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2.4 Error Analysis for Iterative Methods

In this section we investigate the order of convergence of functional iteration schemes and,
as a means of obtaining rapid convergence, rediscover Newton’s method. We also consider
ways of accelerating the convergence of Newton’s method in special circumstances. First,
however, we need a new procedure for measuring how rapidly a sequence converges.

Order of Convergence

Definition 2.7 Suppose { pn}∞n=0 is a sequence that converges to p, with pn �= p for all n. If positive constants
λ and α exist with

lim
n→∞
| pn+1 − p|
| pn − p|α = λ,

then { pn}∞n=0 converges to p of order α, with asymptotic error constant λ.

An iterative technique of the form pn = g( pn−1) is said to be of order α if the sequence
{ pn}∞n=0 converges to the solution p = g( p) of order α.

In general, a sequence with a high order of convergence converges more rapidly than a
sequence with a lower order. The asymptotic constant affects the speed of convergence but
not to the extent of the order. Two cases of order are given special attention.

(i) If α = 1 (and λ < 1), the sequence is linearly convergent.

(ii) If α = 2, the sequence is quadratically convergent.

The next illustration compares a linearly convergent sequence to one that is quadrati-
cally convergent. It shows why we try to find methods that produce higher-order convergent
sequences.

Illustration Suppose that { pn}∞n=0 is linearly convergent to 0 with

lim
n→∞
| pn+1|
| pn| = 0.5

and that { p̃n}∞n=0 is quadratically convergent to 0 with the same asymptotic error constant,

lim
n→∞
|p̃n+1|
|p̃n|2 = 0.5.

For simplicity we assume that for each n we have

| pn+1|
| pn| ≈ 0.5 and

|p̃n+1|
|p̃n|2 ≈ 0.5.

For the linearly convergent scheme, this means that

| pn − 0| = | pn| ≈ 0.5| pn−1| ≈ (0.5)2| pn−2| ≈ · · · ≈ (0.5)n| p0|,
whereas the quadratically convergent procedure has

|p̃n − 0| = |p̃n| ≈ 0.5|p̃n−1|2 ≈ (0.5)[0.5|p̃n−2|2]2 = (0.5)3|p̃n−2|4

≈ (0.5)3[(0.5)|p̃n−3|2]4 = (0.5)7|p̃n−3|8

≈ · · · ≈ (0.5)2
n−1|p̃0|2n

.
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80 C H A P T E R 2 Solutions of Equations in One Variable

Table 2.7 illustrates the relative speed of convergence of the sequences to 0 if | p0| = |p̃0| = 1.

Table 2.7 Linear Convergence Quadratic Convergence
Sequence { pn}∞n=0 Sequence { p̃n}∞n=0

n (0.5)n (0.5)2
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of 0 by the seventh term. At least
126 terms are needed to ensure this accuracy for the linearly convergent sequence. �

Quadratically convergent sequences are expected to converge much quicker than those
that converge only linearly, but the next result implies that an arbitrary technique that
generates a convergent sequences does so only linearly.

Theorem 2.8 Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that g′ is
continuous on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b).

If g′( p) �= 0, then for any number p0 �= p in [a, b], the sequence

pn = g( pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a, b].

Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con-
verges to p. Since g′ exists on (a, b), we can apply the Mean Value Theorem to g to show
that for any n,

pn+1 − p = g( pn)− g( p) = g′(ξn)( pn − p),

where ξn is between pn and p. Since { pn}∞n=0 converges to p, we also have {ξn}∞n=0 converging
to p. Since g′ is continuous on (a, b), we have

lim
n→∞ g′(ξn) = g′( p).

Thus

lim
n→∞

pn+1 − p

pn − p
= lim

n→∞ g′(ξn) = g′( p) and lim
n→∞
| pn+1 − p|
| pn − p| = |g

′( p)|.

Hence, if g′( p) �= 0, fixed-point iteration exhibits linear convergence with asymptotic error
constant |g′( p)|.
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2.4 Error Analysis for Iterative Methods 81

Theorem 2.8 implies that higher-order convergence for fixed-point methods of the form
g( p) = p can occur only when g′( p) = 0. The next result describes additional conditions
that ensure the quadratic convergence we seek.

Theorem 2.9 Let p be a solution of the equation x = g(x). Suppose that g′( p) = 0 and g′′ is continuous
with |g′′(x)| < M on an open interval I containing p. Then there exists a δ > 0 such that,
for p0 ∈ [p − δ, p + δ], the sequence defined by pn = g( pn−1), when n ≥ 1, converges at
least quadratically to p. Moreover, for sufficiently large values of n,

| pn+1 − p| < M

2
| pn − p|2.

Proof Choose k in (0, 1) and δ > 0 such that on the interval [p−δ, p+δ], contained in I , we
have |g′(x)| ≤ k and g′′ continuous. Since |g′(x)| ≤ k < 1, the argument used in the proof
of Theorem 2.6 in Section 2.3 shows that the terms of the sequence { pn}∞n=0 are contained
in [p− δ, p+ δ]. Expanding g(x) in a linear Taylor polynomial for x ∈ [p− δ, p+ δ] gives

g(x) = g( p)+ g′( p)(x − p)+ g′′(ξ)
2

(x − p)2,

where ξ lies between x and p. The hypotheses g( p) = p and g′( p) = 0 imply that

g(x) = p+ g′′(ξ)
2

(x − p)2.

In particular, when x = pn,

pn+1 = g( pn) = p+ g′′(ξn)

2
( pn − p)2,

with ξn between pn and p. Thus,

pn+1 − p = g′′(ξn)

2
( pn − p)2.

Since |g′(x)| ≤ k < 1 on [p− δ, p+ δ] and g maps [p− δ, p+ δ] into itself, it follows from
the Fixed-Point Theorem that { pn}∞n=0 converges to p. But ξn is between p and pn for each
n, so {ξn}∞n=0 also converges to p, and

lim
n→∞
| pn+1 − p|
| pn − p|2 =

|g′′( p)|
2

.

This result implies that the sequence { pn}∞n=0 is quadratically convergent if g′′( p) �= 0 and
of higher-order convergence if g′′( p) = 0.

Because g′′ is continuous and strictly bounded by M on the interval [p− δ, p+ δ], this
also implies that, for sufficiently large values of n,

| pn+1 − p| < M

2
| pn − p|2.

