 0.2 = 1.152;

and so on. Table 5.1 shows the comparison between the approximate values at ti and the
actual values.
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5.2 Euler’s Method 269

Table 5.1 ti wi yi = y(ti) |yi − wi|
0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986
0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831
1.2 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874

Note that the error grows slightly as the value of t increases. This controlled error
growth is a consequence of the stability of Euler’s method, which implies that the error is
expected to grow in no worse than a linear manner.

Maple has implemented Euler’s method as an option with the command Initial-
ValueProblem within the NumericalAnalysis subpackage of the Student package. To use
it for the problem in Example 1 first load the package and the differential equation.

with(Student[NumericalAnalysis]): deq := diff(y(t), t) = y(t)− t2 + 1

Then issue the command

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = euler, numsteps = 10,
output = information, digits = 8)

Maple produces ⎡
⎢⎢⎣

1 . . 12× 1 . . 4 Array
Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤
⎥⎥⎦

Double clicking on the output brings up a table that gives the values of ti, actual solution
values y(ti), the Euler approximations wi, and the absolute errors | y(ti)−wi|. These agree
with the values in Table 5.1.

To print the Maple table we can issue the commands

for k from 1 to 12 do
print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

The options within the InitialValueProblem command are the specification of the first order
differential equation to be solved, the initial condition, the final value of the independent
variable, the choice of method, the number of steps used to determine that h = (2− 0)/
(numsteps), the specification of form of the output, and the number of digits of rounding
to be used in the computations. Other output options can specify a particular value of t or
a plot of the solution.

Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is sufficiently
elementary to analyze the error that is produced from its application. The error analysis for
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270 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

the more accurate methods that we consider in subsequent sections follows the same pattern
but is more complicated.

To derive an error bound for Euler’s method, we need two computational lemmas.

Lemma 5.7 For all x ≥ −1 and any positive m, we have 0 ≤ (1+ x)m ≤ emx.

Proof Applying Taylor’s Theorem with f (x) = ex, x0 = 0, and n = 1 gives

ex = 1+ x + 1

2
x2eξ ,

where ξ is between x and zero. Thus

0 ≤ 1+ x ≤ 1+ x + 1

2
x2eξ = ex,

and, because 1+ x ≥ 0, we have

0 ≤ (1+ x)m ≤ (ex)m = emx.

Lemma 5.8 If s and t are positive real numbers, {ai}ki=0 is a sequence satisfying a0 ≥ −t/s, and

ai+1 ≤ (1+ s)ai + t, for each i = 0, 1, 2, . . . , k − 1, (5.9)

then

ai+1 ≤ e(i+1)s

(
a0 + t

s

)
− t

s
.

Proof For a fixed integer i, Inequality (5.9) implies that

ai+1 ≤ (1+ s)ai + t

≤ (1+ s)[(1+ s)ai−1 + t] + t = (1+ s)2ai−1 + [1+ (1+ s)]t
≤ (1+ s)3ai−2 +

[
1+ (1+ s)+ (1+ s)2

]
t

...

≤ (1+ s)i+1a0 +
[
1+ (1+ s)+ (1+ s)2 + · · · + (1+ s)i

]
t.

But

1+ (1+ s)+ (1+ s)2 + · · · + (1+ s)i =
i∑

j=0

(1+ s)j

is a geometric series with ratio (1+ s) that sums to

1− (1+ s)i+1

1− (1+ s)
= 1

s
[(1+ s)i+1 − 1].

Thus

ai+1 ≤ (1+ s)i+1a0 + (1+ s)i+1 − 1

s
t = (1+ s)i+1

(
a0 + t

s

)
− t

s
,

and using Lemma 5.7 with x = 1+ s gives

ai+1 ≤ e(i+1)s

(
a0 + t

s

)
− t

s
.
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5.2 Euler’s Method 271

Theorem 5.9 Suppose f is continuous and satisfies a Lipschitz condition with constant L on

D = {(t, y) | a ≤ t ≤ b and −∞ < y <∞}
and that a constant M exists with

| y′′(t)| ≤ M, for all t ∈ [a, b],
where y(t) denotes the unique solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

Let w0,w1, . . . ,wN be the approximations generated by Euler’s method for some positive
integer N . Then, for each i = 0, 1, 2, . . . , N ,

| y(ti)− wi| ≤ hM

2L

[
eL(ti−a) − 1

]
. (5.10)

Proof When i = 0 the result is clearly true, since y(t0) = w0 = α.
From Eq. (5.7), we have

y(ti+1) = y(ti)+ hf (ti, y(ti))+ h2

2
y′′(ξi),

for i = 0, 1, . . . , N − 1, and from the equations in (5.8),

wi+1 = wi + hf (ti,wi).

