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Integrating and collecting values from like powers gives

3 2 o 1
/ Sx) =[x+ 1.46600— + 0.25228 —
0 2 4 1,

—+0.75685 +1.69107

—1)? —_1)3 1472
+ [2.71828(x—1) 1+2.22285 (x 21) (x 31) (x—1) ]
1

+ 5.83007 —1.94336

—2)2 _2)3 P 3
+17.38906(r—2) + 8.80977 X =2 x—=2) (x—2)
2 3 4 ,

1
= (1 +2.71828 4 7.38906) + 3 (1.46600 + 2.22285 + 8.80977)

1 1
+ 3 (0.75685 + 5.83007) + I (0.25228 4 1.69107 — 1.94336)
= 19.55229.
Because the nodes are equally spaced in this example the integral approximation is

simply

3 1 1 1
/ S(x)dx = (aO‘l‘al+a2)+E(b0+b1+b2)+§(CO+C1+C2)+Z(d0+d1+d2)~ (3.22)
0

O

If we create the natural spline using Maple as described after Example 2, we can then
use Maple’s integration command to find the value in the Illustration. Simply enter

int(sn(t),t =0..3)
19.55228648

Clamped Splines

Example 3 In Example 1 we found a natural spline S that passes through the points (1,2), (2,3),
and (3,5). Construct a clamped spline s through these points that has s'(1) = 2 and
s'(3)=1.

Solution Let

s0(x) = ag + bo(x — 1) + co(x — 1)> + do(x — 1)°,
be the cubic on [1, 2] and the cubic on [2, 3] be

si) =a; +b(x =2) +c1(x —2)* +di (x — 2)°.

Then most of the conditions to determine the 8 constants are the same as those in Example
1. That is,

2=f(I)=ayp, 3=fQ)=ao+by+co+dy, 3=f(2) =ay, and
5=fQ@)=a+b+c +d.
50(2) =51(2) 1 by +2co + 3dy = by and 55(2) =s7(2) 1 2¢o+6dy = 2¢;
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154 CHAPTER 3 = Interpolation and Polynomial Approximation

However, the boundary conditions are now
so(l)=2: by=2 and s;3)=1: b +2c+3d =1.
Solving this system of equations gives the spline as

2420 - = 36— D+ 3 — D3, forx € [1,2]

SW=05, 3r—2) + 20— 2)? — 2(x = 2)%, forx € [2,3]

In the case of general clamped boundary conditions we have a result that is similar to
the theorem for natural boundary conditions described in Theorem 3.11.

Theorem 3.12 If f is defined ata = xo < x| < --- < x, = b and differentiable at a and b, then f has a
unique clamped spline interpolant S on the nodes xo, X, . . . , X,; that is, a spline interpolant
that satisfies the clamped boundary conditions S'(a) = f'(a) and S'(b) = f'(D). [

Proof Since f'(a) = §'(a) = S'(x9) = by, Eq. (3.20) with j = 0 implies
, 1 ho
fl@) = —(a1 — ap) — — (2co + c1).
ho 3
Consequently,
3 7
2hoco + hoc1 = h—(m —ap) —3f(a).
0

Similarly,
f/(b) =b,=b,_1 + hn—l(cn—l + Cn)’

so Eq. (3.20) with j = n — 1 implies that

a, — Q,_ hy,—
F'(b) = = = S Qe+ ) F et (€t + €2)
n—1
a, — dy—|

hn—l
= T + T(Cn—l + 2c,),

and

3
hp_1Cn—1 + 2hy_1c, = 3f/(b) - h_(an — ap_1).
n—1

Equations (3.21) together with the equations

3 ,
2hoco + hocy = h—o(al —ap) —3f (a)

and

hn—lcn—l + 2hn—lcn = Sf/(b) - (an - an—l)

hnfl
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3.5 Cubic Spline Interpolation 155

determine the linear system Ax = b, where

2ho ho 0..::: .............................. 0
hy 2hg+h) b T g
0. hi.. 20 +h) . :
A= : o S
: s 2+ )
0 et 00 By 2h,y
K %(01 —ap) —3f'(a)
;,3—1(612 —ap) — %(al — ap) o
C1l
b = : , and x=| .
%(CI" - anfl) - &(CI",1 - an72) C:n
3f/(b) = 32 (an — an-1)

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
C0,Cly-..,Cp. = = =

The solution to the cubic spline problem with the boundary conditions S’(xp) = f’(xo)
and S’ (x,) = f'(x,) can be obtained by applying Algorithm 3.5.

Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers xy <
X < -+ < Xy, satisfying §"(xp) = f'(xp) and S’'(x,) = f'(x,):

INPUT  n; x0,X1,...,%5 a0 = f(x0), a1 = f(x1),...,a, = f(x); FPO = f'(x);
FPN = f'(x,).

OUTPUT aj,bj,cj,dj fOI‘j = 0, 1, cee,— 1.
(Note: S(x) = S;j(x) = a; + bj(x — xj) + ¢;j(x — xj)2 +dj(x — xj)3 Jorx; <x < xj11.)
Step1 Fori=0,1,...,n—1seth; =x;1 — x.