Theorems 2.8 and 2.9 tell us that our search for quadratically convergent fixed-point
methods should point in the direction of functions whose derivatives are zero at the fixed
point. That is:

• For a fixed point method to converge quadratically we need to have both g( p) = p, and
g′( p) = 0.
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82 C H A P T E R 2 Solutions of Equations in One Variable

The easiest way to construct a fixed-point problem associated with a root-finding prob-
lem f (x) = 0 is to add or subtract a multiple of f (x) from x. Consider the sequence

pn = g( pn−1), for n ≥ 1,

for g in the form

g(x) = x − φ(x)f (x),
where φ is a differentiable function that will be chosen later.

For the iterative procedure derived from g to be quadratically convergent, we need to
have g′( p) = 0 when f ( p) = 0. Because

g′(x) = 1− φ′(x)f (x)− f ′(x)φ(x),
and f ( p) = 0, we have

g′( p) = 1− φ′( p)f ( p)− f ′( p)φ( p) = 1− φ′( p) · 0− f ′( p)φ( p) = 1− f ′( p)φ( p),

and g′( p) = 0 if and only if φ( p) = 1/f ′( p).
If we let φ(x) = 1/f ′(x), then we will ensure that φ( p) = 1/f ′( p) and produce the

quadratically convergent procedure

pn = g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
.

This, of course, is simply Newton’s method. Hence

• If f ( p) = 0 and f ′( p) �= 0, then for starting values sufficiently close to p, Newton’s
method will converge at least quadratically.

Multiple Roots

In the preceding discussion, the restriction was made that f ′( p) �= 0, where p is the solution
to f (x) = 0. In particular, Newton’s method and the Secant method will generally give
problems if f ′( p) = 0 when f ( p) = 0. To examine these difficulties in more detail, we
make the following definition.

Definition 2.10 A solution p of f (x) = 0 is a zero of multiplicity m of f if for x �= p, we can write
f (x) = (x − p)mq(x), where limx→p q(x) �= 0.

In essence, q(x) represents that portion of f (x) that does not contribute to the zero of
f . The following result gives a means to easily identify simple zeros of a function, those
that have multiplicity one.

For polynomials, p is a zero
of multiplicity m of f if
f (x) = (x − p)mq(x), where
q( p) �= 0.

Theorem 2.11 The function f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f ( p) = 0, but
f ′( p) �= 0.

Proof If f has a simple zero at p, then f ( p) = 0 and f (x) = (x − p)q(x), where
limx→p q(x) �= 0. Since f ∈ C1[a, b],

f ′( p) = lim
x→p

f ′(x) = lim
x→p
[q(x)+ (x − p)q′(x)] = lim

x→p
q(x) �= 0.

Conversely, if f ( p) = 0, but f ′( p) �= 0, expand f in a zeroth Taylor polynomial about p.
Then

f (x) = f ( p)+ f ′(ξ(x))(x − p) = (x − p)f ′(ξ(x)),
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2.4 Error Analysis for Iterative Methods 83

where ξ(x) is between x and p. Since f ∈ C1[a, b],
lim
x→p

f ′(ξ(x)) = f ′
(

lim
x→p

ξ(x)
)
= f ′( p) �= 0.

Letting q = f ′ ◦ ξ gives f (x) = (x− p)q(x), where limx→p q(x) �= 0. Thus f has a simple
zero at p.

The following generalization of Theorem 2.11 is considered in Exercise 12.

Theorem 2.12 The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only if

0 = f ( p) = f ′( p) = f ′′( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.

The result in Theorem 2.12 implies that an interval about p exists where Newton’s
method converges quadratically to p for any initial approximation p0 = p, provided that p
is a simple zero. The following example shows that quadratic convergence might not occur
if the zero is not simple.

Example 1 Let f (x) = ex − x− 1. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that
Newton’s method with p0 = 1 converges to this zero but not quadratically.

Solution (a) We have

f (x) = ex − x − 1, f ′(x) = ex − 1 and f ′′(x) = ex,

so

f (0) = e0 − 0− 1 = 0, f ′(0) = e0 − 1 = 0 and f ′′(0) = e0 = 1.

Theorem 2.12 implies that f has a zero of multiplicity 2 at x = 0.

(b) The first two terms generated by Newton’s method applied to f with p0 = 1 are

p1 = p0 − f ( p0)

f ′( p0)
= 1− e− 2

e− 1
≈ 0.58198,

and

p2 = p1 − f ( p1)

f ′( p1)
≈ 0.58198− 0.20760

0.78957
≈ 0.31906.

The first sixteen terms of the sequence generated by Newton’s method are shown in Table
2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is shown
in Figure 2.12.

Table 2.8

n pn

0 1.0
1 0.58198
2 0.31906
3 0.16800
4 0.08635
5 0.04380
6 0.02206
7 0.01107
8 0.005545
9 2.7750× 10−3

10 1.3881× 10−3

11 6.9411× 10−4

12 3.4703× 10−4

13 1.7416× 10−4

14 8.8041× 10−5

15 4.2610× 10−5

16 1.9142× 10−6

Figure 2.12

x�1 1

1

e � 2

e�1

f (x) � ex � x � 1

f (x)

(�1, e�1)

(1, e � 2)
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84 C H A P T E R 2 Solutions of Equations in One Variable

One method of handling the problem of multiple roots of a function f is to define

μ(x) = f (x)

f ′(x)
.

If p is a zero of f of multiplicity m with f (x) = (x − p)mq(x), then

μ(x) = (x − p)mq(x)

m(x − p)m−1q(x)+ (x − p)mq′(x)

= (x − p)
q(x)

mq(x)+ (x − p)q′(x)

also has a zero at p. However, q( p) �= 0, so

q( p)

mq( p)+ ( p− p)q′( p)
= 1

m
�= 0,

and p is a simple zero of μ(x). Newton’s method can then be applied to μ(x) to give

g(x) = x − μ(x)

μ′(x)
= x − f (x)/f ′(x)

{[f ′(x)]2 − [f (x)][f ′′(x)]}/[f ′(x)]2
which simplifies to

g(x) = x − f (x)f ′(x)
[f ′(x)]2 − f (x)f ′′(x) . (2.13)

If g has the required continuity conditions, functional iteration applied to g will be
quadratically convergent regardless of the multiplicity of the zero of f . Theoretically, the
only drawback to this method is the additional calculation of f ′′(x) and the more laborious
procedure of calculating the iterates. In practice, however, multiple roots can cause serious
round-off problems because the denominator of (2.13) consists of the difference of two
numbers that are both close to 0.

