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21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better
approximation?

a.
∫ 0.1

0

√
1+ x dx b.

∫ π/2

0
(sin x)2 dx

c.
∫ 1.5

1.1
ex dx d.

∫ 10

1

1

x
dx

e.
∫ 5.5

1

1

x
dx +

∫ 10

5.5

1

x
dx f.

∫ 1

0
x1/3 dx

22. Given the function f at the following values,

x 1.8 2.0 2.2 2.4 2.6

f (x) 3.12014 4.42569 6.04241 8.03014 10.46675

approximate
∫ 2.6

1.8 f (x) dx using all the appropriate quadrature formulas of this section.

23. Suppose that the data of Exercise 22 have round-off errors given by the following table.

x 1.8 2.0 2.2 2.4 2.6

Error in f (x) 2× 10−6 −2× 10−6 −0.9× 10−6 −0.9× 10−6 2× 10−6

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson’s rule with error term by using∫ x2

x0

f (x) dx = a0f (x0)+ a1f (x1)+ a2f (x2)+ kf (4)(ξ).

Find a0, a1, and a2 from the fact that Simpson’s rule is exact for f (x) = xn when n = 1, 2, and 3.
Then find k by applying the integration formula with f (x) = x4.

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1, . . . , n,
but E(P(x)) �= 0 for some polynomial P(x) of degree n+ 1.

26. Derive Simpson’s three-eighths rule (the closed rule with n = 3) with error term by using
Theorem 4.2.

27. Derive the open rule with n = 1 with error term by using Theorem 4.3.

4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials.

In this section, we discuss a piecewise approach to numerical integration that uses the
low-order Newton-Cotes formulas. These are the techniques most often applied.

Piecewise approximation is often
effective. Recall that this was
used for spline interpolation.

Example 1 Use Simpson’s rule to approximate
∫ 4

0 ex dx and compare this to the results obtained

by adding the Simpson’s rule approximations for
∫ 2

0 ex dx and
∫ 4

2 ex dx. Compare these

approximations to the sum of Simpson’s rule for
∫ 1

0 ex dx,
∫ 2

1 ex dx,
∫ 3

2 ex dx, and
∫ 4

3 ex dx.
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204 C H A P T E R 4 Numerical Differentiation and Integration

Solution Simpson’s rule on [0, 4] uses h = 2 and gives∫ 4

0
ex dx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.

The exact answer in this case is e4 − e0 = 53.59815, and the error −3.17143 is far larger
than we would normally accept.

Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] uses h = 1 and gives∫ 4

0
ex dx =

∫ 2

0
ex dx +

∫ 4

2
ex dx

≈ 1

3

(
e0 + 4e+ e2

)+ 1

3

(
e2 + 4e3 + e4

)
= 1

3

(
e0 + 4e+ 2e2 + 4e3 + e4

)
= 53.86385.

The error has been reduced to −0.26570.
For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4]we use Simpson’s rule four times with

h = 1
2 giving∫ 4

0
ex dx =

∫ 1

0
ex dx +

∫ 2

1
ex dx +

∫ 3

2
ex dx +

∫ 4

3
ex dx

≈ 1

6

(
e0 + 4e1/2 + e

)+ 1

6

(
e+ 4e3/2 + e2

)
+ 1

6

(
e2 + 4e5/2 + e3

)+ 1

6

(
e3 + 4e7/2 + e4

)
= 1

6

(
e0 + 4e1/2 + 2e+ 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4

)
= 53.61622.

The error for this approximation has been reduced to −0.01807.

To generalize this procedure for an arbitrary integral
∫ b

a
f (x) dx, choose an even

integer n. Subdivide the interval [a, b] into n subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7
y

xa � x0 x2 b � xn

y � f (x)

x2j�2 x2j�1 x2j
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4.4 Composite Numerical Integration 205

With h = (b− a)/n and xj = a+ jh, for each j = 0, 1, . . . , n, we have

∫ b

a
f (x) dx =

n/2∑
j=1

∫ x2 j

x2 j−2

f (x) dx

=
n/2∑
j=1

{
h

3
[f (x2 j−2)+ 4f (x2 j−1)+ f (x2 j)] − h5

90
f (4)(ξj)

}
,

for some ξj with x2 j−2 < ξj < x2 j, provided that f ∈ C4[a, b]. Using the fact that for each
j = 1, 2, . . . , (n/2)− 1 we have f (x2 j) appearing in the term corresponding to the interval
[x2 j−2, x2 j] and also in the term corresponding to the interval [x2 j, x2 j+2], we can reduce
this sum to

∫ b

a
f (x) dx = h

3

⎡
⎣f (x0)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (xn)

⎤
⎦− h5

90

n/2∑
j=1

f (4)(ξj).

