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7. Verify the entries for the values of n = 2 and 3 in Table 4.12 on page 232 by finding the roots of the
respective Legendre polynomials, and use the equations preceding this table to find the coefficients
associated with the values.

8. Show that the formula Q(P) = ∑n
i=1 ciP(xi) cannot have degree of precision greater than 2n − 1,

regardless of the choice of c1, . . . , cn and x1, . . . , xn. [Hint: Construct a polynomial that has a double
root at each of the xi’s.]

9. Apply Maple’s Composite Gaussian Quadrature routine to approximate
∫ 1
−1 x2ex dx in the following

manner.

a. Use Gaussian Quadrature with n = 8 on the single interval [−1, 1].
b. Use Gaussian Quadrature with n = 4 on the intervals [−1, 0] and [0, 1].
c. Use Gaussian Quadrature with n = 2 on the intervals [−1,−0.5], [−0.5, 0], [0, 0.5] and [0.5, 1].
d. Give an explanation for the accuracy of the results.

4.8 Multiple Integrals

The techniques discussed in the previous sections can be modified for use in the approxi-
mation of multiple integrals. Consider the double integral∫∫

R

f (x, y) dA,

where R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }, for some constants a, b, c, and d, is a
rectangular region in the plane. (See Figure 4.18.)

Figure 4.18
z

z � f (x, y)

a

b

c
d

R
x

y

The following illustration shows how the Composite Trapezoidal rule using two subin-
tervals in each coordinate direction would be applied to this integral.

Illustration Writing the double integral as an iterated integral gives∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx.
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236 C H A P T E R 4 Numerical Differentiation and Integration

To simplify notation, let k = (d−c)/2 and h = (b−a)/2. Apply the Composite Trapezoidal
rule to the interior integral to obtain

∫ d

c
f (x, y) dy ≈ k

2

[
f (x, c)+ f (x, d)+ 2f

(
x,

c+ d

2

)]
.

This approximation is of order O
(
(d − c)3

)
. Then apply the Composite Trapezoidal rule

again to approximate the integral of this function of x:

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

∫ b

a

(
d − c

4

)[
f (x, c)+ 2f

(
x,

c+ d

2

)
+ f (d)

]
dx

= b− a

4

(
d − c

4

)[
f (a, c)+ 2f

(
a,

c+ d

2

)
+ f (a, d)

]

+ b− a

4

(
2

(
d − c

4

)[
f

(
a+ b

2
, c

)

+ 2f

(
a+ b

2
,

c+ d

2

)
+
(

a+ b

2
, d

)])

+ b− a

4

(
d − c

4

)[
f (b, c)+ 2f

(
b,

c+ d

2

)
+ f (b, d)

]

= (b− a)(d − c)

16

[
f (a, c)+ f (a, d)+ f (b, c)+ f (b, d)

+ 2

(
f

(
a+ b

2
, c

)
+ f

(
a+ b

2
, d

)
+ f

(
a,

c+ d

2

)

+f
(

b,
c+ d

2

))
+ 4f

(
a+ b

2
,

c+ d

2

)]

This approximation is of order O
(
(b− a)(d − c)

[
(b− a)2 + (d − c)2

])
. Figure 4.19

shows a grid with the number of functional evaluations at each of the nodes used in the
approximation. �

Figure 4.19
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As the illustration shows, the procedure is quite straightforward. But the number of
function evaluations grows with the square of the number required for a single integral. In
a practical situation we would not expect to use a method as elementary as the Composite
Trapezoidal rule. Instead we will employ the Composite Simpson’s rule to illustrate the
general approximation technique, although any other composite formula could be used in
its place.

To apply the Composite Simpson’s rule, we divide the region R by partitioning both
[a, b] and [c, d] into an even number of subintervals. To simplify the notation, we choose
even integers n and m and partition [a, b] and [c, d] with the evenly spaced mesh points
x0, x1, . . . , xn and y0, y1, . . . , ym, respectively. These subdivisions determine step sizes h =
(b− a)/n and k = (d − c)/m. Writing the double integral as the iterated integral

∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx,

we first use the Composite Simpson’s rule to approximate

∫ d

c
f (x, y) dy,

treating x as a constant.
Let yj = c+ jk, for each j = 0, 1, . . . , m. Then

∫ d

c
f (x, y) dy = k

3

⎡
⎣f (x, y0)+ 2

(m/2)−1∑
j=1

f (x, y2 j)+ 4
m/2∑
j=1

f (x, y2 j−1)+ f (x, ym)