Example 2 In Example 1 it was shown that f (x) = ex − x− 1 has a zero of multiplicity 2 at x = 0 and
that Newton’s method with p0 = 1 converges to this zero but not quadratically. Show that the
modification of Newton’s method as given in Eq. (2.13) improves the rate of convergence.

Solution Modified Newton’s method gives

p1 = p0 − f ( p0)f
′( p0)

f ′( p0)2 − f ( p0)f ′′( p0)
= 1− (e− 2)(e− 1)

(e− 1)2 −( e− 2)e
≈ −2.3421061× 10−1.

This is considerably closer to 0 than the first term using Newton’s method, which was
0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results
were obtained using a system with ten digits of precision. The relative lack of improvement
in the last two entries is due to the fact that using this system both the numerator and the
denominator approach 0. Consequently there is a loss of significant digits of accuracy as
the approximations approach 0.

Table 2.9

n pn

1 −2.3421061× 10−1

2 −8.4582788× 10−3

3 −1.1889524× 10−5

4 −6.8638230× 10−6

5 −2.8085217× 10−7

The following illustrates that the modified Newton’s method converges quadratically
even when in the case of a simple zero.

Illustration In Section 2.2 we found that a zero of f (x) = x3 + 4x2 − 10 = 0 is p = 1.36523001.
Here we will compare convergence for a simple zero using both Newton’s method and the
modified Newton’s method listed in Eq. (2.13). Let
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2.4 Error Analysis for Iterative Methods 85

(i) pn = pn−1 − p3
n−1 + 4p2

n−1 − 10

3p2
n−1 + 8pn−1

, from Newton’s method

and, from the Modified Newton’s method given by Eq. (2.13),

(ii) pn = pn−1 − ( p3
n−1 + 4p2

n−1 − 10)(3p2
n−1 + 8pn−1)

(3p2
n−1 + 8pn−1)2 − ( p3

n−1 + 4p2
n−1 − 10)(6pn−1 + 8)

.

With p0 = 1.5, we have

Newton’s method

p1 = 1.37333333, p2 = 1.36526201, and p3 = 1.36523001.

Modified Newton’s method

p1 = 1.35689898, p2 = 1.36519585, and p3 = 1.36523001.

Both methods are rapidly convergent to the actual zero, which is given by both methods as
p3. Note, however, that in the case of a simple zero the original Newton’s method requires
substantially less computation. �

Maple contains Modified Newton’s method as described in Eq. (2.13) in its Numerical-
Analysis package. The options for this command are the same as those for the Bisection
method. To obtain results similar to those in Table 2.9 we can use

with(Student[NumericalAnalysis])

f := ex − x − 1

ModifiedNewton
(
f , x = 1.0, tolerance = 10−10, output = sequence, maxiterations = 20

)
Remember that there is sensitivity to round-off error in these calculations, so you might

need to reset Digits in Maple to get the exact values in Table 2.9.

E X E R C I S E S E T 2.4

1. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. x2 − 2xe−x + e−2x = 0, for 0 ≤ x ≤ 1

b. cos(x +√2)+ x(x/2+√2) = 0, for −2 ≤ x ≤ −1

c. x3 − 3x2(2−x)+ 3x(4−x)− 8−x = 0, for 0 ≤ x ≤ 1

d. e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, for −1 ≤ x ≤ 0

2. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. 1− 4x cos x + 2x2 + cos 2x = 0, for 0 ≤ x ≤ 1

b. x2 + 6x5 + 9x4 − 2x3 − 6x2 + 1 = 0, for −3 ≤ x ≤ −2

c. sin 3x + 3e−2x sin x − 3e−x sin 2x − e−3x = 0, for 3 ≤ x ≤ 4

d. e3x − 27x6 + 27x4ex − 9x2e2x = 0, for 3 ≤ x ≤ 5

3. Repeat Exercise 1 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 1?
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4. Repeat Exercise 2 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 2?

5. Use Newton’s method and the modified Newton’s method described in Eq. (2.13) to find a solution
accurate to within 10−5 to the problem

e6x + 1.441e2x − 2.079e4x − 0.3330 = 0, for − 1 ≤ x ≤ 0.

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the solutions to the results in 1(d) and 2(d).

6. Show that the following sequences converge linearly to p = 0. How large must n be before |pn − p| ≤
5× 10−2?

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

7. a. Show that for any positive integer k, the sequence defined by pn = 1/nk converges linearly to
p = 0.

b. For each pair of integers k and m, determine a number N for which 1/Nk < 10−m.

8. a. Show that the sequence pn = 10−2n
converges quadratically to 0.

b. Show that the sequence pn = 10−nk
does not converge to 0 quadratically, regardless of the size

of the exponent k > 1.

9. a. Construct a sequence that converges to 0 of order 3.

b. Suppose α > 1. Construct a sequence that converges to 0 zero of order α.

10. Suppose p is a zero of multiplicity m of f , where f (m) is continuous on an open interval containing
p. Show that the following fixed-point method has g′( p) = 0:

g(x) = x − mf (x)

f ′(x)
.

11. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly
to 0.

12. Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.11 to show that f has
a zero of multiplicity m at p if and only if

0 = f ( p) = f ′( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.

13. The iterative method to solve f (x) = 0, given by the fixed-point method g(x) = x, where

pn = g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
− f ′′( pn−1)

2f ′( pn−1)

[
f ( pn−1)

f ′( pn−1)

]2

, for n = 1, 2, 3, . . . ,

has g′( p) = g′′( p) = 0. This will generally yield cubic (α = 3) convergence. Expand the analysis of
Example 1 to compare quadratic and cubic convergence.

14. It can be shown (see, for example, [DaB], pp. 228–229) that if { pn}∞n=0 are convergent Secant
method approximations to p, the solution to f (x) = 0, then a constant C exists with |pn+1 − p| ≈
C |pn − p| |pn−1 − p| for sufficiently large values of n. Assume { pn} converges to p of order α, and
show that α = (1+√5)/2. (Note: This implies that the order of convergence of the Secant method
is approximately 1.62).