Using the notation yi = y(ti) and yi+1 = y(ti+1), we subtract these two equations to obtain

yi+1 − wi+1 = yi − wi + h[f (ti, yi)− f (ti,wi)] + h2

2
y′′(ξi)

Hence

| yi+1 − wi+1| ≤ | yi − wi| + h|f (ti, yi)− f (ti,wi)| + h2

2
| y′′(ξi)|.

Now f satisfies a Lipschitz condition in the second variable with constant L, and
| y′′(t)| ≤ M, so

| yi+1 − wi+1| ≤ (1+ hL)| yi − wi| + h2M

2
.

Referring to Lemma 5.8 and letting s = hL, t = h2M/2, and aj = | yj − wj|, for each
j = 0, 1, . . . , N , we see that

| yi+1 − wi+1| ≤ e(i+1)hL

(
| y0 − w0| + h2M

2hL

)
− h2M

2hL
.

Because | y0 − w0| = 0 and (i + 1)h = ti+1 − t0 = ti+1 − a, this implies that

| yi+1 − wi+1| ≤ hM

2L
(e(ti+1−a)L − 1),

for each i = 0, 1, . . . , N − 1.
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272 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The weakness of Theorem 5.9 lies in the requirement that a bound be known for the
second derivative of the solution. Although this condition often prohibits us from obtaining
a realistic error bound, it should be noted that if ∂f/∂t and ∂f/∂y both exist, the chain rule
for partial differentiation implies that

y′′(t) = dy′

dt
(t) = df

dt
(t, y(t)) = ∂f

∂t
(t, y(t))+ ∂f

∂y
(t, y(t)) · f (t, y(t)).

So it is at times possible to obtain an error bound for y′′(t) without explicitly knowing y(t).

Example 2 The solution to the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

was approximated in Example 1 using Euler’s method with h = 0.2. Use the inequality in
Theorem 5.9 to find a bounds for the approximation errors and compare these to the actual
errors.

Solution Because f (t, y) = y − t2 + 1, we have ∂f (t, y)/∂y = 1 for all y, so L = 1. For
this problem, the exact solution is y(t) = (t + 1)2 − 0.5et , so y′′(t) = 2− 0.5et and

| y′′(t)| ≤ 0.5e2 − 2, for all t ∈ [0, 2].
Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1, and
M = 0.5e2 − 2 gives

| yi − wi| ≤ 0.1(0.5e2 − 2)(eti − 1).

Hence

| y(0.2)− w1| ≤0.1(0.5e2 − 2)(e0.2 − 1) = 0.03752;

| y(0.4)− w2| ≤0.1(0.5e2 − 2)(e0.4 − 1) = 0.08334;

and so on. Table 5.2 lists the actual error found in Example 1, together with this error
bound. Note that even though the true bound for the second derivative of the solution was
used, the error bound is considerably larger than the actual error, especially for increasing
values of t.

Table 5.2

ti 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Actual Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969
Error Bound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264

The principal importance of the error-bound formula given in Theorem 5.9 is that the
bound depends linearly on the step size h. Consequently, diminishing the step size should
give correspondingly greater accuracy to the approximations.

Neglected in the result of Theorem 5.9 is the effect that round-off error plays in the
choice of step size. As h becomes smaller, more calculations are necessary and more round-
off error is expected. In actuality then, the difference-equation form

w0 = α,

wi+1 = wi + hf (ti,wi), for each i = 0, 1, . . . , N − 1,
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5.2 Euler’s Method 273

is not used to calculate the approximation to the solution yi at a mesh point ti. We use instead
an equation of the form

u0 = α + δ0,

ui+1 = ui + hf (ti, ui)+ δi+1, for each i = 0, 1, . . . , N − 1, (5.11)

where δi denotes the round-off error associated with ui. Using methods similar to those in
the proof of Theorem 5.9, we can produce an error bound for the finite-digit approximations
to yi given by Euler’s method.