⎤
⎦

− (d − c)k4

180

∂4f

∂y4
(x,μ),

for some μ in (c, d). Thus

∫ b

a

∫ d

c
f (x, y) dy dx = k

3

[ ∫ b

a
f (x, y0) dx + 2

(m/2)−1∑
j=1

∫ b

a
f (x, y2 j) dx

+ 4
m/2∑
j=1

∫ b

a
f (x, y2 j−1) dx +

∫ b

a
f (x, ym) dx

]

− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

Composite Simpson’s rule is now employed on the integrals in this equation. Let xi = a+ih,
for each i = 0, 1, . . . , n. Then for each j = 0, 1, . . . , m, we have

∫ b

a
f (x, yj) dx = h

3

[
f (x0, yj)+ 2

(n/2)−1∑
i=1

f (x2i, yj)+ 4
n/2∑
i=1

f (x2i−1, yj)+ f (xn, yj)

]

− (b− a)h4

180

∂4f

∂x4
(ξj, yj),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238 C H A P T E R 4 Numerical Differentiation and Integration

for some ξj in (a, b). The resulting approximation has the form

∫ b

a

∫ d

c
f (x, y) dy dx ≈ hk

9

{[
f (x0, y0)+ 2

(n/2)−1∑
i=1

f (x2i, y0)

+ 4
n/2∑
i=1

f (x2i−1, y0)+ f (xn, y0)

]

+ 2

[ (m/2)−1∑
j=1

f (x0, y2 j)+ 2
(m/2)−1∑

j=1

(n/2)−1∑
i=1

f (x2i, y2 j)

+ 4
(m/2)−1∑

j=1

n/2∑
i=1

f (x2i−1, y2 j)+
(m/2)−1∑

j=1

f (xn, y2 j)

]

+ 4

[ m/2∑
j=1

f (x0, y2 j−1)+ 2
m/2∑
j=1

(n/2)−1∑
i=1

f (x2i, y2 j−1)

+ 4
m/2∑
j=1

n/2∑
i=1

f (x2i−1, y2 j−1)+
m/2∑
j=1

f (xn, y2 j−1)

]

+
[
f (x0, ym)+ 2

(n/2)−1∑
i=1

f (x2i, ym)+ 4
n/2∑
i=1

f (x2i−1, ym)+ f (xn, ym)

]}
.

The error term E is given by

E = −k(b− a)h4

540

[
∂4f

∂x4
(ξ0, y0)+ 2

(m/2)−1∑
j=1

∂4f

∂x4
(ξ2 j, y2 j)+ 4

m/2∑
j=1

∂4f

∂x4
(ξ2 j−1, y2 j−1)

+ ∂
4f

∂x4
(ξm, ym)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

If ∂4f/∂x4 is continuous, the Intermediate Value Theorem 1.11 can be repeatedly
applied to show that the evaluation of the partial derivatives with respect to x can be replaced
by a common value and that

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx,

for some (η,μ) in R. If ∂4f/∂y4 is also continuous, the Weighted Mean Value Theorem for
Integrals 1.13 implies that∫ b

a

∂4f

∂y4
(x,μ) dx = (b− a)

∂4f

∂y4
(η̂, μ̂),

for some (η̂, μ̂) in R. Because m = (d − c)/k, the error term has the form

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)(b− a)

180
k4 ∂

4f

∂y4
(η̂, μ̂)

which simplifies to

E = − (d − c)(b− a)

180

[
h4 ∂

4f

∂x4
(η,μ)+ k4 ∂

4f

∂y4
(η̂, μ̂)

]
,

for some (η,μ) and (η̂, μ̂) in R.
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Example 1 Use Composite Simpson’s rule with n = 4 and m = 2 to approximate∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx,

Solution The step sizes for this application are h = (2.0 − 1.4)/4 = 0.15 and k =
(1.5 − 1.0)/2 = 0.25. The region of integration R is shown in Figure 4.20, together with
the nodes (xi, yj), where i = 0, 1, 2, 3, 4 and j = 0, 1, 2. It also shows the coefficients wi,j of
f (xi, yi) = ln(xi + 2yi) in the sum that gives the Composite Simpson’s rule approximation
to the integral.

Figure 4.20
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The approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ (0.15)(0.25)

9

4∑
i=0

2∑
j=0

wi,j ln(xi + 2yj)

= 0.4295524387.