2.5 Accelerating Convergence

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s �2 method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or application.
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Aitken’s �2 Method
Alexander Aitken (1895-1967)
used this technique in 1926 to
accelerate the rate of convergence
of a series in a paper on algebraic
equations [Ai]. This process is
similar to one used much earlier
by the Japanese mathematician
Takakazu Seki Kowa
(1642-1708).

Suppose { pn}∞n=0 is a linearly convergent sequence with limit p. To motivate the construction
of a sequence {p̂n}∞n=0 that converges more rapidly to p than does { pn}∞n=0, let us first assume
that the signs of pn − p, pn+1 − p, and pn+2 − p agree and that n is sufficiently large that

pn+1 − p

pn − p
≈ pn+2 − p

pn+1 − p
.

Then

( pn+1 − p)2 ≈ ( pn+2 − p)( pn − p),

so

p2
n+1 − 2pn+1p+ p2 ≈ pn+2pn − ( pn + pn+2)p+ p2

and

( pn+2 + pn − 2pn+1)p ≈ pn+2pn − p2
n+1.

Solving for p gives

p ≈ pn+2pn − p2
n+1

pn+2 − 2pn+1 + pn
.

Adding and subtracting the terms p2
n and 2pnpn+1 in the numerator and grouping terms

appropriately gives

p ≈ pnpn+2 − 2pnpn+1 + p2
n − p2

n+1 + 2pnpn+1 − p2
n

pn+2 − 2pn+1 + pn

= pn( pn+2 − 2pn+1 + pn)− ( p2
n+1 − 2pnpn+1 + p2

n)

pn+2 − 2pn+1 + pn

= pn − ( pn+1 − pn)
2

pn+2 − 2pn+1 + pn
.

Aitken’s �2 method is based on the assumption that the sequence { p̂n}∞n=0, defined by

p̂n = pn − ( pn+1 − pn)
2

pn+2 − 2pn+1 + pn
, (2.14)

converges more rapidly to p than does the original sequence { pn}∞n=0.

Example 1 The sequence { pn}∞n=1, where pn = cos(1/n), converges linearly to p = 1. Determine the
first five terms of the sequence given by Aitken’s �2 method.

Solution In order to determine a term p̂n of the Aitken’s �2 method sequence we need to
have the terms pn, pn+1, and pn+2 of the original sequence. So to determine p̂5 we need
the first 7 terms of { pn}. These are given in Table 2.10. It certainly appears that { p̂n}∞n=1
converges more rapidly to p = 1 than does { pn}∞n=1.

Table 2.10

n pn p̂n

1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

The� notation associated with this technique has its origin in the following definition.
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Definition 2.13 For a given sequence { pn}∞n=0, the forward difference �pn (read “delta pn”) is defined by

�pn = pn+1 − pn, for n ≥ 0.

Higher powers of the operator � are defined recursively by

�kpn = �(�k−1pn), for k ≥ 2.

The definition implies that

�2pn = �( pn+1 − pn) = �pn+1 −�pn = ( pn+2 − pn+1)− ( pn+1 − pn).

So�2pn = pn+2 − 2pn+1 + pn, and the formula for p̂n given in Eq. (2.14) can be written as

p̂n = pn − (�pn)
2

�2pn
, for n ≥ 0. (2.15)

To this point in our discussion of Aitken’s�2 method, we have stated that the sequence
{p̂n}∞n=0, converges to p more rapidly than does the original sequence { pn}∞n=0, but we have
not said what is meant by the term “more rapid” convergence. Theorem 2.14 explains and
justifies this terminology. The proof of this theorem is considered in Exercise 16.

Theorem 2.14 Suppose that { pn}∞n=0 is a sequence that converges linearly to the limit p and that

lim
n→∞

pn+1 − p

pn − p
< 1.

Then the Aitken’s�2 sequence {p̂n}∞n=0 converges to p faster than { pn}∞n=0 in the sense that

lim
n→∞

p̂n − p

pn − p
= 0.

Steffensen’s Method

Johan Frederik Steffensen
(1873–1961) wrote an influential
book entitled Interpolation in
1927.

By applying a modification of Aitken’s �2 method to a linearly convergent sequence ob-
tained from fixed-point iteration, we can accelerate the convergence to quadratic. This
procedure is known as Steffensen’s method and differs slightly from applying Aitken’s
�2 method directly to the linearly convergent fixed-point iteration sequence. Aitken’s �2

method constructs the terms in order:

p0, p1 = g( p0), p2 = g( p1), p̂0 = {�2}( p0),

p3 = g( p2), p̂1 = {�2}( p1), . . . ,

where {�2} indicates that Eq. (2.15) is used. Steffensen’s method constructs the same
first four terms, p0, p1, p2, and p̂0. However, at this step we assume that p̂0 is a better
approximation to p than is p2 and apply fixed-point iteration to p̂0 instead of p2. Using this
notation, the sequence is

p(0)0 , p(0)1 = g( p(0)0 ), p(0)2 = g( p(0)1 ), p(1)0 = {�2}( p(0)0 ), p(1)1 = g( p(1)0 ), . . . .

Every third term of the Steffensen sequence is generated by Eq. (2.15); the others use
fixed-point iteration on the previous term. The process is described in Algorithm 2.6.
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ALGORITHM

2.6
Steffensen’s

To find a solution to p = g( p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p1 = g( p0); (Compute p(i−1)
1 .)

p2 = g( p1); (Compute p(i−1)
2 .)

p = p0 − ( p1 − p0)
2/( p2 − 2p1 + p0). (Compute p(i)0 .)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(Procedure completed unsuccessfully.)
STOP.

Note that �2pn might be 0, which would introduce a 0 in the denominator of the next
iterate. If this occurs, we terminate the sequence and select p(n−1)

2 as the best approximation.

Illustration To solve x3 + 4x2 − 10 = 0 using Steffensen’s method, let x3 + 4x2 = 10, divide by x+ 4,
and solve for x. This procedure produces the fixed-point method

g(x) =
(

10

x + 4

)1/2

.

We considered this fixed-point method in Table 2.2 column (d) of Section 2.2.

