
C H A P T E R

4 Numerical Differentiation and Integration

Introduction
A sheet of corrugated roofing is constructed by pressing a flat sheet of aluminum into one
whose cross section has the form of a sine wave.

A corrugated sheet 4 ft long is needed, the height of each wave is 1 in. from the center
line, and each wave has a period of approximately 2π in. The problem of finding the length
of the initial flat sheet is one of determining the length of the curve given by f (x) = sin x
from x = 0 in. to x = 48 in. From calculus we know that this length is

L =
∫ 48

0

√
1+ (f ′(x))2 dx =

∫ 48

0

√
1+ (cos x)2 dx,

so the problem reduces to evaluating this integral. Although the sine function is one of
the most common mathematical functions, the calculation of its length involves an elliptic
integral of the second kind, which cannot be evaluated explicitly. Methods are developed in
this chapter to approximate the solution to problems of this type. This particular problem
is considered in Exercise 25 of Section 4.4 and Exercise 12 of Section 4.5.

We mentioned in the introduction to Chapter 3 that one reason for using alge-
braic polynomials to approximate an arbitrary set of data is that, given any continuous
function defined on a closed interval, there exists a polynomial that is arbitrarily close to
the function at every point in the interval. Also, the derivatives and integrals of polyno-
mials are easily obtained and evaluated. It should not be surprising, then, that many
procedures for approximating derivatives and integrals use the polynomials that
approximate the function.
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174 C H A P T E R 4 Numerical Differentiation and Integration

4.1 Numerical Differentiation

The derivative of the function f at x0 is

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

This formula gives an obvious way to generate an approximation to f ′(x0); simply compute

f (x0 + h)− f (x0)

h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis round-off error. But it is certainly a place to start.

To approximate f ′(x0), suppose first that x0 ∈ (a, b), where f ∈ C2[a, b], and that
x1 = x0+h for some h �= 0 that is sufficiently small to ensure that x1 ∈ [a, b]. We construct
the first Lagrange polynomial P0,1(x) for f determined by x0 and x1, with its error term:

f (x) = P0,1(x)+ (x − x0)(x − x1)

2! f ′′(ξ(x))

= f (x0)(x − x0 − h)

−h
+ f (x0 + h)(x − x0)

h
+ (x − x0)(x − x0 − h)

2
f ′′(ξ(x)),

for some ξ(x) between x0 and x1. Differentiating gives

f ′(x) = f (x0 + h)− f (x0)

h
+ Dx

[
(x − x0)(x − x0 − h)

2
f ′′(ξ(x))

]

= f (x0 + h)− f (x0)

h
+ 2(x − x0)− h

2
f ′′(ξ(x))

+ (x − x0)(x − x0 − h)

2
Dx(f

′′(ξ(x))).

Deleting the terms involving ξ(x) gives

f ′(x) ≈ f (x0 + h)− f (x0)

h
.

One difficulty with this formula is that we have no information about Dxf
′′(ξ(x)), so the

truncation error cannot be estimated. When x is x0, however, the coefficient of Dxf
′′(ξ(x))

is 0, and the formula simplifies to

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ). (4.1)

Difference equations were used
and popularized by Isaac Newton
in the last quarter of the 17th
century, but many of these
techniques had previously been
developed by Thomas Harriot
(1561–1621) and Henry Briggs
(1561–1630). Harriot made
significant advances in navigation
techniques, and Briggs was the
person most responsible for the
acceptance of logarithms as an
aid to computation.

For small values of h, the difference quotient [f (x0 + h) − f (x0)]/h can be used to
approximate f ′(x0) with an error bounded by M|h|/2, where M is a bound on |f ′′(x)| for x
between x0 and x0+ h. This formula is known as the forward-difference formula if h > 0
(see Figure 4.1) and the backward-difference formula if h < 0.

Example 1 Use the forward-difference formula to approximate the derivative of f (x) = ln x at x0 = 1.8
using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

f (1.8+ h)− f (1.8)

h
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4.1 Numerical Differentiation 175

Figure 4.1
y

xx0

Slope  f �(x0)

Slope h 
f (x0 � h) � f (x0)

x0 � h

with h = 0.1 gives

ln 1.9− ln 1.8

0.1
= 0.64185389− 0.58778667

0.1
= 0.5406722.

Because f ′′(x) = −1/x2 and 1.8 < ξ < 1.9, a bound for this approximation error is

|hf ′′(ξ)|
2

= |h|
2ξ 2

<
0.1

2(1.8)2
= 0.0154321.

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar
manner and the results are shown in Table 4.1.

Table 4.1
h f (1.8+ h)

f (1.8+ h)− f (1.8)

h

|h|
2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f ′(x) = 1/x, the exact value of f ′(1.8) is 0.555, and in this case the error bounds are
quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that {x0, x1, . . . , xn} are
(n + 1) distinct numbers in some interval I and that f ∈ Cn+1(I). From Theorem 3.3 on
page 112,

f (x) =
n∑

k=0

f (xk)Lk(x)+ (x − x0) · · · (x − xn)

(n+ 1)! f (n+1)(ξ(x)),
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176 C H A P T E R 4 Numerical Differentiation and Integration

for some ξ(x) in I , where Lk(x) denotes the kth Lagrange coefficient polynomial for f at
x0, x1, . . . , xn. Differentiating this expression gives

f ′(x) =
n∑

k=0

f (xk)L
′
k(x)+ Dx

[
(x − x0) · · · (x − xn)

(n+ 1!)
]
f (n+1)(ξ(x))

+ (x − x0) · · · (x − xn)

(n+ 1)! Dx[f (n+1)(ξ(x))].

We again have a problem estimating the truncation error unless x is one of the numbers
xj. In this case, the term multiplying Dx[f (n+1)(ξ(x))] is 0, and the formula becomes

f ′(xj) =
n∑

k=0

f (xk)L
′
k(xj)+ f

(n+1)(ξ(xj))

(n+ 1)!
n∏

k=0
k �=j

(xj − xk), (4.2)

which is called an (n + 1)-point formula to approximate f ′(xj).
In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al-

though the number of functional evaluations and growth of round-off error discourages this
somewhat. The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.
Because

L0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, we have L′0(x) =

2x − x1 − x2

(x0 − x1)(x0 − x2)
.

Similarly,

L′1(x) =
2x − x0 − x2

(x1 − x0)(x1 − x2)
and L′2(x) =

2x − x0 − x1

(x2 − x0)(x2 − x1)
.

Hence, from Eq. (4.2),

f ′(xj) = f (x0)

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
+ f (x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f (x2)

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+ 1

6
f (3)(ξj)

2∏
k=0
k �=j

(xj − xk), (4.3)

for each j = 0, 1, 2, where the notation ξj indicates that this point depends on xj.

Three-Point Formulas

The formulas from Eq. (4.3) become especially useful if the nodes are equally spaced, that
is, when

x1 = x0 + h and x2 = x0 + 2h, for some h �= 0.

We will assume equally-spaced nodes throughout the remainder of this section.
Using Eq. (4.3) with xj = x0, x1 = x0 + h, and x2 = x0 + 2h gives

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x1)− 1

2
f (x2)

]
+ h2

3
f (3)(ξ0).

Doing the same for xj = x1 gives

f ′(x1) = 1

h

[
−1

2
f (x0)+ 1

2
f (x2)

]
− h2

6
f (3)(ξ1),
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4.1 Numerical Differentiation 177

and for xj = x2,

f ′(x2) = 1

h

[
1

2
f (x0)− 2f (x1)+ 3

2
f (x2)

]
+ h2

3
f (3)(ξ2).