Theorem 5.10 Let y(t) denote the unique solution to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α (5.12)

and u0, u1, . . . , uN be the approximations obtained using (5.11). If |δi| < δ for each
i = 0, 1, . . . , N and the hypotheses of Theorem 5.9 hold for (5.12), then

| y(ti)− ui| ≤ 1

L

(
hM

2
+ δ

h

)
[eL(ti−a) − 1] + |δ0|eL(ti−a), (5.13)

for each i = 0, 1, . . . , N .

The error bound (5.13) is no longer linear in h. In fact, since

lim
h→0

(
hM

2
+ δ

h

)
= ∞,

the error would be expected to become large for sufficiently small values of h. Calculus can
be used to determine a lower bound for the step size h. Letting E(h) = (hM/2) + (δ/h)
implies that E′(h) = (M/2)− (δ/h2).

If h <
√

2δ/M, then E′(h) < 0 and E(h) is decreasing.

If h >
√

2δ/M, then E′(h) > 0 and E(h) is increasing.

The minimal value of E(h) occurs when

h =
√

2δ

M
. (5.14)

Decreasing h beyond this value tends to increase the total error in the approximation.
Normally, however, the value of δ is sufficiently small that this lower bound for h does not
affect the operation of Euler’s method.

E X E R C I S E S E T 5.2

1. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25
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274 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

2. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5

b. y′ = 1+ t

1+ y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

3. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the actual
error at each step to the error bound.

a. y(t) = 1

5
te3t − 1

25
e3t + 1

25
e−2t b. y(t) = t + 1

1− t
c. y(t) = t ln t + 2t d. y(t) = 1

2
sin 2t − 1

3
cos 3t + 4

3
4. The actual solutions to the initial-value problems in Exercise 2 are given here. Compute the actual

error and compare this to the error bound if Theorem 5.9 can be applied.

a. y(t) = ln(et + e− 1) b. y(t) =
√

t2 + 2t + 6− 1

c. y(t) =
(

t − 2+√2ee−t/2
)2

d. y(t) = 4+ cos 2− cos 2t

2t2

5. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = y/t − (y/t)2 , 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1

b. y′ = 1+ y/t + (y/t)2 , 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2

c. y′ = −(y+ 1)(y+ 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2

d. y′ = −5y+ 5t2 + 2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1

6. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty+ 4ty−1, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. The actual solutions to the initial-value problems in Exercise 5 are given here. Compute the actual
error in the approximations of Exercise 5.

a. y(t) = t

1+ ln t
b. y(t) = t tan(ln t)

c. y(t) = −3+ 2

1+ e−2t
d. y(t) = t2 + 1

3
e−5t

8. The actual solutions to the initial-value problems in Exercise 6 are given here. Compute the actual
error in the approximations of Exercise 6.

a. y(t) = 2t + 1

t2 + 1
b. y(t) = −1

ln(t + 1)

c. y(t) = 2t

1− 2t
d. y(t) =

√
4− 3e−t2

9. Given the initial-value problem

y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e) :

a. Use Euler’s method with h = 0.1 to approximate the solution, and compare it with the actual
values of y.
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5.2 Euler’s Method 275

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Compute the value of h necessary for | y(ti)− wi| ≤ 0.1, using Eq. (5.10).

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Euler’s method with h = 0.05 to approximate the solution, and compare it with the actual
values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Compute the value of h necessary for | y(ti)− wi| ≤ 0.05 using Eq. (5.10).

11. Given the initial-value problem

y′ = −y+ t + 1, 0 ≤ t ≤ 5, y(0) = 1,

with exact solution y(t) = e−t + t:

a. Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.

b. Determine the optimal value of h to use in computing y(5), assuming δ = 10−6 and that Eq. (5.14)
is valid.

12. Consider the initial-value problem

y′ = −10y, 0 ≤ t ≤ 2, y(0) = 1,

which has solution y(t) = e−10t . What happens when Euler’s method is applied to this problem with
h = 0.1? Does this behavior violate Theorem 5.9?