Applying Steffensen’s procedure with p0 = 1.5 gives the values in Table 2.11. The iterate
p(2)0 = 1.365230013 is accurate to the ninth decimal place. In this example, Steffensen’s
method gave about the same accuracy as Newton’s method applied to this polynomial.
These results can be seen in the Illustration at the end of Section 2.4. �

Table 2.11 k p(k)0 p(k)1 p(k)2

0 1.5 1.348399725 1.367376372
1 1.365265224 1.365225534 1.365230583
2 1.365230013

From the Illustration, it appears that Steffensen’s method gives quadratic convergence
without evaluating a derivative, and Theorem 2.14 states that this is the case. The proof of
this theorem can be found in [He2], pp. 90–92, or [IK], pp. 103–107.
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Theorem 2.15 Suppose that x = g(x) has the solution p with g′( p) �= 1. If there exists a δ > 0 such
that g ∈ C3[p − δ, p + δ], then Steffensen’s method gives quadratic convergence for any
p0 ∈ [p− δ, p+ δ].

Steffensen’s method can be implemented in Maple with the NumericalAnalysis pack-
age. For example, after entering the function

g :=
√

10

x + 4

the Maple command

Steffensen( fixedpointiterator = g, x = 1.5, tolerance = 10−8, output = information,
maxiterations = 20)

produces the results in Table 2.11, as well as an indication that the final approximation has
a relative error of approximately 7.32× 10−10.

E X E R C I S E S E T 2.5

1. The following sequences are linearly convergent. Generate the first five terms of the sequence {p̂n}
using Aitken’s �2 method.

a. p0 = 0.5, pn = (2− epn−1 + p2
n−1)/3, n ≥ 1

b. p0 = 0.75, pn = (epn−1/3)1/2, n ≥ 1

c. p0 = 0.5, pn = 3−pn−1 , n ≥ 1

d. p0 = 0.5, pn = cos pn−1, n ≥ 1

2. Consider the function f (x) = e6x+3(ln 2)2e2x−(ln 8)e4x−(ln 2)3. Use Newton’s method with p0 = 0
to approximate a zero of f . Generate terms until | pn+1 − pn| < 0.0002. Construct the sequence {p̂n}.
Is the convergence improved?

3. Let g(x) = cos(x − 1) and p(0)0 = 2. Use Steffensen’s method to find p(1)0 .

4. Let g(x) = 1+ (sin x)2 and p(0)0 = 1. Use Steffensen’s method to find p(1)0 and p(2)0 .

5. Steffensen’s method is applied to a function g(x) using p(0)0 = 1 and p(0)2 = 3 to obtain p(1)0 = 0.75.
What is p(0)1 ?

6. Steffensen’s method is applied to a function g(x) using p(0)0 = 1 and p(0)1 =
√

2 to obtain p(1)0 = 2.7802.
What is p(0)2 ?

7. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x3 − x− 1 = 0 that lies in [1, 2],
and compare this to the results of Exercise 6 of Section 2.2.

8. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x − 2−x = 0 that lies in [0, 1],
and compare this to the results of Exercise 8 of Section 2.2.

9. Use Steffensen’s method with p0 = 2 to compute an approximation to
√

3 accurate to within 10−4.
Compare this result with those obtained in Exercise 9 of Section 2.2 and Exercise 12 of Section 2.1.

10. Use Steffensen’s method with p0 = 3 to compute an approximation to 3
√

25 accurate to within 10−4.
Compare this result with those obtained in Exercise 10 of Section 2.2 and Exercise 13 of Section 2.1.

11. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.

a. x = (2− ex + x2)/3, where g is the function in Exercise 11(a) of Section 2.2.

b. x = 0.5(sin x + cos x), where g is the function in Exercise 11(f) of Section 2.2.

c. x = (ex/3)1/2, where g is the function in Exercise 11(c) of Section 2.2.

d. x = 5−x , where g is the function in Exercise 11(d) of Section 2.2.

12. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.

a. 2+ sin x − x = 0, where g is the function in Exercise 12(a) of Section 2.2.

b. x3 − 2x − 5 = 0, where g is the function in Exercise 12(b) of Section 2.2.
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2.6 Zeros of Polynomials and Müller’s Method 91

c. 3x2 − ex = 0, where g is the function in Exercise 12(c) of Section 2.2.

d. x − cos x = 0, where g is the function in Exercise 12(d) of Section 2.2.

13. The following sequences converge to 0. Use Aitken’s�2 method to generate {p̂n} until |p̂n| ≤ 5×10−2:

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

14. A sequence { pn} is said to be superlinearly convergent to p if

lim
n→∞
| pn+1 − p|
| pn − p| = 0.

a. Show that if pn → p of order α for α > 1, then { pn} is superlinearly convergent to p.

b. Show that pn = 1
nn is superlinearly convergent to 0 but does not converge to 0 of order α for any

α > 1.

15. Suppose that { pn} is superlinearly convergent to p. Show that

lim
n→∞
| pn+1 − pn|
| pn − p| = 1.

16. Prove Theorem 2.14. [Hint: Let δn = ( pn+1 − p)/( pn − p)− λ, and show that limn→∞ δn = 0. Then
express (p̂n+1 − p)/( pn − p) in terms of δn, δn+1, and λ.]

17. Let Pn(x) be the nth Taylor polynomial for f (x) = ex expanded about x0 = 0.

a. For fixed x, show that pn = Pn(x) satisfies the hypotheses of Theorem 2.14.

b. Let x = 1, and use Aitken’s �2 method to generate the sequence p̂0, . . . , p̂8.

c. Does Aitken’s method accelerate convergence in this situation?

2.6 Zeros of Polynomials and Müller’s Method

A polynomial of degree n has the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where the ai’s, called the coefficients of P, are constants and an �= 0. The zero function,
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Algebraic Polynomials

Theorem 2.16 (Fundamental Theorem of Algebra)
If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then P(x) = 0
has at least one ( possibly complex) root.

Although the Fundamental Theorem of Algebra is basic to any study of elementary
functions, the usual proof requires techniques from the study of complex function theory.
The reader is referred to [SaS], p. 155, for the culmination of a systematic development of
the topics needed to prove the Theorem.

Example 1 Determine all the zeros of the polynomial P(x) = x3 − 5x2 + 17x − 13.

Solution It is easily verified that P(1) = 1− 5+ 17− 13 = 0. so x = 1 is a zero of P and
(x − 1) is a factor of the polynomial. Dividing P(x) by x − 1 gives

P(x) = (x − 1)(x2 − 4x + 13).
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To determine the zeros of x2 − 4x + 13 we use the quadratic formula in its standard form,
which gives the complex zeros

−(−4)±√(−4)2 − 4(1)(13)

2(1)
= 4±√−36

2
= 2± 3i.