Step 2 Setag=3(a; — ap)/ho — 3FPO;
o, = 3FPN — 3(a, — ap—1)/hu—1.

Step3 Fori=1,2,...,n—1

seto; = 3(ai+1 —a;) — i(ai —ai_1).
hi i-1
Step 4 Setly =2hy; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)
o = 0.5;
20 = ap/lo.
Step5 Fori=1,2,...,n—1
setl; = 2(xi11 — Xi—1) — hi—1pbi—1;
wi = hi/l;
zi = (0 — hi—1zi—1) /1.
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156 CHAPTER 3 = Interpolation and Polynomial Approximation

Step 6 Setl,=h,_1(2— pp_1);
in = (an - hn—lzn—l)/ln;
Cyp = Zp.

Step7 Forj=n—1,n—-2,...,0
setc; = zj — UjCj+1;
bj = (aj11 — aj)/hj — hj(cjp1 +2¢))/3;
dj = (¢j+1 — ¢))/ Bhy).
Step8 OUTPUT (Clj,bj,Cj,dj forj =0,1,...,I’l— 1),
STOP.

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, ¢), (2, €?), and (3, ¢*) to form
a new approximating function S(x). Determine the clamped spline s(x) that uses this data
and the additional information that, since f’(x) = ¢, so f'(0) = 1 and f'(3) = €.

Solution As in Example 2, we haven =3, hg = hj =hy = 1,ap =0, a; = e, ay = €7,

and a3 = e3. This together with the information that f'(0) = 1 and f’(3) = ¢’ gives the
the matrix A and the vectors b and x with the forms

210 0 3e—2) co
|1t 4 10 |3 —2e+1) _a
A=10 1 4 1" P=|3@3 2224 |0 ™ x=1,

0 0 1 2 3e? 3

The vector-matrix equation Ax = b is equivalent to the system of equations

2co 4+ ¢4 = 3(e — 2),
co+4ci +cr =3 —2e+1),
c1+4c+c3= ?a(e3 —2 + e),

¢y + 2¢3 = 36

Solving this system simultaneously for ¢y, c;, ¢; and c3 gives, to 5 decimal places,
o= %(Ze3 — 12¢* + 42¢ — 59) = 0.44468,
¢ = %(—4(33 + 24¢* — 39¢ + 28) = 1.26548,
= %(14e3 —39¢% 4 24¢ — 8) = 3.35087,
ey = %(—76»3 +42¢" — 12¢ + 4) = 9.40815.
Solving for the remaining constants in the same manner as Example 2 gives
by = 1.00000, b; =2.71016, by, =7.32652,

and

dyp = 0.27360, d; =0.69513, d, =2.01909.
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3.5 Cubic Spline Interpolation 157

This gives the clamped cubic spine

1 4+ x + 0.44468x2 + 0.27360x3, ifo<x <1,
s(x) = {2.71828 + 2.71016(x —1) + 1.26548(x —1)2 4+ 0.69513(x —1)3, if1 <x < 2,
7.38906 + 7.32652(x —2) + 3.35087(x —2)% +2.01909(x —2)3, if2 <x < 3.

The graph of the clamped spline and f(x) = e are so similar that no difference can be
seen. [

We can create the clamped cubic spline in Example 4 with the same commands we
used for the natural spline, the only change that is needed is to specify the derivative at the
endpoints. In this case we use

sn =t — Spline ([[0.,1.0],[1.0, £(1.0)], [2.0, £(2.0)],[3.0, £ (3.0)]], ¢, degree = 3,
endpoints = [1.0, 63'0])

giving essentially the same results as in the example.
We can also approximate the integral of f on [0, 3], by integrating the clamped spline.
The exact value of the integral is

3
/ e dx = e — 1 220.08554 — 1 = 19.08554.
0

Because the data is equally spaced, piecewise integrating the clamped spline results in the
same formula as in (3.22), that is,

3 1
f 50 dx = @+ +a) + 5o+ by +b)
0

1 1
+ 3(00 +c14c)+ Z(do +d) + dy).

Hence the integral approximation is

3
1
/ s(x) dx = (1 42.71828 + 7.38906) + 5(1 +2.71016 4 7.32652)
0

+ %(0.44468 + 1.26548 + 3.35087) + %(0.27360 + 0.69513 4 2.01909)
= 19.05965.
The absolute error in the integral approximation using the clamped and natural splines are
Natural : [19.08554 — 19.55229| = 0.46675
and
Clamped : [19.08554 — 19.05965| = 0.02589.

For integration purposes the clamped spline is vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f”(x) = €%,

0=5"0)~ f'0)=e'=1 and 0=S5"3)~ f"(3) = e ~ 20.