We have

∂4f

∂x4
(x, y) = −6

(x + 2y)4
and

∂4f

∂y4
(x, y) = −96

(x + 2y)4
,

and the maximum values of the absolute values of these partial derivatives occur on R when
x = 1.4 and y = 1.0. So the error is bounded by

|E| ≤ (0.5)(0.6)

180

[
(0.15)4 max

(x,y)inR

6

(x + 2y)4
+ (0.25)4 max

(x,y)inR

96

(x + 2y)4

]
≤ 4.72× 10−6.

The actual value of the integral to ten decimal places is∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.4295545265,

so the approximation is accurate to within 2.1× 10−6.

The same techniques can be applied for the approximation of triple integrals as well as
higher integrals for functions of more than three variables. The number of functional evalu-
ations required for the approximation is the product of the number of functional evaluations
required when the method is applied to each variable.
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Gaussian Quadrature for Double Integral Approximation

To reduce the number of functional evaluations, more efficient methods such as Gaussian
quadrature, Romberg integration, or Adaptive quadrature can be incorporated in place of the
Newton-Cotes formulas. The following example illustrates the use of Gaussian quadrature
for the integral considered in Example 1.

Example 2 Use Gaussian quadrature with n = 3 in both dimensions to approximate the integral

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx.

Solution Before employing Gaussian quadrature to approximate this integral, we need to
transform the region of integration

R = { (x, y) | 1.4 ≤ x ≤ 2.0, 1.0 ≤ y ≤ 1.5 }

into

R̂ = { (u, v) | −1 ≤ u ≤ 1,−1 ≤ v ≤ 1 }.

The linear transformations that accomplish this are

u = 1

2.0− 1.4
(2x − 1.4− 2.0) and v = 1

1.5− 1.0
(2y− 1.0− 1.5),

or, equivalently, x = 0.3u+ 1.7 and y = 0.25v+ 1.25. Employing this change of variables
gives an integral on which Gaussian quadrature can be applied:

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.075

∫ 1

−1

∫ 1

−1
ln(0.3u+ 0.5v + 4.2) dv du.

The Gaussian quadrature formula for n = 3 in both u and v requires that we use the nodes

u1 = v1 = r3,2 = 0, u0 = v0 = r3,1 = −0.7745966692,

and

u2 = v2 = r3,3 = 0.7745966692.

The associated weights are c3,2 = 0.8 and c3,1 = c3,3 = 0.5. (These are given in Table 4.12
on page 232.) The resulting approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ 0.075

3∑
i=1

3∑
j=1

c3,ic3,j ln(0.3r3,i + 0.5r3,j + 4.2)

= 0.4295545313.

Although this result requires only 9 functional evaluations compared to 15 for the Composite
Simpson’s rule considered in Example 1, it is accurate to within 4.8 × 10−9, compared to
2.1× 10−6 accuracy in Example 1.
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Non-Rectangular Regions

The use of approximation methods for double integrals is not limited to integrals with
rectangular regions of integration. The techniques previously discussed can be modified to
approximate double integrals of the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx (4.42)

or

∫ d

c

∫ b(y)

a(y)
f (x, y) dx dy. (4.43)

In fact, integrals on regions not of this type can also be approximated by performing appro-
priate partitions of the region. (See Exercise 10.)

To describe the technique involved with approximating an integral in the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

we will use the basic Simpson’s rule to integrate with respect to both variables. The
step size for the variable x is h = (b − a)/2, but the step size for y varies with x (see
Figure 4.21) and is written

k(x) = d(x)− c(x)

2
.

Figure 4.21
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This gives∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx ≈

∫ b

a

k(x)

3
[f (x, c(x))+ 4f (x, c(x)+ k(x))+ f (x, d(x))] dx

≈ h

3

{
k(a)

3
[f (a, c(a))+ 4f (a, c(a)+ k(a))+ f (a, d(a))]

+ 4k(a+ h)

3
[f (a+ h, c(a+ h))+ 4f (a+ h, c(a+ h)

+ k(a+ h))+ f (a+ h, d(a+ h))]

+ k(b)

3
[f (b, c(b))+ 4f (b, c(b)+ k(b))+ f (b, d(b))]

}
.

Algorithm 4.4 applies the Composite Simpson’s rule to an integral in the form (4.42).
Integrals in the form (4.43) can, of course, be handled similarly.

ALGORITHM

4.4
Simpson’s Double Integral

To approximate the integral

I =
∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b: even positive integers m, n.

OUTPUT approximation J to I .

Step 1 Set h = (b− a)/n;
J1 = 0; (End terms.)
J2 = 0; (Even terms.)
J3 = 0. (Odd terms.)

Step 2 For i = 0, 1, . . . , n do Steps 3–8.