13. Use the results of Exercise 5 and linear interpolation to approximate the following values of y(t).
Compare the approximations obtained to the actual values obtained using the functions given in
Exercise 7.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)
c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

14. Use the results of Exercise 6 and linear interpolation to approximate the following values of y(t).
Compare the approximations obtained to the actual values obtained using the functions given in
Exercise 8.

a. y(0.25) and y(0.93) b. y(1.25) and y(1.93)
c. y(2.10) and y(2.75) d. y(0.54) and y(0.94)

15. Let E(h) = hM

2
+ δ

h
.

a. For the initial-value problem

y′ = −y+ 1, 0 ≤ t ≤ 1, y(0) = 0,

compute the value of h to minimize E(h). Assume δ = 5× 10−(n+1) if you will be using n-digit
arithmetic in part (c).

b. For the optimal h computed in part (a), use Eq. (5.13) to compute the minimal error obtainable.

c. Compare the actual error obtained using h = 0.1 and h = 0.01 to the minimal error in part (b).
Can you explain the results?

16. In a circuit with impressed voltage E having resistance R, inductance L, and capacitance C in parallel,
the current i satisfies the differential equation

di

dt
= C

d2E
dt2
+ 1

R

dE
dt
+ 1

L
E .
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276 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Suppose C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is given by

E(t) = e−0.06π t sin(2t − π).
If i(0) = 0, find the current i for the values t = 0.1 j, where j = 0, 1, . . . , 100.

17. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra], pp. 103–110, considers
a model for a problem involving the production of nonconformists in society. Suppose that a society
has a population of x(t) individuals at time t, in years, and that all nonconformists who mate with
other nonconformists have offspring who are also nonconformists, while a fixed proportion r of all
other offspring are also nonconformist. If the birth and death rates for all individuals are assumed to
be the constants b and d, respectively, and if conformists and nonconformists mate at random, the
problem can be expressed by the differential equations

dx(t)

dt
= (b− d)x(t) and

dxn(t)

dt
= (b− d)xn(t)+ rb(x(t)− xn(t)),

where xn(t) denotes the number of nonconformists in the population at time t.

a. Suppose the variable p(t) = xn(t)/x(t) is introduced to represent the proportion of noncon-
formists in the society at time t. Show that these equations can be combined and simplified to
the single differential equation

dp(t)

dt
= rb(1− p(t)).

b. Assuming that p(0) = 0.01, b = 0.02, d = 0.015, and r = 0.1, approximate the solution p(t)
from t = 0 to t = 50 when the step size is h = 1 year.

c. Solve the differential equation for p(t) exactly, and compare your result in part (b) when t = 50
with the exact value at that time.

5.3 Higher-Order Taylor Methods

Since the object of a numerical techniques is to determine accurate approximations with
minimal effort, we need a means for comparing the efficiency of various approximation
methods. The first device we consider is called the local truncation error of the method.

The local truncation error at a specified step measures the amount by which the exact
solution to the differential equation fails to satisfy the difference equation being used for
the approximation at that step. This might seem like an unlikely way to compare the error
of various methods. We really want to know how well the approximations generated by the
methods satisfy the differential equation, not the other way around. However, we don’t know
the exact solution so we cannot generally determine this, and the local truncation will serve
quite well to determine not only the local error of a method but the actual approximation
error.

Consider the initial value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

Definition 5.11 The difference method

w0 = α
wi+1 = wi + hφ(ti,wi), for each i = 0, 1, . . . , N − 1,

has local truncation error

τi+1(h) = yi+1 − (yi + hφ(ti, yi))

h
= yi+1 − yi

h
− φ(ti, yi),
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5.3 Higher-Order Taylor Methods 277

for each i = 0, 1, . . . , N − 1, where yi and yi+1 denote the solution at ti and ti+1,
respectively.

For example, Euler’s method has local truncation error at the ith step

τi+1(h) = yi+1 − yi

h
− f (ti, yi), for each i = 0, 1, . . . , N − 1.

This error is a local error because it measures the accuracy of the method at a specific
step, assuming that the method was exact at the previous step. As such, it depends on the
differential equation, the step size, and the particular step in the approximation.