Since x1 = x0 + h and x2 = x0 + 2h, these formulas can also be expressed as

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x0 + h)− 1

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ0),

f ′(x0 + h) = 1

h

[
−1

2
f (x0)+ 1

2
f (x0 + 2h)

]
− h2

6
f (3)(ξ1),

and

f ′(x0 + 2h) = 1

h

[
1

2
f (x0)− 2f (x0 + h)+ 3

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ2).

As a matter of convenience, the variable substitution x0 for x0+ h is used in the middle
equation to change this formula to an approximation for f ′(x0). A similar change, x0 for
x0 + 2h, is used in the last equation. This gives three formulas for approximating f ′(x0):

f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0),

f ′(x0) = 1

2h
[−f (x0 − h)+ f (x0 + h)] − h2

6
f (3)(ξ1),

and

f ′(x0) = 1

2h
[f (x0 − 2h)− 4f (x0 − h)+ 3f (x0)] + h2

3
f (3)(ξ2).

Finally, note that the last of these equations can be obtained from the first by simply replacing
h with −h, so there are actually only two formulas:

Three-Point Endpoint Formula

• f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0), (4.4)

where ξ0 lies between x0 and x0 + 2h.

Three-Point Midpoint Formula

• f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1), (4.5)

where ξ1 lies between x0 − h and x0 + h.
Although the errors in both Eq. (4.4) and Eq. (4.5) are O(h2), the error in Eq. (4.5) is

approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of
x0 and Eq. (4.4) uses data on only one side. Note also that f needs to be evaluated at only two
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 on page 178
gives an illustration of the approximation produced from Eq. (4.5). The approximation in
Eq. (4.4) is useful near the ends of an interval, because information about f outside the
interval may not be available.
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178 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.2
y

x

Slope 
2h [ f (x0 � h) � f (x0 � h)]
1

Slope  f �(x0)

x0 � h x0 � hx0

Five-Point Formulas

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even though
the third point f (x0) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is O(h4). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula

• f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ),

(4.6)

where ξ lies between x0 − 2h and x0 + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

• f ′(x0) = 1

12h
[−25f (x0)+ 48f (x0 + h)− 36f (x0 + 2h)

+ 16f (x0 + 3h)− 3f (x0 + 4h)] + h4

5
f (5)(ξ), (4.7)

where ξ lies between x0 and x0 + 4h.

Left-endpoint approximations are found using this formula with h > 0 and right-endpoint
approximations with h < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

Example 2 Values forf (x) = xex are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f ′(2.0).
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4.1 Numerical Differentiation 179

Solution The data in the table permit us to find four different three-point approximations.
We can use the endpoint formula (4.4) with h = 0.1 or with h = −0.1, and we can use the
midpoint formula (4.5) with h = 0.1 or with h = 0.2.

Table 4.2

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Using the endpoint formula (4.4) with h = 0.1 gives

1

0.2
[−3f (2.0)+ 4f (2.1)− f (2.2] = 5[−3(14.778112)+ 4(17.148957)

− 19.855030)] = 22.032310,

and with h = −0.1 gives 22.054525.
Using the midpoint formula (4.5) with h = 0.1 gives

1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.7703199) = 22.228790,

and with h = 0.2 gives 22.414163.
The only five-point formula for which the table gives sufficient data is the midpoint

formula (4.6) with h = 0.1. This gives

1

1.2
[f (1.8)− 8f (1.9)+ 8f (2.1)− f (2.2)] = 1

1.2
[10.889365− 8(12.703199)

+ 8(17.148957)− 19.855030]
= 22.166999

If we had no other information we would accept the five-point midpoint approximation using
h = 0.1 as the most accurate, and expect the true value to be between that approximation
and the three-point mid-point approximation that is in the interval [22.166, 22.229].

The true value in this case is f ′(2.0) = (2+ 1)e2 = 22.167168, so the approximation
errors are actually:

Three-point endpoint with h = 0.1: 1.35× 10−1;

Three-point endpoint with h = −0.1: 1.13× 10−1;

Three-point midpoint with h = 0.1: −6.16× 10−2;

Three-point midpoint with h = 0.2: −2.47× 10−1;

Five-point midpoint with h = 0.1: 1.69× 10−4.

Methods can also be derived to find approximations to higher derivatives of a function
using only tabulated values of the function at various points. The derivation is algebraically
tedious, however, so only a representative procedure will be presented.

Expand a function f in a third Taylor polynomial about a point x0 and evaluate at x0+h
and x0 − h. Then

f (x0 + h) = f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ1)h

4

and

f (x0 − h) = f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ−1)h

4,

where x0 − h < ξ−1 < x0 < ξ1 < x0 + h.
If we add these equations, the terms involving f ′(x0) and −f ′(x0) cancel, so

f (x0 + h)+ f (x0 − h) = 2f (x0)+ f ′′(x0)h
2 + 1

24
[f (4)(ξ1)+ f (4)(ξ−1)]h4.
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180 C H A P T E R 4 Numerical Differentiation and Integration

Solving this equation for f ′′(x0) gives

f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

24
[f (4)(ξ1)+ f (4)(ξ−1)]. (4.8)

Suppose f (4) is continuous on [x0 − h, x0 + h]. Since 1
2 [f (4)(ξ1) + f (4)(ξ−1)] is between

f (4)(ξ1) and f (4)(ξ−1), the Intermediate Value Theorem implies that a number ξ exists
between ξ1 and ξ−1, and hence in (x0 − h, x0 + h), with

f (4)(ξ) = 1

2

[
f (4)(ξ1)+ f (4)(ξ−1)

]
.

This permits us to rewrite Eq. (4.8) in its final form.

Second Derivative Midpoint Formula

• f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

12
f (4)(ξ), (4.9)

for some ξ , where x0 − h < ξ < x0 + h.

If f (4) is continuous on [x0 − h, x0 + h] it is also bounded, and the approximation is O(h2).

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of
f (x) = xex at x = 2.0. Use the second derivative formula (4.9) to approximate f ′′(2.0).

Table 4.3

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Solution The data permits us to determine two approximations for f ′′(2.0). Using (4.9)
with h = 0.1 gives

1

0.01
[f (1.9)− 2f (2.0)+ f (2.1)] = 100[12.703199− 2(14.778112)+ 17.148957]

= 29.593200,

and using (4.9) with h = 0.2 gives

1

0.04
[f (1.8)− 2f (2.0)+ f (2.2)] = 25[10.889365− 2(14.778112)+ 19.855030]

= 29.704275.

Because f ′′(x) = (x + 2)ex, the exact value is f ′′(2.0) = 29.556224. Hence the actual
errors are −3.70× 10−2 and −1.48× 10−1, respectively.

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5),

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1),

more closely. Suppose that in evaluating f (x0 + h) and f (x0 − h) we encounter round-off
errors e(x0 + h) and e(x0 − h). Then our computations actually use the values f̃ (x0 + h)
and f̃ (x0 − h), which are related to the true values f (x0 + h) and f (x0 − h) by
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4.1 Numerical Differentiation 181

f (x0 + h) = f̃ (x0 + h)+ e(x0 + h) and f (x0 − h) = f̃ (x0 − h)+ e(x0 − h).

The total error in the approximation,

f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h
= e(x0 + h)− e(x0 − h)

2h
− h2

6
f (3)(ξ1),

is due both to round-off error, the first part, and to truncation error. If we assume that the
round-off errors e(x0 ± h) are bounded by some number ε > 0 and that the third derivative
of f is bounded by a number M > 0, then∣∣∣∣∣f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h

∣∣∣∣∣ ≤ ε

h
+ h2

6
M.

To reduce the truncation error, h2M/6, we need to reduce h. But as h is reduced, the round-
off error ε/h grows. In practice, then, it is seldom advantageous to let h be too small, because
in that case the round-off error will dominate the calculations.