Step 3 Set x = a+ ih; (Composite Simpson’s method for x.)
HX = (d(x)− c(x))/m;
K1 = f (x, c(x))+ f (x, d(x)); (End terms.)
K2 = 0; (Even terms.)
K3 = 0. (Odd terms.)

Step 4 For j = 1, 2, . . . , m− 1 do Step 5 and 6.

Step 5 Set y = c(x)+ jHX;
Q = f (x, y).

Step 6 If j is even then set K2 = K2 + Q
else set K3 = K3 + Q.

Step 7 Set L = (K1 + 2K2 + 4K3)HX/3.(
L ≈

∫ d(xi)

c(xi)

f (xi, y) dy by the Composite Simpson’s method.

)

Step 8 If i = 0 or i = n then set J1 = J1 + L
else if i is even then set J2 = J2 + L
else set J3 = J3 + L.
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Step 9 Set J = h(J1 + 2J2 + 4J3)/3.

Step 10 OUTPUT (J);
STOP.

To apply Gaussian quadrature to the double integral∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

first requires transforming, for each x in [a, b], the variable y in the interval [c(x), d(x)] into
the variable t in the interval [−1, 1]. This linear transformation gives

f (x, y) = f
(

x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
and dy = d(x)− c(x)

2
dt.

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral∫ d(x)

c(x)
f (x, y) dy =

∫ 1

−1
f

(
x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
dt

The reduced calculation makes it
generally worthwhile to apply
Gaussian quadrature rather than a
Simpson’s technique when
approximating double integrals.

to produce∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx≈

∫ b

a

d(x)−c(x)

2

n∑
j=1

cn,jf

(
x,
(d(x)− c(x))rn,j + d(x)+ c(x)

2

)
dx,

where, as before, the roots rn,j and coefficients cn,j come from Table 4.12 on page 232.
Now the interval [a, b] is transformed to [−1, 1], and Gaussian quadrature is applied
to approximate the integral on the right side of this equation. The details are given in
Algorithm 4.5.

ALGORITHM

4.5
Gaussian Double Integral

To approximate the integral ∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b; positive integers m, n.
(The roots ri,j and coefficients ci,j need to be available for i = max{m, n}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–5.

Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.
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Step 4 For j = 1, 2, . . . , n do
set y = k1rn,j + k2;

Q = f (x, y);
JX = JX + cn,jQ.

Step 5 Set J = J + cm,ik1JX.

Step 6 Set J = h1J .

Step 7 OUTPUT (J);
STOP.

Illustration The volume of the solid in Figure 4.22 is approximated by applying Simpson’s Double
Integral Algorithm with n = m = 10 to

∫ 0.5

0.1

∫ x2

x3
ey/x dy dx.

This requires 121 evaluations of the function f (x, y) = ey/x and produces the value
0.0333054, which approximates the volume of the solid shown in Figure 4.22 to nearly
seven decimal places. Applying the Gaussian Quadrature Algorithm with n = m = 5 re-
quires only 25 function evaluations and gives the approximation 0.03330556611, which is
accurate to 11 decimal places. �

Figure 4.22
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y
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Triple Integral Approximation

Triple integrals of the form

The reduced calculation makes it
almost always worthwhile to
apply Gaussian quadrature rather
than a Simpson’s technique when
approximating triple or higher
integrals.

∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx

(see Figure 4.23) are approximated in a similar manner. Because of the number of calcu-
lations involved, Gaussian quadrature is the method of choice. Algorithm 4.6 implements
this procedure.

Figure 4.23

y

z

y � c(x)
y � d(x)

a

b R

x

x

z � β(x, y)

z � α(x, y)

ALGORITHM

4.6
GaussianTriple Integral

To approximate the integral∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx :

INPUT endpoints a, b; positive integers m, n, p.
(The roots ri,j and coefficients ci,j need to be available for i = max{n, m, p}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–8.
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Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.

Step 4 For j = 1, 2, . . . , n do Steps 5–7.

Step 5 Set JY = 0;
y = k1rn, j + k2;
β1 = β(x, y);
α1 = α(x, y);
l1 = (β1 − α1)/2;
l2 = (β1 + α1)/2.

Step 6 For k = 1, 2, . . . , p do
set z = l1rp, k + l2;

Q = f (x, y, z);
JY = JY+ cp,kQ.

Step 7 Set JX = JX+ cn, jl1JY.

Step 8 Set J = J + cm,ik1JX.

Step 9 Set J = h1J .

Step 10 OUTPUT (J);
STOP.

The following example requires the evaluation of four triple integrals.