The next illustration uses a spine to approximate a curve that has no given functional
representation.
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158 CHAPTER 3 = Interpolation and Polynomial Approximation

lllustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11
7)) ) )
/U')’)»»”
- :)))))»
NS =
~———)
%pg—'
Table 3.18

x [09[13]19 [2.1]26/30[39[4.4 [47 [50[60 [7.0[80 [92 [10.5[11.3|11.6[120[12.6/13.0[133
Fo[13]15185]2.1]2.6/27|2.4]2.15]2.05|2.1]225]2.3]2.25 | 1.95] 1.4] 09] 07| 06 0.5 0.4] 0.25

Figure 3.12
fx) 4

N W b

1 2 3 4 56 7 8,9-1011 12 13 | x

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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Table 3.19 5 o b, : 4
0 0.9 1.3 5.40 0.00 —-0.25
1 1.3 1.5 0.42 —0.30 0.95
2 1.9 1.85 1.09 1.41 —-2.96
3 2.1 2.1 1.29 —0.37 —0.45
4 2.6 2.6 0.59 —1.04 0.45
5 3.0 2.7 —0.02 —0.50 0.17
6 3.9 2.4 —0.50 —0.03 0.08
7 4.4 2.15 —0.48 0.08 1.31
8 4.7 2.05 —0.07 1.27 —1.58
9 5.0 2.1 0.26 —0.16 0.04

10 6.0 2.25 0.08 —0.03 0.00
11 7.0 2.3 0.01 —0.04 —0.02
12 8.0 2.25 —-0.14 —0.11 0.02
13 9.2 1.95 —0.34 —0.05 —0.01
14 10.5 1.4 —0.53 —0.10 —0.02
15 11.3 0.9 —0.73 —0.15 1.21
16 11.6 0.7 —0.49 0.94 —0.84
17 12.0 0.6 —0.14 —0.06 0.04
18 12.6 0.5 —0.18 0.00 —0.45
19 13.0 0.4 —-0.39 —0.54 0.60
20 13.3 0.25
Figure 3.13
S) a
4
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0’.\'
2 y ~
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For comparison purposes, Figure 3.14 gives an illustration of the curve that is generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case is of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck, in flight or otherwise.
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Figure 3.14
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To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. O

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57-58.

Let f € C*a,b] with max,<,<p | f@ (x)| = M. If S is the unique clamped cubic spline

interpolant to f with respect to the nodes a = xp < x; < --- < x, = b, then for all x in
[a, B],
SM .
[f(x) —SX)| < ﬂoén;il(xjﬂ—xj) ) n

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827-835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [xo, x,] unless the function f happens
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3.5 Cubic Spline Interpolation 161

to nearly satisfy f”(xo) = f”(x,) = 0. An alternative to the natural boundary condition
that does not require knowledge of the derivative of f is the not-a-knot condition, (see
[Deb2], pp. 55-56). This condition requires that S/ (x) be continuous at x| and at x,,_;.

EXERCISE SET 35

1. Determine the natural cubic spline S that interpolates the data f(0) =0, (1) = 1, and f(2) = 2.
Determine the clamped cubic spline s that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and
satisfies s'(0) = s'(2) = 1.

3.  Construct the natural cubic spline for the following data.

a. b. x S
8.3 | 17.56492 0.8 | 0.22363362
8.6 | 18.50515 1.0 | 0.65809197
c. X ‘ fx) d x fx)
—-0.5 —0.0247500 0.1 | —0.62049958
—0.25 0.3349375 0.2 | —0.28398668
0 1.1010000 0.3 0.00660095
0.4 0.24842440

4. Construct the natural cubic spline for the following data.

a  x f b. x fx)
0 1.00000 —0.25 | 1.33203
0.5 | 2.71828 0.25 | 0.800781
c. X fx) d. X ‘ f(x)
0.1 | —0.29004996 -1 0.86199480
0.2 | —0.56079734 —0.5 | 0.95802009
0.3 | —0.81401972 0 1.0986123

0.5 | 1.2943767
5.  Thedatain Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f(x) and f’(x), and calculate the actual error.
a. f(x) =xlnx; approximate f(8.4) and f'(8.4).
b. f(x) =sin(e* —2); approximate f(0.9) and f'(0.9).
¢ f(x)=x’+4.001x* +4.002x + 1.101; approximate f(—1) and f'(—1).
d. f(x) =xcosx —2x>+3x—1; approximate f(0.25) and f'(0.25).
6. The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed
in Exercise 4 for the given value of x to approximate f(x) and f’(x), and calculate the actual error.
a. fx) = > approximate f(0.43) and f/(0.43).
b. f(x)=x*—x*+x>—x+1; approximate £(0) and f'(0).
c¢. f(x) =x%*cosx —3x; approximate f(0.18) and f’(0.18).
d. f(x)=In(e*+2); approximate f(0.25) and f'(0.25).
7.  Construct the clamped cubic spline using the data of Exercise 3 and the fact that
a. f’(8.3) =3.116256 and f'(8.6) = 3.151762
b. f/(0.8) =2.1691753 and f’(1.0) = 2.0466965
c. f'(—0.5) =0.7510000 and f'(0) = 4.0020000
d. f'(0.1) =3.58502082 and f'(0.4) = 2.16529366
8.  Construct the clamped cubic spline using the data of Exercise 4 and the fact that
a. f’(0) =2and f'(0.5) = 5.43656
b. f'(—0.25) = 0.437500 and f’(0.25) = —0.625000
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