Illustration Consider using the values in Table 4.4 to approximate f ′(0.900), where f (x) = sin x. The
true value is cos 0.900 = 0.62161. The formula

f ′(0.900) ≈ f (0.900+ h)− f (0.900− h)

2h
,

with different values of h, gives the approximations in Table 4.5.

Table 4.4 x sin x x sin x

0.800 0.71736 0.901 0.78395
0.850 0.75128 0.902 0.78457
0.880 0.77074 0.905 0.78643
0.890 0.77707 0.910 0.78950
0.895 0.78021 0.920 0.79560
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147

Table 4.5 Approximation
h to f ′(0.900) Error

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 −0.00011
0.020 0.62150 −0.00011
0.050 0.62140 −0.00021
0.100 0.62055 −0.00106

The optimal choice for h appears to lie between 0.005 and 0.05. We can use calculus to
verify (see Exercise 29) that a minimum for

e(h) = ε

h
+ h2

6
M,

occurs at h = 3
√

3ε/M, where

M = max
x∈[0.800,1.00]

|f ′′′(x)| = max
x∈[0.800,1.00]

| cos x| = cos 0.8 ≈ 0.69671.

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by ε = 5× 10−6. Therefore, the optimal choice of h is approximately

h = 3

√
3(0.000005)

0.69671
≈ 0.028,

which is consistent with the results in Table 4.6. �
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182 C H A P T E R 4 Numerical Differentiation and Integration

In practice, we cannot compute an optimal h to use in approximating the derivative, since
we have no knowledge of the third derivative of the function. But we must remain aware
that reducing the step size will not always improve the approximation. �

We have considered only the round-off error problems that are presented by the three-
point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas.
The reason can be traced to the need to divide by a power of h. As we found in Section 1.2
(see, in particular, Example 3), division by small numbers tends to exaggerate round-off
error, and this operation should be avoided if possible. In the case of numerical differenti-
ation, we cannot avoid the problem entirely, although the higher-order methods reduce the
difficulty.

Keep in mind that difference
method approximations might be
unstable.

As approximation methods, numerical differentiation is unstable, since the small values
of h needed to reduce truncation error also cause the round-off error to grow. This is the first
class of unstable methods we have encountered, and these techniques would be avoided if it
were possible. However, in addition to being used for computational purposes, the formulas
are needed for approximating the solutions of ordinary and partial-differential equations.

E X E R C I S E S E T 4.1

1. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

0.5 0.4794
0.6 0.5646
0.7 0.6442

b. x f (x) f ′(x)

0.0 0.00000
0.2 0.74140
0.4 1.3718

2. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

−0.3 1.9507
−0.2 2.0421
−0.1 2.0601

b. x f (x) f ′(x)

1.0 1.0000
1.2 1.2625
1.4 1.6595

3. The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exer-
cise 1, and find error bounds using the error formulas.

a. f (x) = sin x b. f (x) = ex − 2x2 + 3x − 1

4. The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exer-
cise 2, and find error bounds using the error formulas.

a. f (x) = 2 cos 2x − x b. f (x) = x2 ln x + 1

5. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

1.1 9.025013
1.2 11.02318
1.3 13.46374
1.4 16.44465

b. x f (x) f ′(x)

8.1 16.94410
8.3 17.56492
8.5 18.19056
8.7 18.82091

c. x f (x) f ′(x)

2.9 −4.827866
3.0 −4.240058
3.1 −3.496909
3.2 −2.596792

d. x f (x) f ′(x)

2.0 3.6887983
2.1 3.6905701
2.2 3.6688192
2.3 3.6245909
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6. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

−0.3 −0.27652
−0.2 −0.25074
−0.1 −0.16134

0 0

b. x f (x) f ′(x)

7.4 −68.3193
7.6 −71.6982
7.8 −75.1576
8.0 −78.6974

c. x f (x) f ′(x)

1.1 1.52918
1.2 1.64024
1.3 1.70470
1.4 1.71277

d. x f (x) f ′(x)

−2.7 0.054797
−2.5 0.11342
−2.3 0.65536
−2.1 0.98472

7. The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 5, and find error bounds using the error formulas.

a. f (x) = e2x b. f (x) = x ln x
c. f (x) = x cos x − x2 sin x d. f (x) = 2(ln x)2 + 3 sin x

8. The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exer-
cise 6, and find error bounds using the error formulas.

a. f (x) = e2x − cos 2x b. f (x) = ln(x + 2)− (x + 1)2

c. f (x) = x sin x + x2 cos x d. f (x) = (cos 3x)2 − e2x

9. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

2.1 −1.709847
2.2 −1.373823
2.3 −1.119214
2.4 −0.9160143
2.5 −0.7470223
2.6 −0.6015966

b. x f (x) f ′(x)

−3.0 9.367879
−2.8 8.233241
−2.6 7.180350
−2.4 6.209329
−2.2 5.320305
−2.0 4.513417

10. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

1.05 −1.709847
1.10 −1.373823
1.15 −1.119214
1.20 −0.9160143
1.25 −0.7470223
1.30 −0.6015966

b. x f (x) f ′(x)

−3.0 16.08554
−2.8 12.64465
−2.6 9.863738
−2.4 7.623176
−2.2 5.825013
−2.0 4.389056

11. The data in Exercise 9 were taken from the following functions. Compute the actual errors in Exer-
cise 9, and find error bounds using the error formulas and Maple.

a. f (x) = tan x b. f (x) = ex/3 + x2

12. The data in Exercise 10 were taken from the following functions. Compute the actual errors in Exer-
cise 10, and find error bounds using the error formulas and Maple.

a. f (x) = tan 2x b. f (x) = e−x − 1+ x

13. Use the following data and the knowledge that the first five derivatives of f are bounded on [1, 5] by
2, 3, 6, 12 and 23, respectively, to approximate f ′(3) as accurately as possible. Find a bound for the
error.

x 1 2 3 4 5

f (x) 2.4142 2.6734 2.8974 3.0976 3.2804

14. Repeat Exercise 13, assuming instead that the third derivative of f is bounded on [1, 5] by 4.
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15. Repeat Exercise 1 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 3.

16. Repeat Exercise 5 using four-digit chopping arithmetic, and compare the errors to those in
Exercise 7.

17. Repeat Exercise 9 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 11.

18. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.808038 0.6386093 0.3843735

a. Use all the appropriate formulas given in this section to approximate f ′(0.4) and f ′′(0.4).

b. Use all the appropriate formulas given in this section to approximate f ′(0.6) and f ′′(0.6).

19. Let f (x) = cosπx. Use Eq. (4.9) and the values of f (x) at x = 0.25, 0.5, and 0.75 to approximate
f ′′(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of
Section 3.5. Explain why this method is particularly accurate for this problem, and find a bound for
the error.

20. Let f (x) = 3xex − cos x. Use the following data and Eq. (4.9) to approximate f ′′(1.3) with h = 0.1
and with h = 0.01.

x 1.20 1.29 1.30 1.31 1.40

f (x) 11.59006 13.78176 14.04276 14.30741 16.86187

Compare your results to f ′′(1.3).

21. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.8080348 0.6386093 0.3843735

a. Use Eq. (4.7) to approximate f ′(0.2).

b. Use Eq. (4.7) to approximate f ′(1.0).

c. Use Eq. (4.6) to approximate f ′(0.6).