The error associated with this approximation is

E(f ) = − h5

90

n/2∑
j=1

f (4)(ξj),

where x2 j−2 < ξj < x2 j, for each j = 1, 2, . . . , n/2.
If f ∈ C4[a, b], the Extreme Value Theorem 1.9 implies that f (4) assumes its maximum

and minimum in [a, b]. Since

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

we have

n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤ n

2
max

x∈[a,b]
f (4)(x)

and

min
x∈[a,b]

f (4)(x) ≤ 2

n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

By the Intermediate Value Theorem 1.11, there is a μ ∈ (a, b) such that

f (4)(μ) = 2

n

n/2∑
j=1

f (4)(ξj).

Thus

E(f ) = − h5

90

n/2∑
j=1

f (4)(ξj) = − h5

180
nf (4)(μ),

or, since h = (b− a)/n,

E(f ) = − (b− a)

180
h4f (4)(μ).

These observations produce the following result.
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206 C H A P T E R 4 Numerical Differentiation and Integration

Theorem 4.4 Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.
There exists a μ ∈ (a, b) for which the Composite Simpson’s rule for n subintervals can
be written with its error term as∫ b

a
f (x) dx = h

3

⎡
⎣f (a)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (b)
⎤
⎦− b− a

180
h4f (4)(μ).

Notice that the error term for the Composite Simpson’s rule is O(h4), whereas it was
O(h5) for the standard Simpson’s rule. However, these rates are not comparable because for
standard Simpson’s rule we have h fixed at h = (b − a)/2, but for Composite Simpson’s
rule we have h = (b − a)/n, for n an even integer. This permits us to considerably reduce
the value of h when the Composite Simpson’s rule is used.

Algorithm 4.1 uses the Composite Simpson’s rule on n subintervals. This is the most
frequently used general-purpose quadrature algorithm.

ALGORITHM

4.1
Composite Simpson’s Rule

To approximate the integral I = ∫ b
a f (x) dx:

INPUT endpoints a, b; even positive integer n.

OUTPUT approximation XI to I .

Step 1 Set h = (b− a)/n.

Step 2 Set XI0 = f (a)+ f (b);
XI1 = 0; (Summation of f (x2i−1).)
XI2 = 0. (Summation of f (x2i).)

Step 3 For i = 1, . . . , n− 1 do Steps 4 and 5.

Step 4 Set X = a+ ih.

Step 5 If i is even then set XI2 = XI2+ f (X)
else set XI1 = XI1+ f (X).

Step 6 Set XI = h(XI0+ 2 · XI2+ 4 · XI1)/3.

Step 7 OUTPUT (XI);
STOP.

The subdivision approach can be applied to any of the Newton-Cotes formulas. The
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof.
The Trapezoidal rule requires only one interval for each application, so the integer n can be
either odd or even.

Theorem 4.5 Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n. There exists
a μ ∈ (a, b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− b− a

12
h2f ′′(μ).
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Figure 4.8
y

xa � x0 b � xn

y � f (x)

xj�1 xjx1 xn�1

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.)

Figure 4.9

x

y

a � x�1 x0 x1 xnx2j�1 xn�1x2j x2j�1 b � xn�1

y � f (x)

Theorem 4.6 Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for each
j = −1, 0, . . . , n + 1. There exists a μ ∈ (a, b) for which the Composite Midpoint rule
for n+ 2 subintervals can be written with its error term as

∫ b

a
f (x) dx = 2h

n/2∑
j=0

f (x2 j)+ b− a

6
h2f ′′(μ).

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating

∫ π
0 sin x dx and employing

(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f (x) = sin x on [0,π ]
is ∣∣∣∣πh2

12
f ′′(μ)

∣∣∣∣ =
∣∣∣∣πh2

12
(− sinμ)

∣∣∣∣ = πh2

12
| sinμ|.
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208 C H A P T E R 4 Numerical Differentiation and Integration

To ensure sufficient accuracy with this technique we need to have

πh2

12
| sinμ| ≤ πh2

12
< 0.00002.