By considering Eq. (5.7) in the previous section, we see that Euler’s method has

τi+1(h) = h

2
y′′(ξi), for some ξi in (ti, ti+1).

When y′′(t) is known to be bounded by a constant M on [a, b], this implies

|τi+1(h)| ≤ h

2
M,

so the local truncation error in Euler’s method is O(h).
One way to select difference-equation methods for solving ordinary differential equa-

tions is in such a manner that their local truncation errors are O(hp) for as large a value
of p as possible, while keeping the number and complexity of calculations of the methods
within a reasonable bound.

Since Euler’s method was derived by using Taylor’s Theorem with n = 1 to approximate
the solution of the differential equation, our first attempt to find methods for improving the
convergence properties of difference methods is to extend this technique of derivation to
larger values of n.

The methods in this section use
Taylor polynomials and the
knowledge of the derivative at a
node to approximate the value of
the function at a new node.

Suppose the solution y(t) to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

has (n+1) continuous derivatives. If we expand the solution, y(t), in terms of its nth Taylor
polynomial about ti and evaluate at ti+1, we obtain

y(ti+1) = y(ti)+ hy′(ti)+ h2

2
y′′(ti)+ · · · + hn

n! y
(n)(ti)+ hn+1

(n+ 1)!y
(n+1)(ξi), (5.15)

for some ξi in (ti, ti+1).
Successive differentiation of the solution, y(t), gives

y′(t) = f (t, y(t)), y′′(t) = f ′(t, y(t)), and, generally, y(k)(t) = f (k−1)(t, y(t)).

Substituting these results into Eq. (5.15) gives

y(ti+1) = y(ti)+ hf (ti, y(ti))+ h2

2
f ′(ti, y(ti))+ · · · (5.16)

+ hn

n! f
(n−1)(ti, y(ti))+ hn+1

(n+ 1)!f
(n)(ξi, y(ξi)).

The difference-equation method corresponding to Eq. (5.16) is obtained by deleting
the remainder term involving ξi.
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Taylor method of order n

w0 = α,

wi+1 = wi + hT (n)(ti,wi), for each i = 0, 1, . . . , N − 1, (5.17)

where

T (n)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi)+ · · · + hn−1

n! f
(n−1)(ti,wi).

Euler’s method is Taylor’s method of order one.

Example 1 Apply Taylor’s method of orders (a) two and (b) four with N = 10 to the initial-value
problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution (a) For the method of order two we need the first derivative of f (t, y(t)) =
y(t)− t2 + 1 with respect to the variable t. Because y′ = y− t2 + 1 we have

f ′(t, y(t)) = d

dt
(y− t2 + 1) = y′ − 2t = y− t2 + 1− 2t,

so

T (2)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi) = wi − t2

i + 1+ h

2
(wi − t2

i + 1− 2ti)

=
(

1+ h

2

)
(wi − t2

i + 1)− hti

Because N = 10 we have h = 0.2, and ti = 0.2i for each i = 1, 2, . . . , 10. Thus the
second-order method becomes

w0 = 0.5,

wi+1 = wi + h

[(
1+ h

2

) (
wi − t2

i + 1
)− hti

]

= wi + 0.2

[(
1+ 0.2

2

)
(wi − 0.04i2 + 1)− 0.04i

]

= 1.22wi − 0.0088i2 − 0.008i + 0.22.

The first two steps give the approximations

y(0.2) ≈ w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.22 = 0.83;

y(0.4) ≈ w2 = 1.22(0.83)− 0.0088(0.2)2 − 0.008(0.2)+ 0.22 = 1.2158

All the approximations and their errors are shown in Table 5.3

Table 5.3

Taylor
Order 2 Error

ti wi |y(ti)− wi|
0.0 0.500000 0
0.2 0.830000 0.000701
0.4 1.215800 0.001712
0.6 1.652076 0.003135
0.8 2.132333 0.005103
1.0 2.648646 0.007787
1.2 3.191348 0.011407
1.4 3.748645 0.016245
1.6 4.306146 0.022663
1.8 4.846299 0.031122
2.0 5.347684 0.042212