22. Derive an O(h4) five-point formula to approximate f ′(x0) that uses f (x0 − h), f (x0), f (x0 + h),
f (x0 + 2h), and f (x0 + 3h). [Hint: Consider the expression Af (x0 − h) + Bf (x0 + h) + Cf (x0 +
2h)+Df (x0 + 3h). Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]

23. Use the formula derived in Exercise 22 and the data of Exercise 21 to approximate f ′(0.4) and f ′(0.8).

24. a. Analyze the round-off errors, as in Example 4, for the formula

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ0).

b. Find an optimal h > 0 for the function given in Example 2.

25. In Exercise 10 of Section 3.4 data were given describing a car traveling on a straight road. That
problem asked to predict the position and speed of the car when t = 10 s. Use the following times and
positions to predict the speed at each time listed.

Time 0 3 5 8 10 13

Distance 0 225 383 623 742 993

26. In a circuit with impressed voltage E(t) and inductance L, Kirchhoff’s first law gives the relationship

E(t) = L
di

dt
+ Ri,
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where R is the resistance in the circuit and i is the current. Suppose we measure the current for several
values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the
resistance is 0.142 ohms. Approximate the voltage E(t) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.

27. All calculus students know that the derivative of a function f at x can be defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Choose your favorite function f , nonzero number x, and computer or calculator. Generate approxi-
mations f ′n(x) to f ′(x) by

f ′n(x) =
f (x + 10−n)− f (x)

10−n
,

for n = 1, 2, . . . , 20, and describe what happens.

28. Derive a method for approximating f ′′′(x0)whose error term is of order h2 by expanding the function
f in a fourth Taylor polynomial about x0 and evaluating at x0 ± h and x0 ± 2h.

29. Consider the function

e(h) = ε

h
+ h2

6
M,

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at 3
√

3ε/M.

4.2 Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-
order formulas. Although the name attached to the method refers to a paper written by
L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older.
An interesting article regarding the history and application of extrapolation can be found
in [Joy].

Lewis Fry Richardson
(1881–1953) was the first person
to systematically apply
mathematics to weather
prediction while working in
England for the Meteorological
Office. As a conscientious
objector during World War I, he
wrote extensively about the
economic futility of warfare,
using systems of differential
equations to model rational
interactions between countries.
The extrapolation technique that
bears his name was the
rediscovery of a technique with
roots that are at least as old as
Christiaan Hugyens
(1629–1695), and possibly
Archimedes (287–212 b.c.e.).

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter, usually the step
size h. Suppose that for each number h �= 0 we have a formula N1(h) that approximates an
unknown constant M, and that the truncation error involved with the approximation has the
form

M − N1(h) = K1h+ K2h2 + K3h3 + · · · ,

for some collection of (unknown) constants K1, K2, K3, . . . .
The truncation error is O(h), so unless there was a large variation in magnitude among

the constants K1, K2, K3, . . . ,

M − N1(0.1) ≈ 0.1K1, M − N1(0.01) ≈ 0.01K1,

and, in general, M − N1(h) ≈ K1h .
The object of extrapolation is to find an easy way to combine these rather inaccu-

rate O(h) approximations in an appropriate way to produce formulas with a higher-order
truncation error.
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Suppose, for example, we can combine the N1(h) formulas to produce an O(h2)

approximation formula, N2(h), for M with

M − N2(h) = K̂2h2 + K̂3h3 + · · · ,

for some, again unknown, collection of constants K̂2, K̂3, . . . . Then we would have

M − N2(0.1) ≈ 0.01K̂2, M − N2(0.01) ≈ 0.0001K̂2,

and so on. If the constants K1 and K̂2 are roughly of the same magnitude, then the N2(h)
approximations would be much better than the corresponding N1(h) approximations. The
extrapolation continues by combining the N2(h) approximations in a manner that produces
formulas with O(h3) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)
formula for approximating M

M = N1(h)+ K1h+ K2h2 + K3h3 + · · · . (4.10)

The formula is assumed to hold for all positive h, so we replace the parameter h by half its
value. Then we have a second O(h) approximation formula

M = N1

(
h

2

)
+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · · . (4.11)

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K1 and gives

M = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
+ K2

(
h2

2
− h2

)
+ K3

(
h3

4
− h3

)
+ · · · . (4.12)

Define

N2(h) = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
.

Then Eq. (4.12) is an O(h2) approximation formula for M:

M = N2(h)− K2

2
h2 − 3K3

4
h3 − · · · . (4.13)

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with h = 0.1 and
h = 0.05 to find approximations to f ′(1.8) for f (x) = ln(x). Assume that this formula has
truncation error O(h) and use extrapolation on these values to see if this results in a better
approximation.

Solution In Example 1 of Section 4.1 we found that

with h = 0.1: f ′(1.8) ≈ 0.5406722, and with h = 0.05: f ′(1.8) ≈ 0.5479795.

This implies that

N1(0.1) = 0.5406722 and N1(0.05) = 0.5479795.

Extrapolating these results gives the new approximation

N2(0.1) = N1(0.05)+ (N1(0.05)− N1(0.1)) = 0.5479795+ (0.5479795− 0.5406722)

= 0.555287.

The h = 0.1 and h = 0.05 results were found to be accurate to within 1.5 × 10−2 and
7.7×10−3, respectively. Because f ′(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate
to within 2.7× 10−4.
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Extrapolation can be applied whenever the truncation error for a formula has the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. Many formulas used
for extrapolation have truncation errors that contain only even powers of h, that is, have the
form

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.14)

The extrapolation is much more effective than when all powers of h are present because the
averaging process produces results with errors O(h2), O(h4), O(h6), . . . , with essentially
no increase in computation, over the results with errors, O(h), O(h2), O(h3), . . . .

Assume that approximation has the form of Eq. (4.14 ). Replacing h with h/2 gives the
O(h2) approximation formula

M = N1

(
h

2

)
+ K1

h2

4
+ K2

h4

16
+ K3

h6

64
+ · · · .

Subtracting Eq. (4.14) from 4 times this equation eliminates the h2 term,

3M =
[

4N1

(
h

2

)
− N1(h)

]
+ K2

(
h4

4
− h4

)
+ K3

(
h6

16
− h6

)
+ · · · .

Dividing this equation by 3 produces an O(h4) formula

M = 1

3

[
4N1

(
h

2

)
− N1(h)

]
+ K2

3

(
h4

4
− h4

)
+ K3

3

(
h6

16
− h6

)
+ · · · .

Defining

N2(h) = 1

3

[
4N1

(
h

2

)
− N1(h)

]
= N1

(
h

2

)
+ 1

3

[
N1

(
h

2

)
− N1(h)

]
,

produces the approximation formula with truncation error O(h4):

M = N2(h)− K2
h4

4
− K3

5h6

16
+ · · · . (4.15)

Now replace h in Eq. (4.15) with h/2 to produce a second O(h4) formula

M = N2

(
h

2

)
− K2

h4

64
− K3

5h6

1024
− · · · .

Subtracting Eq. (4.15 ) from 16 times this equation eliminates the h4 term and gives

15M =
[

16N2

(
h

2

)
− N2(h)

]
+ K3

15h6

64
+ · · · .

Dividing this equation by 15 produces the new O(h6) formula

M = 1

15

[
16N2

(
h

2

)
− N2(h)

]
+ K3

h6

64
+ · · · .

We now have the O(h6) approximation formula

N3(h) = 1

15

[
16N2

(
h

2

)
− N2(h)

]
= N2

(
h

2

)
+ 1

15

[
N2

(
h

2

)
− N2(h)

]
.
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Continuing this procedure gives, for each j = 2, 3, . . . , the O(h2 j) approximation

Nj(h) = Nj−1

(
h

2

)
+ Nj−1(h/2)− Nj−1(h)

4 j−1 − 1
.