Illustration The center of a mass of a solid region D with density function σ occurs at

(x, y, z) =
(

Myz

M
,

Mxz

M
,

Mxy

M

)
,

where

Myz =
∫∫∫

D
xσ(x, y, z) dV , Mxz =

∫∫∫
D

yσ(x, y, z) dV

and

Mxy =
∫∫∫

D
zσ(x, y, z) dV

are the moments about the coordinate planes and the mass of D is

M =
∫∫∫

D
σ(x, y, z) dV .

The solid shown in Figure 4.24 is bounded by the upper nappe of the cone z2 = x2+ y2 and
the plane z = 2. Suppose that this solid has density function given by

σ(x, y, z) =
√

x2 + y2.
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Figure 4.24

x

y

z

1
2 1

2

1

2

Applying the Gaussian Triple Integral Algorithm 4.6 with n = m = p = 5 requires 125
function evaluations per integral and gives the following approximations:

M =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx

= 4
∫ 2

0

∫ √4−x2

0

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx ≈ 8.37504476,

Myz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

x
√

x2 + y2 dz dy dx ≈ −5.55111512× 10−17,

Mxz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

y
√

x2 + y2 dz dy dx ≈ −8.01513675× 10−17,

Mxy =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

z
√

x2 + y2 dz dy dx ≈ 13.40038156.

This implies that the approximate location of the center of mass is

(x, y, z) = (0, 0, 1.60003701).

These integrals are quite easy to evaluate directly. If you do this, you will find that the exact
center of mass occurs at (0, 0, 1.6). �

Multiple integrals can be evaluated in Maple using the MultInt command in the Multi-
variateCalculus subpackage of the Student package. For example, to evaluate the multiple
integral

∫ 4

2

∫ x+6

x−1

∫ 4+y2

−2
x2 + y2 + z dz dy dx
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we first load the package and define the function with

with(Student[MultivariateCalculus]): f := (x, y, z)→ x2 + y2 + z

Then issue the command

MultiInt(f (x, y, z), z = −2..4+ y2, y = x − 1.. x + 6, x = 2..4)

which produces the result

1.995885970

E X E R C I S E S E T 4.8

1. Use Algorithm 4.4 with n = m = 4 to approximate the following double integrals, and compare the
results to the exact answers.

a.
∫ 2.5

2.1

∫ 1.4

1.2
xy2 dy dx b.

∫ 0.5

0

∫ 0.5

0
ey−x dy dx

c.
∫ 2.2

2

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1.5

1

∫ x

0
(x2 +√y) dy dx

2. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 1 to within 10−6 of the actual value.

3. Use Algorithm 4.4 with (i) n = 4, m = 8, (ii) n = 8, m = 4, and (iii) n = m = 6 to approximate the
following double integrals, and compare the results to the exact answers.

a.
∫ π/4

0

∫ cos x

sin x
(2y sin x + cos2 x) dy dx b.

∫ e

1

∫ x

1
ln xy dy dx

c.
∫ 1

0

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1

0

∫ 2x

x
(y2 + x3) dy dx

e.
∫ π

0

∫ x

0
cos x dy dx f.

∫ π

0

∫ x

0
cos y dy dx

g.
∫ π/4

0

∫ sin x

0

1√
1− y2

dy dx h.
∫ 3π/2

−π

∫ 2π

0
(y sin x + x cos y) dy dx

4. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 3 to within 10−6 of the actual value.

5. Use Algorithm 4.5 with n = m = 2 to approximate the integrals in Exercise 1, and compare the
results to those obtained in Exercise 1.

6. Find the smallest values of n = m so that Algorithm 4.5 can be used to approximate the integrals in
Exercise 1 to within 10−6. Do not continue beyond n = m = 5. Compare the number of functional
evaluations required to the number required in Exercise 2.

7. Use Algorithm 4.5 with (i) n = m = 3, (ii) n = 3, m = 4, (iii) n = 4, m = 3, and (iv) n = m = 4 to
approximate the integrals in Exercise 3.

8. Use Algorithm 4.5 with n = m = 5 to approximate the integrals in Exercise 3. Compare the number
of functional evaluations required to the number required in Exercise 4.

9. Use Algorithm 4.4 with n = m = 14 and Algorithm 4.5 with n = m = 4 to approximate∫∫
R

e−(x+y) dA,

for the region R in the plane bounded by the curves y = x2 and y = √x.
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10. Use Algorithm 4.4 to approximate ∫∫
R

√
xy+ y2 dA,

where R is the region in the plane bounded by the lines x + y = 6, 3y− x = 2, and 3x − y = 2. First
partition R into two regions R1 and R2 on which Algorithm 4.4 can be applied. Use n = m = 6 on
both R1 and R2.