Since h = π/n implies that n = π/h, we need

π3

12n2
< 0.00002 which implies that n >

(
π3

12(0.00002)

)1/2

≈ 359.44.

and the Composite Trapezoidal rule requires n ≥ 360.

(b) The error form for the Composite Simpson’s rule for f (x) = sin x on [0,π ] is∣∣∣∣πh4

180
f (4)(μ)

∣∣∣∣ =
∣∣∣∣πh4

180
sinμ

∣∣∣∣ = πh4

180
| sinμ|.

To ensure sufficient accuracy with this technique we need to have

πh4

180
| sinμ| ≤ πh4

180
< 0.00002.

Using again the fact that n = π/h gives

π5

180n4
< 0.00002 which implies that n >

(
π5

180(0.00002)

)1/4

≈ 17.07.

So Composite Simpson’s rule requires only n ≥ 18.
Composite Simpson’s rule with n = 18 gives

∫ π

0
sin x dx ≈ π

54

⎡
⎣2

8∑
j=1

sin

(
jπ

9

)
+ 4

9∑
j=1

sin

(
(2 j − 1)π

18

)⎤⎦ = 2.0000104.

This is accurate to within about 10−5 because the true value is− cos(π)− (− cos(0)) = 2.

Composite Simpson’s rule is the clear choice if you wish to minimize computation.
For comparison purposes, consider the Composite Trapezoidal rule using h = π/18 for the
integral in Example 2. This approximation uses the same function evaluations as Composite
Simpson’s rule but the approximation in this case

∫ π

0
sin x dx ≈ π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)
+ sin 0+ sin π

⎤
⎦= π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)⎤⎦= 1.9949205.

is accurate only to about 5× 10−3.
Maple contains numerous procedures for numerical integration in the NumericalAnal-

ysis subpackage of the Student package. First access the library as usual with

with(Student[NumericalAnalysis])

The command for all methods is Quadrature with the options in the call specifying the
method to be used. We will use the Trapezoidal method to illustrate the procedure. First
define the function and the interval of integration with

f := x→ sin(x); a := 0.0; b := π
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4.4 Composite Numerical Integration 209

After Maple responds with the function and the interval, enter the command

Quadrature(f (x), x = a..b, method = trapezoid, partition = 20, output = value)

1.995885973

The value of the step size h in this instance is the width of the interval b− a divided by the
number specified by partition = 20.

Simpson’s method can be called in a similar manner, except that the step size h is
determined by b − a divided by twice the value of partition. Hence, the Simpson’s rule
approximation using the same nodes as those in the Trapezoidal rule is called with

Quadrature(f (x), x = a..b, method = simpson, partition = 10, output = value)

2.000006785

Any of the Newton-Cotes methods can be called using the option

method = newtoncotes[open, n] or method = newtoncotes[closed, n]
Be careful to correctly specify the number in partition when an even number of divisions
is required, and when an open method is employed.

Round-Off Error Stability

In Example 2 we saw that ensuring an accuracy of 2× 10−5 for approximating
∫ π

0 sin x dx
required 360 subdivisions of [0,π ] for the Composite Trapezoidal rule and only 18 for
Composite Simpson’s rule. In addition to the fact that less computation is needed for the
Simpson’s technique, you might suspect that because of fewer computations this method
would also involve less round-off error. However, an important property shared by all the
composite integration techniques is a stability with respect to round-off error. That is, the
round-off error does not depend on the number of calculations performed.

Numerical integration is expected
to be stable, whereas numerical
differentiation is unstable.

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson’s
rule with n subintervals to a function f on [a, b] and determine the maximum bound for the
round-off error. Assume that f (xi) is approximated by f̃ (xi) and that

f (xi) = f̃ (xi)+ ei, for each i = 0, 1, . . . , n,

where ei denotes the round-off error associated with using f̃ (xi) to approximate f (xi). Then
the accumulated error, e(h), in the Composite Simpson’s rule is

e(h) =
∣∣∣∣∣∣
h

3

⎡
⎣e0 + 2

(n/2)−1∑
j=1

e2 j + 4
n/2∑
j=1

e2 j−1 + en

⎤
⎦
∣∣∣∣∣∣

≤ h

3

⎡
⎣|e0| + 2

(n/2)−1∑
j=1

|e2 j| + 4
n/2∑
j=1

|e2 j−1| + |en|
⎤
⎦ .