(b) For Taylor’s method of order four we need the first three derivatives of f (t, y(t))
with respect to t. Again using y′ = y− t2 + 1 we have

f ′(t, y(t)) = y− t2 + 1− 2t,

f ′′(t, y(t)) = d

dt
(y− t2 + 1− 2t) = y′ − 2t − 2

= y− t2 + 1− 2t − 2 = y− t2 − 2t − 1,
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5.3 Higher-Order Taylor Methods 279

and

f ′′′(t, y(t)) = d

dt
(y− t2 − 2t − 1) = y′ − 2t − 2 = y− t2 − 2t − 1,

so

T (4)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi)+ h2

6
f ′′(ti,wi)+ h3

24
f ′′′(ti,wi)

= wi − t2
i + 1+ h

2
(wi − t2

i + 1− 2ti)+ h2

6
(wi − t2

i − 2ti − 1)

+ h3

24
(wi − t2

i − 2ti − 1)

=
(

1+ h

2
+ h2

6
+ h3

24

)
(wi − t2

i )−
(

1+ h

3
+ h2

12

)
(hti)

+ 1+ h

2
− h2

6
− h3

24
.

Hence Taylor’s method of order four is

w0 = 0.5,

wi+1 = wi + h

[(
1+ h

2
+ h2

6
+ h3

24

)
(wi − t2

i )−
(

1+ h

3
+ h2

12

)
hti

+ 1+ h

2
− h2

6
− h3

24

]
,

for i = 0, 1, . . . , N − 1.
Because N = 10 and h = 0.2 the method becomes

wi+1 = wi + 0.2

[(
1+ 0.2

2
+ 0.04

6
+ 0.008

24

)
(wi − 0.04i2)

−
(

1+ 0.2

3
+ 0.04

12

)
(0.04i)+ 1+ 0.2

2
− 0.04

6
− 0.008

24

]

= 1.2214wi − 0.008856i2 − 0.00856i + 0.2186,

for each i = 0, 1, . . . , 9. The first two steps give the approximations

y(0.2) ≈ w1 = 1.2214(0.5)− 0.008856(0)2 − 0.00856(0)+ 0.2186 = 0.8293;

y(0.4) ≈ w2 = 1.2214(0.8293)− 0.008856(0.2)2 − 0.00856(0.2)+ 0.2186 = 1.214091

All the approximations and their errors are shown in Table 5.4.

Table 5.4

Taylor
Order 4 Error

ti wi |y(ti)− wi|
0.0 0.500000 0
0.2 0.829300 0.000001
0.4 1.214091 0.000003
0.6 1.648947 0.000006
0.8 2.127240 0.000010
1.0 2.640874 0.000015
1.2 3.179964 0.000023
1.4 3.732432 0.000032
1.6 4.283529 0.000045
1.8 4.815238 0.000062
2.0 5.305555 0.000083

Compare these results with those of Taylor’s method of order 2 in Table 5.4 and you
will see that the fourth-order results are vastly superior.

The results from Table 5.4 indicate the Taylor’s method of order 4 results are quite
accurate at the nodes 0.2, 0.4, etc. But suppose we need to determine an approximation to
an intermediate point in the table, for example, at t = 1.25. If we use linear interpolation
on the Taylor method of order four approximations at t = 1.2 and t = 1.4, we have

y(1.25) ≈
(

1.25− 1.4

1.2− 1.4

)
3.1799640+

(
1.25− 1.2

1.4− 1.2

)
3.7324321 = 3.3180810.
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The true value is y(1.25) = 3.3173285, so this approximation has an error of 0.0007525,
which is nearly 30 times the average of the approximation errors at 1.2 and 1.4.

We can significantly improve the approximation by using cubic Hermite interpolation.
To determine this approximation for y(1.25) requires approximations to y′(1.2) and y′(1.4)
as well as approximations to y(1.2) and y(1.4). However, the approximations for y(1.2) and
y(1.4) are in the table, and the derivative approximations are available from the differential
equation, because y′(t) = f (t, y(t)). In our example y′(t) = y(t)− t2 + 1, so

y′(1.2) = y(1.2)− (1.2)2 + 1 ≈ 3.1799640− 1.44+ 1 = 2.7399640

and

y′(1.4) = y(1.4)− (1.4)2 + 1 ≈ 3.7324327− 1.96+ 1 = 2.7724321.