11. A plane lamina is a thin sheet of continuously distributed mass. If σ is a function describing the
density of a lamina having the shape of a region R in the xy-plane, then the center of the mass of the
lamina (x, y) is

x̄ =
∫∫
R

xσ(x, y) dA∫∫
R

σ(x, y) dA
, ȳ =

∫∫
R

yσ(x, y) dA∫∫
R

σ(x, y) dA
.

Use Algorithm 4.4 with n = m = 14 to find the center of mass of the lamina described by R =
{(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √1− x2 } with the density function σ(x, y) = e−(x2+y2). Compare the
approximation to the exact result.

12. Repeat Exercise 11 using Algorithm 4.5 with n = m = 5.

13. The area of the surface described by z = f (x, y) for (x, y) in R is given by∫∫
R

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Use Algorithm 4.4 with n = m = 8 to find an approximation to the area of the surface on the
hemisphere x2 + y2 + z2 = 9, z ≥ 0 that lies above the region in the plane described by R = { (x, y) |
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.

14. Repeat Exercise 13 using Algorithm 4.5 with n = m = 4.

15. Use Algorithm 4.6 with n = m = p = 2 to approximate the following triple integrals, and compare
the results to the exact answers.

a.
∫ 1

0

∫ 2

1

∫ 0.5

0
ex+y+z dz dy dx b.

∫ 1

0

∫ 1

x

∫ y

0
y2z dz dy dx

c.
∫ 1

0

∫ x

x2

∫ x+y

x−y
y dz dy dx d.

∫ 1

0

∫ x

x2

∫ x+y

x−y
z dz dy dx

e.
∫ π

0

∫ x

0

∫ xy

0

1

y
sin

z

y
dz dy dx f.

∫ 1

0

∫ 1

0

∫ xy

−xy
ex2+y2

dz dy dx

16. Repeat Exercise 15 using n = m = p = 3.

17. Repeat Exercise 15 using n = m = p = 4 and n = m = p = 5.

18. Use Algorithm 4.6 with n = m = p = 4 to approximate∫∫∫
S

xy sin(yz) dV ,

where S is the solid bounded by the coordinate planes and the planes x = π , y = π/2, z = π/3.
Compare this approximation to the exact result.

19. Use Algorithm 4.6 with n = m = p = 5 to approximate∫∫∫
S

√
xyz dV ,

where S is the region in the first octant bounded by the cylinder x2+y2 = 4, the sphere x2+y2+z2 = 4,
and the plane x + y+ z = 8. How many functional evaluations are required for the approximation?
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4.9 Improper Integrals

Improper integrals result when the notion of integration is extended either to an interval
of integration on which the function is unbounded or to an interval with one or more
infinite endpoints. In either circumstance, the normal rules of integral approximation must
be modified.

Left Endpoint Singularity

We will first consider the situation when the integrand is unbounded at the left endpoint
of the interval of integration, as shown in Figure 4.25. In this case we say that f has a
singularity at the endpoint a. We will then show how other improper integrals can be
reduced to problems of this form.

Figure 4.25

x

y � f (x)

y

a b

It is shown in calculus that the improper integral with a singularity at the left endpoint,∫ b

a

dx

(x − a)p
,

converges if and only if 0 < p < 1, and in this case, we define

∫ b

a

1

(x − a)p
dx = lim

M→a+
(x − a)1−p

1− p

∣∣∣∣
x=b

x=M

= (b− a)1−p

1− p
.

Example 1 Show that the improper integral
∫ 1

0

1√
x

dx converges but
∫ 1

0

1

x2
dx diverges.

Solution For the first integral we have∫ 1

0

1√
x

dx = lim
M→0+

∫ 1

M
x−1/2 dx = lim

M→0+
2x1/2

∣∣x=1

x=M = 2− 0 = 2,

but the second integral∫ 1

0

1

x2
dx = lim

M→0+

∫ 1

M
x−2 dx = lim

M→0+
−x−1

∣∣x=1

x=M

is unbounded.
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If f is a function that can be written in the form

f (x) = g(x)

(x − a)p
,

where 0 < p < 1 and g is continuous on [a, b], then the improper integral∫ b

a
f (x) dx

also exists. We will approximate this integral using the Composite Simpson’s rule, provided
that g ∈ C5[a, b]. In that case, we can construct the fourth Taylor polynomial, P4(x), for g
about a,

P4(x) = g(a)+ g′(a)(x − a)+ g′′(a)
2! (x − a)2 + g′′′(a)