Hence the third-degree polynomial P(x) has three zeros, x1 = 1, x2 = 2 − 3i, and
x2 = 2+ 3i.

Carl Friedrich Gauss
(1777–1855), one of the greatest
mathematicians of all time,
proved the Fundamental Theorem
of Algebra in his doctoral
dissertation and published it in
1799. He published different
proofs of this result throughout
his lifetime, in 1815, 1816, and as
late as 1848. The result had been
stated, without proof, by Albert
Girard (1595–1632), and partial
proofs had been given by Jean
d’Alembert (1717–1783), Euler,
and Lagrange.

In the preceding example we found that the third-degree polynomial had three distinct
zeros. An important consequence of the Fundamental Theorem of Algebra is the following
corollary. It states that this is always the case, provided that when the zeros are not distinct
we count the number of zeros according to their multiplicities.

Corollary 2.17 If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then there exist
unique constants x1, x2, . . ., xk , possibly complex, and unique positive integers m1, m2, . . .,
mk , such that

∑k
i=1 mi = n and

P(x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)
mk .

By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero
xi is counted as many times as its multiplicity mi, a polynomial of degree n has exactly n
zeros.

The following corollary of the Fundamental Theorem of Algebra is used often in this
section and in later chapters.

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If x1, x2, . . . , xk , with k > n, are
distinct numbers with P(xi) = Q(xi) for i = 1, 2, . . . , k, then P(x) = Q(x) for all values
of x.

This result implies that to show that two polynomials of degree less than or equal to n
are the same, we only need to show that they agree at n+ 1 values. This will be frequently
used, particularly in Chapters 3 and 8.

Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P′(x) at specified values. Since P(x) and P′(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and n additions to evaluate an arbitrary
nth-degree polynomial.

William Horner (1786–1837) was
a child prodigy who became
headmaster of a school in Bristol
at age 18. Horner’s method for
solving algebraic equations
was published in 1819 in the
Philosophical Transactions of the
Royal Society.

Theorem 2.19 (Horner’s Method)
Let

P(x) = anxn + an−1xn−1 + · · · + a1x + a0.

Define bn = an and

bk = ak + bk+1x0, for k = n− 1, n− 2, . . . , 1, 0.
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Then b0 = P(x0). Moreover, if

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

then

P(x) = (x − x0)Q(x)+ b0.

Paolo Ruffini (1765–1822) had
described a similar method which
won him the gold medal from the
Italian Mathematical Society for
Science. Neither Ruffini nor
Horner was the first to discover
this method; it was known in
China at least 500 years earlier.

Proof By the definition of Q(x),

(x − x0)Q(x)+ b0 = (x − x0)(bnxn−1 + · · · + b2x + b1)+ b0

= (bnxn + bn−1xn−1 + · · · + b2x2 + b1x)

− (bnx0xn−1 + · · · + b2x0x + b1x0)+ b0

= bnxn + (bn−1 − bnx0)x
n−1 + · · · + (b1 − b2x0)x + (b0 − b1x0).

By the hypothesis, bn = an and bk − bk+1x0 = ak , so

(x − x0)Q(x)+ b0 = P(x) and b0 = P(x0).

Example 2 Use Horner’s method to evaluate P(x) = 2x4 − 3x2 + 3x − 4 at x0 = −2.

Solution When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient Coefficient Coefficient Coefficient Constant
of x4 of x3 of x2 of x term

x0 = −2 a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4
b4x0 = −4 b3x0 = 8 b2x0 = −10 b1x0 = 14

b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

So,

P(x) = (x + 2)(2x3 − 4x2 + 5x − 7)+ 10.
The word synthetic has its roots
in various languages. In standard
English it generally provides the
sense of something that is “false”
or “substituted”. But in
mathematics it takes the form of
something that is “grouped
together”. Synthetic geometry
treats shapes as whole, rather
than as individual objects, which
is the style in analytic geometry.
In synthetic division of
polynomials, the various powers
of the variables are not explicitly
given but kept grouped together.

An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x − x0)Q(x)+ b0,

where

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

differentiating with respect to x gives

P′(x) = Q(x)+ (x − x0)Q
′(x) and P′(x0) = Q(x0). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P′(x) can be evaluated in the same manner.
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Example 3 Find an approximation to a zero of

P(x) = 2x4 − 3x2 + 3x − 4,

using Newton’s method with x0 = −2 and synthetic division to evaluate P(xn) and P′(xn)

for each iterate xn.

Solution With x0 = −2 as an initial approximation, we obtained P(−2) in Example 1 by

x0 = −2 2 0 −3 3 −4
−4 8 −10 14

2 −4 5 −7 10 = P(−2).

Using Theorem 2.19 and Eq. (2.16),

Q(x) = 2x3 − 4x2 + 5x − 7 and P′(−2) = Q(−2),

so P′(−2) can be found by evaluating Q(−2) in a similar manner:

x0 = −2 2 −4 5 −7
−4 16 −42

2 −8 21 −49 = Q(−2) = P′(−2)

and

x1 = x0 − P(x0)

P′(x0)
= x0 − P(x0)

Q(x0)
= −2− 10

−49
≈ −1.796.

Repeating the procedure to find x2 gives

−1.796 2 0 −3 3 −4
−3.592 6.451 −6.197 5.742

2 −3.592 3.451 −3.197 1.742 = P(x1)

−3.592 12.902 −29.368

2 −7.184 16.353 −32.565 = Q(x1) = P′(x1).

So P(−1.796) = 1.742, P′(−1.796) = Q(−1.796) = −32.565, and

x2 = −1.796− 1.742

−32.565
≈ −1.7425.

In a similar manner, x3 = −1.73897, and an actual zero to five decimal places is−1.73896.
Note that the polynomial Q(x) depends on the approximation being used and changes

from iterate to iterate.

Algorithm 2.7 computes P(x0) and P′(x0) using Horner’s method.
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ALGORITHM

2.7
Horner’s

To evaluate the polynomial

P(x) = anxn + an−1xn−1 + · · · + a1x + a0 = (x − x0)Q(x)+ b0

and its derivative at x0:

INPUT degree n; coefficients a0, a1, . . . , an; x0.