If the round-off errors are uniformly bounded by ε, then

e(h) ≤ h

3

[
ε + 2

(n

2
− 1
)
ε + 4

(n

2

)
ε + ε

]
= h

3
3nε = nhε.

But nh = b− a, so

e(h) ≤ (b− a)ε,
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210 C H A P T E R 4 Numerical Differentiation and Integration

a bound independent of h (and n). This means that, even though we may need to divide
an interval into more parts to ensure accuracy, the increased computation that is required
does not increase the round-off error. This result implies that the procedure is stable as h
approaches zero. Recall that this was not true of the numerical differentiation procedures
considered at the beginning of this chapter.

E X E R C I S E S E T 4.4

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 2

1
x ln x dx, n = 4 b.

∫ 2

−2
x3ex dx, n = 4

c.
∫ 2

0

2

x2 + 4
dx, n = 6 d.

∫ π

0
x2 cos x dx, n = 6

e.
∫ 2

0
e2x sin 3x dx, n = 8 f.

∫ 3

1

x

x2 + 4
dx, n = 8

g.
∫ 5

3

1√
x2 − 4

dx, n = 8 h.
∫ 3π/8

0
tan x dx, n = 8

2. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 0.5

−0.5
cos2 x dx, n = 4 b.

∫ 0.5

−0.5
x ln(x + 1) dx, n = 6

c.
∫ 1.75

.75
(sin2 x − 2x sin x + 1) dx, n = 8 d.

∫ e+2

e

1

x ln x
dx, n = 8

3. Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

4. Use the Composite Simpson’s rule to approximate the integrals in Exercise 2.

5. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 1.

6. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 2.

7. Approximate
∫ 2

0 x2 ln(x2 + 1) dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

8. Approximate
∫ 2

0 x2e−x2
dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

9. Suppose that f (0) = 1, f (0.5) = 2.5, f (1) = 2, and f (0.25) = f (0.75) = α. Find α if the
Composite Trapezoidal rule with n = 4 gives the value 1.75 for

∫ 1
0 f (x) dx.

10. The Midpoint rule for approximating
∫ 1
−1 f (x) dx gives the value 12, the Composite Midpoint rule

with n = 2 gives 5, and Composite Simpson’s rule gives 6. Use the fact that f (−1) = f (1) and
f (−0.5) = f (0.5)− 1 to determine f (−1), f (−0.5), f (0), f (0.5), and f (1).

11. Determine the values of n and h required to approximate∫ 2

0
e2x sin 3x dx

to within 10−4. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.4 Composite Numerical Integration 211

12. Repeat Exercise 11 for the integral
∫ π

0 x2 cos x dx.

13. Determine the values of n and h required to approximate∫ 2

0

1

x + 4
dx

to within 10−5 and compute the approximation. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

14. Repeat Exercise 13 for the integral
∫ 2

1 x ln x dx.

15. Let f be defined by

f (x) =

⎧⎪⎨
⎪⎩

x3 + 1, 0 ≤ x ≤ 0.1,

1.001+ 0.03(x − 0.1)+ 0.3(x − 0.1)2 + 2(x − 0.1)3, 0.1 ≤ x ≤ 0.2,

1.009+ 0.15(x − 0.2)+ 0.9(x − 0.2)2 + 2(x − 0.2)3, 0.2 ≤ x ≤ 0.3.

a. Investigate the continuity of the derivatives of f .

b. Use the Composite Trapezoidal rule with n = 6 to approximate
∫ 0.3

0 f (x) dx, and estimate the
error using the error bound.

c. Use the Composite Simpson’s rule with n = 6 to approximate
∫ 0.3

0 f (x) dx. Are the results more
accurate than in part (b)?

16. Show that the error E(f ) for Composite Simpson’s rule can be approximated by

− h4

180
[f ′′′(b)− f ′′′(a)].

[Hint:
∑n/2

j=1 f
(4)(ξj)(2h) is a Riemann Sum for

∫ b
a f

(4)(x) dx.]