Hermite interpolation requires
both the value of the function and
its derivative at each node. This
makes it a natural interpolation
method for approximating
differential equations since these
data are all available.

The divided-difference procedure in Section 3.4 gives the information in Table 5.5.
The underlined entries come from the data, and the other entries use the divided-difference
formulas.

Table 5.5 1.2 3.1799640
2.7399640

1.2 3.1799640 0.1118825
2.7623405 −0.3071225

1.4 3.7324321 0.0504580
2.7724321

1.4 3.7324321

The cubic Hermite polynomial is

y(t) ≈ 3.1799640+ (t − 1.2)2.7399640+ (t − 1.2)20.1118825

+ (t − 1.2)2(t − 1.4)(−0.3071225),

so

y(1.25) ≈ 3.1799640+ 0.1369982+ 0.0002797+ 0.0001152 = 3.3173571,

a result that is accurate to within 0.0000286. This is about the average of the errors at 1.2
and at 1.4, and only 4% of the error obtained using linear interpolation. This improvement
in accuracy certainly justifies the added computation required for the Hermite method.

Theorem 5.12 If Taylor’s method of order n is used to approximate the solution to

y′(t) = f (t, y(t)), a ≤ t ≤ b, y(a) = α,

with step size h and if y ∈ Cn+1[a, b], then the local truncation error is O(hn).

Proof Note that Eq. (5.16) on page 277 can be rewritten

yi+1 − yi − hf (ti, yi)− h2

2
f ′(ti, yi)− · · · − hn

n! f
(n−1)(ti, yi) = hn+1

(n+ 1)!f
(n)(ξi, y(ξi)),

for some ξi in (ti, ti+1). So the local truncation error is

τi+1(h) = yi+1 − yi

h
− T (n)(ti, yi) = hn

(n+ 1)!f
(n)(ξi, y(ξi)),

for each i = 0, 1, . . . , N−1. Since y ∈ Cn+1[a, b], we have y(n+1)(t) = f (n)(t, y(t)) bounded
on [a, b] and τi(h) = O(hn), for each i = 1, 2, . . . , N .
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Taylor’s methods are options within the Maple command InitialValueProblem. The
form and output for Taylor’s methods are the same as available under Euler’s method, as
discussed in Section 5.1. To obtain Taylor’s method of order 2 for the problem in Example 1,
first load the package and the differential equation.

with(Student[NumericalAnalysis]) : deq := diff(y(t), t) = y(t)− t2 + 1

Then issue

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = taylor, order = 2,
numsteps = 10, output = information, digits = 8)

Maple responds with an array of data similar to that produced with Euler’s method. Double
clicking on the output will bring up a table that gives the values of ti, actual solution values
y(ti), the Taylor approximations wi, and the absolute errors | y(ti)− wi|. These agree with
the values in Table 5.3.

To print the table issue the commands

for k from 1 to 12 do
print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

E X E R C I S E S E T 5.3

1. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value
problems.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

2. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value
problems.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5

b. y′ = 1+ t

1+ y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

3. Repeat Exercise 1 using Taylor’s method of order four.

4. Repeat Exercise 2 using Taylor’s method of order four.

5. Use Taylor’s method of order two to approximate the solution for each of the following initial-value
problems.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 1.2, y(1) = 1, with h = 0.1

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.5

d. y′ = −ty+ 4ty−1, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

6. Use Taylor’s method of order two to approximate the solution for each of the following initial-value
problems.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1
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c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. Repeat Exercise 5 using Taylor’s method of order four.

8. Repeat Exercise 6 using Taylor’s method of order four.

9. Given the initial-value problem

y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it with
the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following
values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order four with h = 0.1 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
y at the following values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Taylor’s method of order two with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Use Taylor’s method of order four with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
the following values of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed
due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv′ = −mg− kv|v|.
a. Find the velocity after 0.1, 0.2, . . . , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and
begins falling.

12. Use the Taylor method of order two with h = 0.1 to approximate the solution to

y′ = 1+ t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

5.4 Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of high-
order local truncation error, but the disadvantage of requiring the computation and evaluation
of the derivatives of f (t, y). This is a complicated and time-consuming procedure for most
problems, so the Taylor methods are seldom used in practice.
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