OUTPUT y = P(x0); z = P′(x0).

Step 1 Set y = an; (Compute bn for P.)
z = an. (Compute bn−1 for Q.)

Step 2 For j = n− 1, n− 2, . . . , 1
set y = x0y+ aj; (Compute bj for P.)

z = x0z + y. (Compute bj−1 for Q.)

Step 3 Set y = x0y+ a0. (Compute b0 for P.)

Step 4 OUTPUT (y, z);
STOP.

If the N th iterate, xN , in Newton’s method is an approximate zero for P, then

P(x) = (x − xN )Q(x)+ b0 = (x − xN )Q(x)+ P(xN ) ≈ (x − xN )Q(x),

so x − xN is an approximate factor of P(x). Letting x̂1 = xN be the approximate zero of P
and Q1(x) ≡ Q(x) be the approximate factor gives

P(x) ≈ (x − x̂1)Q1(x).

We can find a second approximate zero of P by applying Newton’s method to Q1(x).
If P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly

will eventually result in (n−2) approximate zeros of P and an approximate quadratic factor
Qn−2(x). At this stage, Qn−2(x) = 0 can be solved by the quadratic formula to find the last
two approximate zeros of P. Although this method can be used to find all the approximate
zeros, it depends on repeated use of approximations and can lead to inaccurate results.

The procedure just described is called deflation. The accuracy difficulty with deflation
is due to the fact that, when we obtain the approximate zeros of P(x), Newton’s method is
used on the reduced polynomial Qk(x), that is, the polynomial having the property that

P(x) ≈ (x − x̂1)(x − x̂2) · · · (x − x̂k)Qk(x).

An approximate zero x̂k+1 of Qk will generally not approximate a root of P(x) = 0 as well
as it does a root of the reduced equation Qk(x) = 0, and inaccuracy increases as k increases.
One way to eliminate this difficulty is to use the reduced equations to find approximations x̂2,
x̂3, . . . , x̂k to the zeros of P, and then improve these approximations by applying Newton’s
method to the original polynomial P(x).

Complex Zeros: Müller’s Method

One problem with applying the Secant, False Position, or Newton’s method to polynomials
is the possibility of the polynomial having complex roots even when all the coefficients are
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real numbers. If the initial approximation is a real number, all subsequent approximations
will also be real numbers. One way to overcome this difficulty is to begin with a complex
initial approximation and do all the computations using complex arithmetic. An alternative
approach has its basis in the following theorem.

Theorem 2.20 If z = a+bi is a complex zero of multiplicity m of the polynomial P(x)with real coefficients,
then z = a − bi is also a zero of multiplicity m of the polynomial P(x), and (x2 − 2ax +
a2 + b2)m is a factor of P(x).

A synthetic division involving quadratic polynomials can be devised to approximately
factor the polynomial so that one term will be a quadratic polynomial whose complex roots
are approximations to the roots of the original polynomial. This technique was described
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we
will now consider a method first presented by D. E. Müller [Mu]. This technique can be
used for any root-finding problem, but it is particularly useful for approximating the roots
of polynomials.

Müller’s method is similar to the
Secant method. But whereas the
Secant method uses a line
through two points on the curve
to approximate the root, Müller’s
method uses a parabola through
three points on the curve for the
approximation.

The Secant method begins with two initial approximations p0 and p1 and determines
the next approximation p2 as the intersection of the x-axis with the line through ( p0, f ( p0))

and ( p1, f ( p1)). (See Figure 2.13(a).) Müller’s method uses three initial approximations,
p0, p1, and p2, and determines the next approximation p3 by considering the intersection
of the x-axis with the parabola through ( p0, f ( p0)), ( p1, f ( p1)), and ( p2, f ( p2)). (See
Figure 2.13(b).)

Figure 2.13

x x

y y

f f
p0 p1 p2p0 p1 p2 p3

(a) (b)

The derivation of Müller’s method begins by considering the quadratic polynomial

P(x) = a(x − p2)
2 + b(x − p2)+ c

that passes through ( p0, f ( p0)), ( p1, f ( p1)), and ( p2, f ( p2)). The constants a, b, and c
can be determined from the conditions

f ( p0) = a( p0 − p2)
2 + b( p0 − p2)+ c, (2.17)

f ( p1) = a( p1 − p2)
2 + b( p1 − p2)+ c, (2.18)

and

f ( p2) = a · 02 + b · 0+ c = c (2.19)
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2.6 Zeros of Polynomials and Müller’s Method 97

to be

c = f ( p2), (2.20)

b = ( p0 − p2)
2[f ( p1)− f ( p2)] − ( p1 − p2)

2[f ( p0)− f ( p2)]
( p0 − p2)( p1 − p2)( p0 − p1)

, (2.21)

and

a = ( p1 − p2)[f ( p0)− f ( p2)] − ( p0 − p2)[f ( p1)− f ( p2)]
( p0 − p2)( p1 − p2)( p0 − p1)

. (2.22)

To determine p3, a zero of P, we apply the quadratic formula to P(x) = 0. However, because
of round-off error problems caused by the subtraction of nearly equal numbers, we apply
the formula in the manner prescribed in Eq (1.2) and (1.3) of Section 1.2:

p3 − p2 = −2c

b±√b2 − 4ac
.

This formula gives two possibilities for p3, depending on the sign preceding the radical term.
In Müller’s method, the sign is chosen to agree with the sign of b. Chosen in this manner,
the denominator will be the largest in magnitude and will result in p3 being selected as the
closest zero of P to p2. Thus

p3 = p2 − 2c

b+ sgn(b)
√

b2 − 4ac
,

where a, b, and c are given in Eqs. (2.20) through (2.22).
Once p3 is determined, the procedure is reinitialized using p1, p2, and p3 in place of p0,

p1, and p2 to determine the next approximation, p4. The method continues until a satisfactory
conclusion is obtained. At each step, the method involves the radical

√
b2 − 4ac, so the

method gives approximate complex roots when b2 − 4ac < 0. Algorithm 2.8 implements
this procedure.

ALGORITHM

2.8
Müller’s

To find a solution to f (x) = 0 given three approximations, p0, p1, and p2:

INPUT p0, p1, p2; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = 3.

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 b = δ2 + h2d;
D = (b2 − 4f ( p2)d)1/2. (Note: May require complex arithmetic.)