Table 4.6 shows the order in which the approximations are generated when

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.16)

It is conservatively assumed that the true result is accurate at least to within the agreement
of the bottom two results in the diagonal, in this case, to within |N3(h)− N4(h)|.

Table 4.6 O(h2) O(h4) O(h6) O(h8)

1: N1(h)

2: N1(
h
2 ) 3: N2(h)

4: N1(
h
4 ) 5: N2(

h
2 ) 6: N3(h)

7: N1(
h
8 ) 8: N2(

h
4 ) 9: N3(

h
2 ) 10: N4(h)

Example 2 Taylor’s theorem can be used to show that centered-difference formula in Eq. (4.5) to
approximate f ′(x0) can be expressed with an error formula:

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · .

Find approximations of order O(h2), O(h4), and O(h6) for f ′(2.0) when f (x) = xex and
h = 0.2.

Solution The constants K1 = −f ′′′(x0)/6, K2 = −f (5)(x0)/120, · · · , are not likely to be
known, but this is not important. We only need to know that these constants exist in order
to apply extrapolation.

We have the O(h2) approximation

f ′(x0) = N1(h)− h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · , (4.17)

where

N1(h) = 1

2h
[f (x0 + h)− f (x0 − h)].

This gives us the first O(h2) approximations

N1(0.2) = 1

0.4
[f (2.2)− f (1.8)] = 2.5(19.855030− 10.889365) = 22.414160,

and

N1(0.1) = 1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.703199) = 22.228786.

Combining these to produce the first O(h4) approximation gives

N2(0.2) = N1(0.1)+ 1

3
(N1(0.1)− N1(0.2))

= 22.228786+ 1

3
(22.228786− 22.414160) = 22.166995.
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4.2 Richardson’s Extrapolation 189

To determine an O(h6) formula we need another O(h4) result, which requires us to find the
third O(h2) approximation

N1(0.05) = 1

0.1
[f (2.05)− f (1.95)] = 10(15.924197− 13.705941) = 22.182564.

We can now find the O(h4) approximation

N2(0.1) = N1(0.05)+ 1

3
(N1(0.05)− N1(0.1))

= 22.182564+ 1

3
(22.182564− 22.228786) = 22.167157.

and finally the O(h6) approximation

N3(0.2) = N2(0.1)+ 1

15
(N2(0.1)− N1(0.2))

= 22.167157+ 1

15
(22.167157− 22.166995) = 22.167168.

We would expect the final approximation to be accurate to at least the value 22.167 because
the N2(0.2) and N3(0.2) give this same value. In fact, N3(0.2) is accurate to all the listed
digits.

Each column beyond the first in the extrapolation table is obtained by a simple av-
eraging process, so the technique can produce high-order approximations with minimal
computational cost. However, as k increases, the round-off error in N1(h/2k) will generally
increase because the instability of numerical differentiation is related to the step size h/2k .
Also, the higher-order formulas depend increasingly on the entry to their immediate left in
the table, which is the reason we recommend comparing the final diagonal entries to ensure
accuracy.

In Section 4.1, we discussed both three- and five-point methods for approximating
f ′(x0) given various functional values of f . The three-point methods were derived by
differentiating a Lagrange interpolating polynomial for f . The five-point methods can be
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to
more easily derive these formulas, as illustrated below.

Illustration Suppose we expand the function f in a fourth Taylor polynomial about x0. Then

f (x) =f (x0)+ f ′(x0)(x − x0)+ 1

2
f ′′(x0)(x − x0)

2 + 1

6
f ′′′(x0)(x − x0)

3

+ 1

24
f (4)(x0)(x − x0)

4 + 1

120
f (5)(ξ)(x − x0)

5,

for some number ξ between x and x0. Evaluating f at x0 + h and x0 − h gives

f (x0 + h) =f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 + 1

120
f (5)(ξ1)h

5 (4.18)

and

f (x0 − h) =f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 − 1

120
f (5)(ξ2)h

5, (4.19)

where x0 − h < ξ2 < x0 < ξ1 < x0 + h.
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Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for f ′(x).

f (x0 + h)− f (x0 − h) = 2hf ′(x0)+ h3

3
f ′′′(x0)+ h5

120
[f (5)(ξ1)+ f (5)(ξ2)], (4.20)

which implies that

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

240
[f (5)(ξ1)+ f (5)(ξ2)].

If f (5) is continuous on [x0 − h, x0 + h], the Intermediate Value Theorem 1.11 implies that
a number ξ̃ in (x0 − h, x0 + h) exists with

f (5)(ξ̃ ) = 1

2

[
f (5)(ξ1)+ f (5)(ξ2)

]
.

As a consequence,we have the O(h2) approximation

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(ξ̃ ). (4.21)

Although the approximation in Eq. (4.21) is the same as that given in the three-point for-
mula in Eq. (4.5), the unknown evaluation point occurs now in f (5), rather than in f ′′′.
Extrapolation takes advantage of this by first replacing h in Eq. (4.21) with 2h to give the
new formula

f ′(x0) = 1

4h
[f (x0 + 2h)− f (x0 − 2h)] − 4h2

6
f ′′′(x0)− 16h4

120
f (5)(ξ̂ ), (4.22)

where ξ̂ is between x0 − 2h and x0 + 2h.

Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces

3f ′(x0) = 2

h
[f (x0 + h)− f (x0 − h)] − 1

4h
[f (x0 + 2h)− f (x0 − 2h)]

− h4

30
f (5)(ξ̃ )+ 2h4

15
f (5)(ξ̂ ).

Even if f (5) is continuous on [x0 − 2h, x0 + 2h], the Intermediate Value Theorem 1.11
cannot be applied as we did to derive Eq. (4.21) because here we have the difference of
terms involving f (5). However, an alternative method can be used to show that f (5)(ξ̃ ) and
f (5)(ξ̂ ) can still be replaced by a common value f (5)(ξ). Assuming this and dividing by 3
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1

f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ). �

Other formulas for first and higher derivatives can be derived in a similar manner. See,
for example, Exercise 8.

The technique of extrapolation is used throughout the text. The most prominent appli-
cations occur in approximating integrals in Section 4.5 and for determining approximate
solutions to differential equations in Section 5.8.
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E X E R C I S E S E T 4.2

1. Apply the extrapolation process described in Example 1 to determine N3(h), an approximation to
f ′(x0), for the following functions and stepsizes.

a. f (x) = ln x, x0 = 1.0, h = 0.4

b. f (x) = x + ex , x0 = 0.0, h = 0.4

c. f (x) = 2x sin x, x0 = 1.05, h = 0.4

d. f (x) = x3 cos x, x0 = 2.3, h = 0.4

2. Add another line to the extrapolation table in Exercise 1 to obtain the approximation N4(h).

3. Repeat Exercise 1 using four-digit rounding arithmetic.

4. Repeat Exercise 2 using four-digit rounding arithmetic.

5. The following data give approximations to the integral

M =
∫ π

0
sin x dx.

N1(h) = 1.570796, N1

(
h

2

)
= 1.896119, N1

(
h

4

)
= 1.974232, N1

(
h

8

)
= 1.993570.

Assuming M = N1(h) + K1h2 + K2h4 + K3h6 + K4h8 + O(h10), construct an extrapolation table to
determine N4(h).

6. The following data can be used to approximate the integral

M =
∫ 3π/2

0
cos x dx.

N1(h) = 2.356194, N1

(
h

2

)
= −0.4879837,

N1

(
h

4

)
= −0.8815732, N1

(
h

8

)
= −0.9709157.

Assume a formula exists of the type given in Exercise 5 and determine N4(h).

7. Show that the five-point formula in Eq. (4.6) applied to f (x) = xex at x0 = 2.0 gives N2(0.2) in Table
4.6 when h = 0.1 and N2(0.1) when h = 0.05.