3! (x − a)3 + g(4)(a)

4! (x − a)4,

and write ∫ b

a
f (x) dx =

∫ b

a

g(x)− P4(x)

(x − a)p
dx +

∫ b

a

P4(x)

(x − a)p
dx. (4.44)

Because P(x) is a polynomial, we can exactly determine the value of

∫ b

a

P4(x)

(x − a)p
dx =

4∑
k=0

∫ b

a

g(k)(a)

k! (x−a)k−p dx =
4∑

k=0

g(k)(a)

k!(k + 1− p)
(b−a)k+1−p. (4.45)

This is generally the dominant portion of the approximation, especially when the Taylor
polynomial P4(x) agrees closely with g(x) throughout the interval [a, b].

To approximate the integral of f , we must add to this value the approximation of∫ b

a

g(x)− P4(x)

(x − a)p
dx.

To determine this, we first define

G(x) =
{

g(x)−P4(x)
(x−a)p , if a < x ≤ b,

0, if x = a.

This gives us a continuous function on [a, b]. In fact, 0 < p < 1 and P(k)4 (a) agrees with
g(k)(a) for each k = 0, 1, 2, 3, 4, so we have G ∈ C4[a, b]. This implies that the Composite
Simpson’s rule can be applied to approximate the integral of G on [a, b]. Adding this
approximation to the value in Eq. (4.45) gives an approximation to the improper integral of
f on [a, b], within the accuracy of the Composite Simpson’s rule approximation.

Example 2 Use Composite Simpson’s rule with h = 0.25 to approximate the value of the improper
integral ∫ 1

0

ex

√
x

dx.

Solution The fourth Taylor polynomial for ex about x = 0 is

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
,
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so the dominant portion of the approximation to
∫ 1

0

ex

√
x

dx is

∫ 1

0

P4(x)√
x

dx =
∫ 1

0

(
x−1/2 + x1/2 + 1

2
x3/2 + 1

6
x5/2 + 1

24
x7/2

)
dx

= lim
M→0+

[
2x1/2 + 2

3
x3/2 + 1

5
x5/2 + 1

21
x7/2 + 1

108
x9/2

]1

M

= 2+ 2

3
+ 1

5
+ 1

21
+ 1

108
≈ 2.9235450.

For the second portion of the approximation to
∫ 1

0

ex

√
x

dx we need to approximate∫ 1

0
G(x) dx, where

G(x) =
⎧⎨
⎩

1√
x
(ex − P4(x)), if 0 < x ≤ 1,

0, if x = 0.

Table 4.13 lists the values needed for the Composite Simpson’s rule for this approximation.Table 4.13

x G(x)

0.00 0
0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Using these data and the Composite Simpson’s rule gives

∫ 1

0
G(x) dx ≈ 0.25

3
[0+ 4(0.0000170)+ 2(0.0004013)+ 4(0.0026026)+ 0.0099485]

= 0.0017691.

Hence ∫ 1

0

ex

√
x

dx ≈ 2.9235450+ 0.0017691 = 2.9253141.

This result is accurate to within the accuracy of the Composite Simpson’s rule approximation
for the function G. Because |G(4)(x)| < 1 on [0, 1], the error is bounded by

1− 0

180
(0.25)4 = 0.0000217.

Right Endpoint Singularity

To approximate the improper integral with a singularity at the right endpoint, we could
develop a similar technique but expand in terms of the right endpoint b instead of the left
endpoint a. Alternatively, we can make the substitution

z = −x, dz = − dx

to change the improper integral into one of the form

∫ b

a
f (x) dx =

∫ −a

−b
f (−z) dz, (4.46)

which has its singularity at the left endpoint. Then we can apply the left endpoint singularity
technique we have already developed. (See Figure 4.26.)
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Figure 4.26

x z

y yFor  z � �x

y � f (�z)y � f (x)

a b �a�b

An improper integral with a singularity at c, where a < c < b, is treated as the sum of
improper integrals with endpoint singularities since

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Infinite Singularity

The other type of improper integral involves infinite limits of integration. The basic integral
of this type has the form ∫ ∞

a

1

xp
dx,

for p > 1. This is converted to an integral with left endpoint singularity at 0 by making the
integration substitution

t = x−1, dt = −x−2 dx, so dx = −x2 dt = −t−2 dt.

Then ∫ ∞
a

1

xp
dx =

∫ 0

1/a
− tp

t2
dt =

∫ 1/a

0

1

t2−p
dt.