17. a. Derive an estimate for E(f ) in the Composite Trapezoidal rule using the method in Exercise 16.

b. Repeat part (a) for the Composite Midpoint rule.

18. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 12.

19. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 14.

20. In multivariable calculus and in statistics courses it is shown that∫ ∞
−∞

1

σ
√

2π
e−(1/2)(x/σ)

2
dx = 1,

for any positive σ . The function

f (x) = 1

σ
√

2π
e−(1/2)(x/σ)

2

is the normal density function with mean μ = 0 and standard deviation σ . The probability that a
randomly chosen value described by this distribution lies in [a, b] is given by

∫ b
a f (x) dx. Approximate

to within 10−5 the probability that a randomly chosen value described by this distribution will lie in
a. [−σ , σ ] b. [−2σ , 2σ ] c. [−3σ , 3σ ]

21. Determine to within 10−6 the length of the graph of the ellipse with equation 4x2 + 9y2 = 36.

22. A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined
by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the
following table.

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84

Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123

How long is the track?
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212 C H A P T E R 4 Numerical Differentiation and Integration

23. A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function
of the velocity v. The relationship between the resistance R, velocity v, and time t is given by the
equation

t =
∫ v(t)

v(t0)

m

R(u)
du.

Suppose that R(v) = −v√v for a particular fluid, where R is in newtons and v is in meters/second. If
m = 10 kg and v(0) = 10 m/s, approximate the time required for the particle to slow to v = 5 m/s.

24. To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Secrist and
R. W. Hornbeck [SH] needed to approximate numerically the “area averaged lining temperature,” T ,
of the brake pad from the equation

T =

∫ r0

re

T(r)rθp dr∫ r0

re

rθp dr
,

where re represents the radius at which the pad-disk contact begins, r0 represents the outside radius
of the pad-disk contact, θp represents the angle subtended by the sector brake pads, and T(r) is the
temperature at each point of the pad, obtained numerically from analyzing the heat equation (see
Section 12.2). Suppose re = 0.308 ft, r0 = 0.478 ft, θp = 0.7051 radians, and the temperatures given
in the following table have been calculated at the various points on the disk. Approximate T .

r (ft) T(r) (◦F) r (ft) T(r) (◦F) r (ft) T(r) (◦F)

0.308 640 0.376 1034 0.444 1204
0.325 794 0.393 1064 0.461 1222
0.342 885 0.410 1114 0.478 1239
0.359 943 0.427 1152

Brake disk

Brake
pad

ro
re

θp

25. Find an approximation to within 10−4 of the value of the integral considered in the application opening
this chapter: ∫ 48

0

√
1+ (cos x)2 dx.

26. The equation ∫ x

0

1√
2π

e−t2/2 dt = 0.45
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can be solved for x by using Newton’s method with

f (x) =
∫ x

0

1√
2π

e−t2/2 dt − 0.45

and

f ′(x) = 1√
2π

e−x2/2.

To evaluate f at the approximation pk , we need a quadrature formula to approximate∫ pk

0

1√
2π

e−t2/2 dt.

a. Find a solution to f (x) = 0 accurate to within 10−5 using Newton’s method with p0 = 0.5 and
the Composite Simpson’s rule.

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson’s rule.

4.5 Romberg Integration

In this section we will illustrate how Richardson extrapolation applied to results from the
Composite Trapezoidal rule can be used to obtain high accuracy approximations with little
computational cost.

In Section 4.4 we found that the Composite Trapezoidal rule has a truncation error of
order O(h2). Specifically, we showed that for h = (b− a)/n and xj = a+ jh we have

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− (b− a)f ′′(μ)

12
h2.

for some number μ in (a, b).
By an alternative method it can be shown (see [RR], pp. 136–140), that if f ∈ C∞[a, b],

the Composite Trapezoidal rule can also be written with an error term in the form

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦+ K1h2 + K2h4 + K3h6 + · · · , (4.33)

where each Ki is a constant that depends only on f (2i−1)(a) and f (2i−1)(b).
Recall from Section 4.2 that Richardson extrapolation can be performed on any

approximation procedure whose truncation error is of the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. In that section we
gave demonstrations to illustrate how effective this techniques is when the approximation
procedure has a truncation error with only even powers of h, that is, when the truncation
error has the form.

m−1∑
j=1

Kjh
2 j + O(h2m).
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