8. The forward-difference formula can be expressed as

f ′(x0) = 1

h
[f (x0 + h)− f (x0)] − h

2
f ′′(x0)− h2

6
f ′′′(x0)+ O(h3).

Use extrapolation to derive an O(h3) formula for f ′(x0).

9. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h+ K2h2 + K3h3 + · · · ,

for some constants K1, K2, K3, . . . . Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h3)

approximation to M.

10. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h2 + K2h4 + K3h6 + · · · ,

for some constants K1, K2, K3, . . . . Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h6)

approximation to M.

11. In calculus, we learn that e = limh→0(1+ h)1/h.

a. Determine approximations to e corresponding to h = 0.04, 0.02, and 0.01.

b. Use extrapolation on the approximations, assuming that constants K1, K2, . . . exist with
e = (1 + h)1/h + K1h + K2h2 + K3h3 + · · · , to produce an O(h3) approximation to e, where
h = 0.04.

c. Do you think that the assumption in part (b) is correct?
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12. a. Show that

lim
h→0

(
2+ h

2− h

)1/h

= e.

b. Compute approximations to e using the formula N(h) = ( 2+h
2−h

)1/h
, for h = 0.04, 0.02, and 0.01.

c. Assume that e = N(h)+K1h+K2h2 +K3h3 + · · · . Use extrapolation, with at least 16 digits of
precision, to compute an O(h3) approximation to e with h = 0.04. Do you think the assumption
is correct?

d. Show that N(−h) = N(h).

e. Use part (d) to show that K1 = K3 = K5 = · · · = 0 in the formula

e = N(h)+ K1h+ K2h2 + K3h3K4h4 + K5h5 + · · · ,

so that the formula reduces to

e = N(h)+ K2h2 + K4h4 + K6h6 + · · · .

f. Use the results of part (e) and extrapolation to compute an O(h6) approximation to e with
h = 0.04.

13. Suppose the following extrapolation table has been constructed to approximate the number M with
M = N1(h)+ K1h2 + K2h4 + K3h6:

N1(h)

N1

(
h

2

)
N2(h)

N1

(
h

4

)
N2

(
h

2

)
N3(h)

a. Show that the linear interpolating polynomial P0,1(h) through (h2, N1(h)) and (h2/4, N1(h/2))
satisfies P0,1(0) = N2(h). Similarly, show that P1,2(0) = N2(h/2).

b. Show that the linear interpolating polynomial P0,2(h) through (h4, N2(h)) and (h4/16, N2(h/2))
satisfies P0,2(0) = N3(h).

14. Suppose that N1(h) is a formula that produces O(h) approximations to a number M and that

M = N1(h)+ K1h+ K2h2 + · · · ,

for a collection of positive constants K1, K2, . . . . Then N1(h), N1(h/2), N1(h/4), . . . are all lower
bounds for M. What can be said about the extrapolated approximations N2(h), N3(h), . . .?

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle
were used by Archimedes before 200 b.c.e. to approximate π , the circumference of a semicircle.
Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters {pk}
and {Pk}, respectively, satisfy

pk = k sin
(π

k

)
and Pk = k tan

(π
k

)
,

with pk < π < Pk , whenever k ≥ 4.

a. Show that p4 = 2
√

2 and P4 = 4.

b. Show that for k ≥ 4, the sequences satisfy the recurrence relations

P2k = 2pkPk

pk + Pk
and p2k =

√
pkP2k .

c. Approximate π to within 10−4 by computing pk and Pk until Pk − pk < 10−4.
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d. Use Taylor Series to show that

π = pk + π
3

3!
(

1

k

)2

− π
5

5!
(

1

k

)4

+ · · ·

and

π = Pk − π
3

3

(
1

k

)2

+ 2π 5

15

(
1

k

)4

− · · · .

e. Use extrapolation with h = 1/k to better approximate π .

4.3 Elements of Numerical Integration

The need often arises for evaluating the definite integral of a function that has no explicit
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in
approximating

∫ b
a f (x) dx is called numerical quadrature. It uses a sum

∑n
i=0 aif (xi) to

approximate
∫ b

a f (x) dx.
The methods of quadrature in this section are based on the interpolation polynomials

given in Chapter 3. The basic idea is to select a set of distinct nodes {x0, . . . , xn} from the
interval [a, b]. Then integrate the Lagrange interpolating polynomial

Pn(x) =
n∑

i=0

f (xi)Li(x)

and its truncation error term over [a, b] to obtain∫ b

a
f (x) dx =

∫ b

a

n∑
i=0

f (xi)Li(x) dx +
∫ b

a

n∏
i=0

(x − xi)
f (n+1)(ξ(x))

(n+ 1)! dx

=
n∑

i=0

aif (xi)+ 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx,

where ξ(x) is in [a, b] for each x and

ai =
∫ b

a
Li(x) dx, for each i = 0, 1, . . . , n.

The quadrature formula is, therefore,∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

with error given by

E(f ) = 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx.

Before discussing the general situation of quadrature formulas, let us consider formulas
produced by using first and second Lagrange polynomials with equally-spaced nodes. This
gives the Trapezoidal rule and Simpson’s rule, which are commonly introduced in calculus
courses.
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TheTrapezoidal Rule

To derive the Trapezoidal rule for approximating
∫ b

a f (x) dx, let x0 = a, x1 = b, h = b− a
and use the linear Lagrange polynomial:

P1(x) = (x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1).

Then ∫ b

a
f (x) dx =

∫ x1

x0

[
(x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1)

]
dx

+ 1

2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx. (4.23)

The product (x− x0)(x− x1) does not change sign on [x0, x1], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some ξ in (x0, x1),∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx = f ′′(ξ)
∫ x1

x0

(x − x0)(x − x1) dx

= f ′′(ξ)
[

x3

3
− (x1 + x0)

2
x2 + x0x1x

]x1

x0

= −h3

6
f ′′(ξ).

Consequently, Eq. (4.23) implies that∫ b

a
f (x) dx =

[
(x − x1)

2

2(x0 − x1)
f (x0)+ (x − x0)

2

2(x1 − x0)
f (x1)

]x1

x0

− h3

12
f ′′(ξ)

= (x1 − x0)

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

Using the notation h = x1 − x0 gives the following rule:

Trapezoidal Rule: ∫ b

a
f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

This is called the Trapezoidal rule because when f is a function with positive values,

When we use the term trapezoid
we mean a four-sided figure that
has at least two of its sides
parallel. The European term for
this figure is trapezium. To further
confuse the issue, the European
word trapezoidal refers to a
four-sided figure with no sides
equal, and the American word for
this type of figure is trapezium.

∫ b
a f (x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3
y

xa � x0 x1 � b

y � f (x)

y � P1(x)
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The error term for the Trapezoidal rule involves f ′′, so the rule gives the exact
result when applied to any function whose second derivative is identically zero, that is, any
polynomial of degree one or less.

Simpson’s Rule

Simpson’s rule results from integrating over [a, b] the second Lagrange polynomial with
equally-spaced nodes x0 = a, x2 = b, and x1 = a + h, where h = (b − a)/2. (See
Figure 4.4.)

Figure 4.4
y

xa � x0 x2 � bx1

y � f (x)

y � P2(x)

Therefore∫ b

a
f (x) dx =

∫ x2

x0

[
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0)+ (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

+
∫ x2

x0

(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x)) dx.