In a similar manner, the variable change t = x−1 converts the improper integral∫∞
a f (x) dx into one that has a left endpoint singularity at zero:

∫ ∞
a
f (x) dx =

∫ 1/a

0
t−2f

(
1

t

)
dt. (4.47)

It can now be approximated using a quadrature formula of the type described earlier.

Example 3 Approximate the value of the improper integral

I =
∫ ∞

1
x−3/2 sin

1

x
dx.
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Solution We first make the variable change t = x−1, which converts the infinite singularity
into one with a left endpoint singularity. Then

dt = −x−2 dx, so dx = −x2 dt = − 1

t2
dt,

and

I =
∫ x=∞

x=1
x−3/2 sin

1

x
dx =

∫ t=0

t=1

(
1

t

)−3/2

sin t

(
− 1

t2
dt

)
=
∫ 1

0
t−1/2 sin t dt.

The fourth Taylor polynomial, P4(t), for sin t about 0 is

P4(t) = t − 1

6
t3,

so

G(t) =

⎧⎪⎨
⎪⎩

sin t − t + 1
6 t3

t1/2
, if 0 < t ≤ 1

0, if t = 0

is in C4[0, 1], and we have

I =
∫ 1

0
t−1/2

(
t − 1

6
t3

)
dt +

∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

=
[

2

3
t3/2 − 1

21
t7/2

]1

0

+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

= 0.61904761+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt.

The result from the Composite Simpson’s rule with n = 16 for the remaining integral is
0.0014890097. This gives a final approximation of

I = 0.0014890097+ 0.61904761 = 0.62053661,

which is accurate to within 4.0× 10−8.

E X E R C I S E S E T 4.9

1. Use Simpson’s Composite rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0
x−1/4 sin x dx, n = 4 b.

∫ 1

0

e2x

5
√

x2
dx, n = 6

c.
∫ 2

1

ln x

(x − 1)1/5
dx, n = 8 d.

∫ 1

0

cos 2x

x1/3
dx, n = 6
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2. Use the Composite Simpson’s rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0

e−x

√
1− x

dx, n = 6 b.
∫ 2

0

xex

3
√
(x − 1)2

dx, n = 8

3. Use the transformation t = x−1 and then the Composite Simpson’s rule and the given values of n to
approximate the following improper integrals.

a.
∫ ∞

1

1

x2 + 9
dx, n = 4 b.

∫ ∞
1

1

1+ x4
dx, n = 4

c.
∫ ∞

1

cos x

x3
dx, n = 6 d.

∫ ∞
1

x−4 sin x dx, n = 6

4. The improper integral
∫∞

0 f (x) dx cannot be converted into an integral with finite limits using the
substitution t = 1/x because the limit at zero becomes infinite. The problem is resolved by first
writing

∫∞
0 f (x) dx = ∫ 1

0 f (x) dx+ ∫∞1 f (x) dx. Apply this technique to approximate the following
improper integrals to within 10−6.

a.
∫ ∞

0

1

1+ x4
dx b.

∫ ∞
0

1

(1+ x2)3
dx

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If all
resistance except gravity is neglected, the escape velocity v is given by

v2 = 2gR
∫ ∞

1
z−2 dz, where z = x

R
,

R = 3960 miles is the radius of the earth, and g = 0.00609 mi/s2 is the force of gravity at the earth’s
surface. Approximate the escape velocity v.

6. The Laguerre polynomials {L0(x), L1(x) . . .} form an orthogonal set on [0,∞) and satisfy∫∞
0 e−xLi(x)Lj(x) dx = 0, for i �= j. (See Section 8.2.) The polynomial Ln(x) has n distinct

zeros x1, x2, . . . , xn in [0,∞). Let

cn,i =
∫ ∞

0
e−x

n∏
j=1
j �=i

x − xj

xi − xj
dx.

Show that the quadrature formula

∫ ∞
0
f (x)e−x dx =

n∑
i=1

cn,if (xi)

has degree of precision 2n− 1. (Hint: Follow the steps in the proof of Theorem 4.7.)

7. The Laguerre polynomials L0(x) = 1, L1(x) = 1 − x, L2(x) = x2 − 4x + 2, and L3(x) = −x3 +
9x2 − 18x + 6 are derived in Exercise 11 of Section 8.2. As shown in Exercise 6, these polynomials
are useful in approximating integrals of the form∫ ∞

0
e−xf (x) dx = 0.

a. Derive the quadrature formula using n = 2 and the zeros of L2(x).

b. Derive the quadrature formula using n = 3 and the zeros of L3(x).

8. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
0

√
xe−x dx.

9. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
−∞

1

1+ x2
dx.
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