Step 4 If |b− D| < |b+ D| then set E = b+ D
else set E = b− D.

Step 5 Set h = −2f ( p2)/E;
p = p2 + h.
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98 C H A P T E R 2 Solutions of Equations in One Variable

Step 6 If |h| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 7 Set p0 = p1; (Prepare for next iteration.)
p1 = p2;
p2 = p;
h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = i + 1.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Illustration Consider the polynomial f (x) = x4 − 3x3 + x2 + x + 1, part of whose graph is shown in
Figure 2.14.

Figure 2.14
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1 2 3
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Three sets of three initial points will be used with Algorithm 2.8 and TOL = 10−5 to
approximate the zeros of f . The first set will use p0 = 0.5, p1 = −0.5, and p2 = 0. The
parabola passing through these points has complex roots because it does not intersect the
x-axis. Table 2.12 gives approximations to the corresponding complex zeros of f .

Table 2.12 p0 = 0.5, p1 = −0.5, p2 = 0
i pi f ( pi)

3 −0.100000+ 0.888819i −0.01120000+ 3.014875548i
4 −0.492146+ 0.447031i −0.1691201− 0.7367331502i
5 −0.352226+ 0.484132i −0.1786004+ 0.0181872213i
6 −0.340229+ 0.443036i 0.01197670− 0.0105562185i
7 −0.339095+ 0.446656i −0.0010550+ 0.000387261i
8 −0.339093+ 0.446630i 0.000000+ 0.000000i
9 −0.339093+ 0.446630i 0.000000+ 0.000000i
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2.6 Zeros of Polynomials and Müller’s Method 99

Table 2.13 gives the approximations to the two real zeros of f . The smallest of these uses
p0 = 0.5, p1 = 1.0, and p2 = 1.5, and the largest root is approximated when p0 = 1.5,
p1 = 2.0, and p2 = 2.5.

Table 2.13 p0 = 0.5, p1 = 1.0, p2 = 1.5 p0 = 1.5, p1 = 2.0, p2 = 2.5
i pi f ( pi) i pi f ( pi)

3 1.40637 −0.04851 3 2.24733 −0.24507
4 1.38878 0.00174 4 2.28652 −0.01446
5 1.38939 0.00000 5 2.28878 −0.00012
6 1.38939 0.00000 6 2.28880 0.00000

7 2.28879 0.00000

The values in the tables are accurate approximations to the places listed. �

We used Maple to generate the results in Table 2.12. To find the first result in the table,
define f (x) with

f := x→ x4 − 3x3 + x2 + x + 1

Then enter the initial approximations with

p0 := 0.5; p1 := −0.5; p2 := 0.0

and evaluate the function at these points with

f 0 := f ( p0); f 1 := f ( p1); f 2 := f ( p2)

To determine the coefficients a, b, c, and the approximate solution, enter

c := f 2;

b :=
(
( p0− p2)2 · (f 1− f 2)− ( p1− p2)2 · (f 0− f 2)

)
( p0− p2) · ( p1− p2) · ( p0− p1)

a := (( p1− p2) · (f 0− f 2)− ( p0− p2) · (f 1− f 2))

( p0− p2) · ( p1− p2) · ( p0− p1)

p3 := p2− 2c

b+
(

b
abs(b)

)√
b2 − 4a · c

This produces the final Maple output

−0.1000000000+ 0.8888194418I

and evaluating at this approximation gives f ( p3) as

−0.0112000001+ 3.014875548I

This is our first approximation, as seen in Table 2.12.
The illustration shows that Müller’s method can approximate the roots of polynomials

with a variety of starting values. In fact, Müller’s method generally converges to the root of a
polynomial for any initial approximation choice, although problems can be constructed for
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100 C H A P T E R 2 Solutions of Equations in One Variable

which convergence will not occur. For example, suppose that for some i we have f ( pi) =
f ( pi+1) = f ( pi+2) �= 0. The quadratic equation then reduces to a nonzero constant
function and never intersects the x-axis. This is not usually the case, however, and general-
purpose software packages using Müller’s method request only one initial approximation
per root and will even supply this approximation as an option.

E X E R C I S E S E T 2.6

1. Find the approximations to within 10−4 to all the real zeros of the following polynomials using
Newton’s method.

a. f (x) = x3 − 2x2 − 5

b. f (x) = x3 + 3x2 − 1

c. f (x) = x3 − x − 1

d. f (x) = x4 + 2x2 − x − 3

e. f (x) = x3 + 4.001x2 + 4.002x + 1.101

f. f (x) = x5 − x4 + 2x3 − 3x2 + x − 4

2. Find approximations to within 10−5 to all the zeros of each of the following polynomials by first
finding the real zeros using Newton’s method and then reducing to polynomials of lower degree to
determine any complex zeros.

a. f (x) = x4 + 5x3 − 9x2 − 85x − 136

b. f (x) = x4 − 2x3 − 12x2 + 16x − 40

c. f (x) = x4 + x3 + 3x2 + 2x + 2

d. f (x) = x5 + 11x4 − 21x3 − 10x2 − 21x − 5

e. f (x) = 16x4 + 88x3 + 159x2 + 76x − 240

f. f (x) = x4 − 4x2 − 3x + 5

g. f (x) = x4 − 2x3 − 4x2 + 4x + 4

h. f (x) = x3 − 7x2 + 14x − 6

3. Repeat Exercise 1 using Müller’s method.

4. Repeat Exercise 2 using Müller’s method.

5. Use Newton’s method to find, within 10−3, the zeros and critical points of the following functions.
Use this information to sketch the graph of f .

a. f (x) = x3 − 9x2 + 12 b. f (x) = x4 − 2x3 − 5x2 + 12x − 5

6. f (x) = 10x3 − 8.3x2 + 2.295x− 0.21141 = 0 has a root at x = 0.29. Use Newton’s method with an
initial approximation x0 = 0.28 to attempt to find this root. Explain what happens.

7. Use Maple to find a real zero of the polynomial f (x) = x3 + 4x − 4.

8. Use Maple to find a real zero of the polynomial f (x) = x3 − 2x − 5.

9. Use each of the following methods to find a solution in [0.1, 1] accurate to within 10−4 for

600x4 − 550x3 + 200x2 − 20x − 1 = 0.

a. Bisection method

b. Newton’s method

c. Secant method

d. method of False Position

e. Müller’s method
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