Deriving Simpson’s rule in this manner, however, provides only an O(h4) error term involv-
ing f (3). By approaching the problem in another way, a higher-order term involving f (4)

can be derived.
To illustrate this alternative method, suppose that f is expanded in the third Taylor

polynomial about x1. Then for each x in [x0, x2], a number ξ(x) in (x0, x2) exists with

f (x) = f (x1)+f ′(x1)(x−x1)+ f
′′(x1)

2
(x−x1)

2+ f
′′′(x1)

6
(x−x1)

3+ f
(4)(ξ(x))

24
(x−x1)

4

and ∫ x2

x0

f (x) dx =
[
f (x1)(x − x1)+ f

′(x1)

2
(x − x1)

2 + f
′′(x1)

6
(x − x1)

3

+ f
′′′(x1)

24
(x − x1)

4

]x2

x0

+ 1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx. (4.24)
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Because (x − x1)
4 is never negative on [x0, x2], the Weighted Mean Value Theorem for

Integrals 1.13 implies that

1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx = f (4)(ξ1)

24

∫ x2

x0

(x − x1)
4 dx = f (4)(ξ1)

120
(x − x1)

5

]x2

x0

,

for some number ξ1 in (x0, x2).
However, h = x2 − x1 = x1 − x0, so

(x2 − x1)
2 − (x0 − x1)

2 = (x2 − x1)
4 − (x0 − x1)

4 = 0,

whereas

(x2 − x1)
3 − (x0 − x1)

3 = 2h3 and (x2 − x1)
5 − (x0 − x1)

5 = 2h5.

Consequently, Eq. (4.24) can be rewritten as

∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3
f ′′(x1)+ f

(4)(ξ1)

60
h5.

If we now replace f ′′(x1) by the approximation given in Eq. (4.9) of Section 4.1, we
have∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3

{
1

h2
[f (x0)− 2f (x1)+ f (x2)] − h2

12
f (4)(ξ2)

}
+ f

(4)(ξ1)

60
h5

= h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

12

[
1

3
f (4)(ξ2)− 1

5
f (4)(ξ1)

]
.

It can be shown by alternative methods (see Exercise 24) that the values ξ1 and ξ2 in this
expression can be replaced by a common value ξ in (x0, x2). This gives Simpson’s rule.

Simpson’s Rule:
∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ).

Thomas Simpson (1710–1761)
was a self-taught mathematician
who supported himself during his
early years as a weaver. His
primary interest was probability
theory, although in 1750 he
published a two-volume calculus
book entitled The Doctrine and
Application of Fluxions.

The error term in Simpson’s rule involves the fourth derivative of f , so it gives exact
results when applied to any polynomial of degree three or less.

Example 1 Compare the Trapezoidal rule and Simpson’s rule approximations to
∫ 2

0
f (x) dx when f (x)

is
(a) x2 (b) x4 (c) (x + 1)−1

(d)
√

1+ x2 (e) sin x (f) ex

Solution On [0, 2] the Trapezoidal and Simpson’s rule have the forms

Trapezoid:
∫ 2

0
f (x) dx ≈ f (0)+ f (2) and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[f (0)+ 4f (1)+ f (2)].
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When f (x) = x2 they give

Trapezoid:
∫ 2

0
f (x) dx ≈ 02 + 22 = 4 and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[(02)+ 4 · 12 + 22] = 8

3
.

The approximation from Simpson’s rule is exact because its truncation error involves f (4),
which is identically 0 when f (x) = x2.

The results to three places for the functions are summarized in Table 4.7. Notice that
in each instance Simpson’s Rule is significantly superior.

Table 4.7 (a) (b) (c) (d) (e) (f)

f (x) x2 x4 (x + 1)−1
√

1+ x2 sin x ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

Measuring Precision

The standard derivation of quadrature error formulas is based on determining the class of
polynomials for which these formulas produce exact results. The next definition is used to
facilitate the discussion of this derivation.

The improved accuracy of
Simpson’s rule over the
Trapezoidal rule is intuitively
explained by the fact that
Simpson’s rule includes a
midpoint evaluation that provides
better balance to the
approximation.

Definition 4.1 The degree of accuracy, or precision, of a quadrature formula is the largest positive integer
n such that the formula is exact for xk , for each k = 0, 1, . . . , n.

Definition 4.1 implies that the Trapezoidal and Simpson’s rules have degrees of preci-
sion one and three, respectively.

Integration and summation are linear operations; that is,∫ b

a
(αf (x)+ βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

and

n∑
i=0

(αf (xi)+ βg(xi)) = α
n∑

i=0

f (xi)+ β
n∑

i=0

g(xi),

for each pair of integrable functions f and g and each pair of real constants α and β. This
implies (see Exercise 25) that:

• The degree of precision of a quadrature formula is n if and only if the error is zero for
all polynomials of degree k = 0, 1, . . . , n, but is not zero for some polynomial of degree
n+ 1.

The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-
Cotes formulas. There are two types of Newton-Cotes formulas, open and closed.

The open and closed terminology
for methods implies that the open
methods use as nodes only points
in the open interval, (a, b) to
approximate

∫ b

a f (x) dx. The
closed methods include the points
a and b of the closed interval
[a, b] as nodes.
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Closed Newton-Cotes Formulas

The (n+1)-point closed Newton-Cotes formula uses nodes xi = x0+ ih, for i = 0, 1, . . . , n,
where x0 = a, xn = b and h = (b − a)/n. (See Figure 4.5.) It is called closed because the
endpoints of the closed interval [a, b] are included as nodes.

Figure 4.5
y

xxn�1a � x0 x1 x2 xn � b

y = Pn(x)
y = f (x)

The formula assumes the form∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

where

ai =
∫ xn

x0

Li(x) dx =
∫ xn

x0

n∏
j=0
j �=i

(x − xj)

(xi − xj)
dx.

Roger Cotes (1682–1716) rose
from a modest background to
become, in 1704, the first
Plumian Professor at Cambridge
University. He made advances in
numerous mathematical areas
including numerical methods for
interpolation and integration.
Newton is reputed to have said of
Cotes …if he had lived we might
have known something.

The following theorem details the error analysis associated with the closed Newton-
Cotes formulas. For a proof of this theorem, see [IK], p. 313.

Theorem 4.2 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point closed Newton-Cotes formula with
x0 = a, xn = b, and h = (b− a)/n. There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n

0
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n

0
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].
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Note that when n is an even integer, the degree of precision is n + 1, although the
interpolation polynomial is of degree at most n. When n is odd, the degree of precision is
only n.

Some of the common closed Newton-Cotes formulas with their error terms are listed.
Note that in each case the unknown value ξ lies in (a, b).

n = 1: Trapezoidal rule

∫ x1

x0

f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ), where x0 < ξ < x1. (4.25)

n = 2: Simpson’s rule

∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ), where x0 < ξ < x2.

(4.26)

n = 3: Simpson’s Three-Eighths rule

∫ x3

x0

f (x) dx = 3h

8
[f (x0)+ 3f (x1)+ 3f (x2)+ f (x3)] − 3h5

80
f (4)(ξ), (4.27)

where x0 < ξ < x3.

n = 4:

∫ x4

x0

f (x) dx = 2h

45
[7f (x0)+ 32f (x1)+ 12f (x2)+ 32f (x3)+ 7f (x4)] − 8h7

945
f (6)(ξ),

where x0 < ξ < x4. (4.28)

Open Newton-Cotes Formulas

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They use
the nodes xi = x0+ ih, for each i = 0, 1, . . . , n, where h = (b− a)/(n+ 2) and x0 = a+ h.
This implies that xn = b − h, so we label the endpoints by setting x−1 = a and xn+1 = b,
as shown in Figure 4.6 on page 200. Open formulas contain all the nodes used for the
approximation within the open interval (a, b). The formulas become

∫ b

a
f (x) dx =

∫ xn+1

x−1

f (x) dx ≈
n∑

i=0

aif (xi),

where

ai =
∫ b

a
Li(x) dx.
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Figure 4.6

y

xa � x�1 xn�1 � bx0 x1 x2 xn

y = Pn(x)

y = f (x)

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK],
p. 314.

Theorem 4.3 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point open Newton-Cotes formula with
x−1 = a, xn+1 = b, and h = (b− a)/(n+ 2). There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n+1

−1
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n+1

−1
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].

Notice, as in the case of the closed methods, we have the degree of precision compar-
atively higher for the even methods than for the odd methods.

Some of the common open Newton-Cotes formulas with their error terms are as
follows:

n = 0: Midpoint rule

∫ x1

x−1

f (x) dx = 2hf (x0)+ h3

3
f ′′(ξ), where x−1 < ξ < x1. (4.29)

n = 1:

∫ x2

x−1

f (x) dx = 3h

2
[f (x0)+ f (x1)] + 3h3

4
f ′′(ξ), where x−1 < ξ < x2. (4.30)
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n = 2:

∫ x3

x−1

f (x) dx = 4h

3
[2f (x0)− f (x1)+ 2f (x2)] + 14h5

45
f (4)(ξ), (4.31)

where x−1 < ξ < x3.

n = 3:

∫ x4

x−1

f (x) dx = 5h

24
[11f (x0)+ f (x1)+ f (x2)+ 11f (x3)] + 95

144
h5f (4)(ξ), (4.32)

where x−1 < ξ < x4.

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)–(4.28)
and (4.29)–(4.32) when approximating∫ π/4

0
sin x dx = 1−√2/2 ≈ 0.29289322.

Solution For the closed formulas we have

n = 1 :
(π/4)

2

[
sin 0+ sin

π

4

]
≈ 0.27768018

n = 2 :
(π/8)

3

[
sin 0+ 4 sin

π

8
+ sin

π

4

]
≈ 0.29293264

n = 3 :
3(π/12)

8

[
sin 0+ 3 sin

π

12
+ 3 sin

π

6
+ sin

π

4

]
≈ 0.29291070

n = 4 :
2(π/16)

45

[
7 sin 0+ 32 sin

π

16
+ 12 sin

π

8
+ 32 sin

3π

16
+ 7 sin

π

4

]
≈ 0.29289318

and for the open formulas we have

n = 0 : 2(π/8)
[
sin

π

8

]
≈ 0.30055887

n = 1 :
3(π/12)

2

[
sin

π

12
+ sin

π

6

]
≈ 0.29798754

n = 2 :
4(π/16)

3

[
2 sin

π

16
− sin

π

8
+ 2 sin

3π

16

]
≈ 0.29285866

n = 3 :
5(π/20)

24

[
11 sin

π

20
+ sin

π

10
+ sin

3π

20
+ 11 sin

π

5

]
≈ 0.29286923

Table 4.8 summarizes these results and shows the approximation errors.

Table 4.8 n 0 1 2 3 4

Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
Open formulas 0.30055887 0.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399
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E X E R C I S E S E T 4.3

1. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 1

0.5
x4 dx b.

∫ 0.5

0

2

x − 4
dx

c.
∫ 1.5

1
x2 ln x dx d.

∫ 1

0
x2e−x dx

e.
∫ 1.6

1

2x

x2 − 4
dx f.

∫ 0.35

0

2

x2 − 4
dx

g.
∫ π/4

0
x sin x dx h.

∫ π/4

0
e3x sin 2x dx

2. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 0.25

−0.25
(cos x)2 dx b.

∫ 0

−0.5
x ln(x + 1) dx

c.
∫ 1.3

0.75

(
(sin x)2 − 2x sin x + 1

)
dx d.

∫ e+1

e

1

x ln x
dx

3. Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual error.

4. Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual error.

5. Repeat Exercise 1 using Simpson’s rule.

6. Repeat Exercise 2 using Simpson’s rule.

7. Repeat Exercise 3 using Simpson’s rule and the results of Exercise 5.

8. Repeat Exercise 4 using Simpson’s rule and the results of Exercise 6.

9. Repeat Exercise 1 using the Midpoint rule.

10. Repeat Exercise 2 using the Midpoint rule.

11. Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.

12. Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10.

13. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 4, and Simpson’s rule gives the value 2.
What is f (1)?

14. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 5, and the Midpoint rule gives the value 4.
What value does Simpson’s rule give?

15. Find the degree of precision of the quadrature formula∫ 1

−1
f (x) dx = f

(
−
√

3

3

)
+ f

(√
3

3

)
.

16. Let h = (b − a)/3, x0 = a, x1 = a + h, and x2 = b. Find the degree of precision of the quadrature
formula ∫ b

a
f (x) dx = 9

4
hf (x1)+ 3

4
hf (x2).

17. The quadrature formula
∫ 1
−1 f (x) dx = c0f (−1) + c1f (0) + c2f (1) is exact for all polynomials of

degree less than or equal to 2. Determine c0, c1, and c2.

18. The quadrature formula
∫ 2

0 f (x) dx = c0f (0) + c1f (1) + c2f (2) is exact for all polynomials of
degree less than or equal to 2. Determine c0, c1, and c2.

19. Find the constants c0, c1, and x1 so that the quadrature formula∫ 1

0
f (x) dx = c0f (0)+ c1f (x1)

has the highest possible degree of precision.

20. Find the constants x0, x1, and c1 so that the quadrature formula∫ 1

0
f (x) dx = 1

2
f (x0)+ c1f (x1)

has the highest possible degree of precision.
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21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better
approximation?

a.
∫ 0.1

0

√
1+ x dx b.

∫ π/2

0
(sin x)2 dx

c.
∫ 1.5

1.1
ex dx d.

∫ 10

1

1

x
dx

e.
∫ 5.5

1

1

x
dx +

∫ 10

5.5

1

x
dx f.

∫ 1

0
x1/3 dx

22. Given the function f at the following values,

x 1.8 2.0 2.2 2.4 2.6

f (x) 3.12014 4.42569 6.04241 8.03014 10.46675

approximate
∫ 2.6

1.8 f (x) dx using all the appropriate quadrature formulas of this section.

23. Suppose that the data of Exercise 22 have round-off errors given by the following table.

x 1.8 2.0 2.2 2.4 2.6

Error in f (x) 2× 10−6 −2× 10−6 −0.9× 10−6 −0.9× 10−6 2× 10−6

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson’s rule with error term by using∫ x2

x0

f (x) dx = a0f (x0)+ a1f (x1)+ a2f (x2)+ kf (4)(ξ).

Find a0, a1, and a2 from the fact that Simpson’s rule is exact for f (x) = xn when n = 1, 2, and 3.
Then find k by applying the integration formula with f (x) = x4.

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1, . . . , n,
but E(P(x)) �= 0 for some polynomial P(x) of degree n+ 1.

26. Derive Simpson’s three-eighths rule (the closed rule with n = 3) with error term by using
Theorem 4.2.

27. Derive the open rule with n = 1 with error term by using Theorem 4.3.

4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials.

In this section, we discuss a piecewise approach to numerical integration that uses the
low-order Newton-Cotes formulas. These are the techniques most often applied.

Piecewise approximation is often
effective. Recall that this was
used for spline interpolation.

Example 1 Use Simpson’s rule to approximate
∫ 4

0 ex dx and compare this to the results obtained

by adding the Simpson’s rule approximations for
∫ 2

0 ex dx and
∫ 4

2 ex dx. Compare these

approximations to the sum of Simpson’s rule for
∫ 1

0 ex dx,
∫ 2

1 ex dx,
∫ 3

2 ex dx, and
∫ 4

3 ex dx.
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