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2.3 Newton’s Method and Its Extensions

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

Newton’s Method

If we only want an algorithm, we can consider the technique graphically, as is often done in
calculus. Another possibility is to derive Newton’s method as a technique to obtain faster
convergence than offered by other types of functional iteration, as is done in Section 2.4. A
third means of introducing Newton’s method, which is discussed next, is based on Taylor
polynomials. We will see there that this particular derivation produces not only the method,
but also a bound for the error of the approximation.

Isaac Newton (1641–1727) was
one of the most brilliant scientists
of all time. The late 17th century
was a vibrant period for science
and mathematics and Newton’s
work touched nearly every aspect
of mathematics. His method for
solving was introduced to find
a root of the equation
y3 − 2y− 5 = 0. Although he
demonstrated the method only for
polynomials, it is clear that he
realized its broader applications.

Suppose that f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p such that f ′( p0) �=
0 and | p− p0| is “small.” Consider the first Taylor polynomial for f (x) expanded about p0

and evaluated at x = p.

f ( p) = f ( p0)+ ( p− p0)f
′( p0)+ ( p− p0)

2

2
f ′′(ξ( p)),

where ξ( p) lies between p and p0. Since f ( p) = 0, this equation gives

0 = f ( p0)+ ( p− p0)f
′( p0)+ ( p− p0)

2

2
f ′′(ξ( p)).

Newton’s method is derived by assuming that since | p−p0| is small, the term involving
( p− p0)

2 is much smaller, so

0 ≈ f ( p0)+ ( p− p0)f
′( p0).

Solving for p gives

p ≈ p0 − f ( p0)

f ′( p0)
≡ p1.

This sets the stage for Newton’s method, which starts with an initial approximation p0

and generates the sequence { pn}∞n=0, by

pn = pn−1 − f ( pn−1)

f ′( pn−1)
, for n ≥ 1. (2.7)

Joseph Raphson (1648–1715)
gave a description of the method
attributed to Isaac Newton in
1690, acknowledging Newton as
the source of the discovery.
Neither Newton nor Raphson
explicitly used the derivative in
their description since both
considered only polynomials.
Other mathematicians,
particularly James Gregory
(1636–1675), were aware of the
underlying process at or before
this time.

Figure 2.8 on page 68 illustrates how the approximations are obtained using successive
tangents. (Also see Exercise 15.) Starting with the initial approximation p0, the approx-
imation p1 is the x-intercept of the tangent line to the graph of f at ( p0, f ( p0)). The
approximation p2 is the x-intercept of the tangent line to the graph of f at ( p1, f ( p1)) and
so on. Algorithm 2.3 follows this procedure.
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68 C H A P T E R 2 Solutions of Equations in One Variable

Figure 2.8
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ALGORITHM

2.3
Newton’s

To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f ( p0)/f
′( p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ε > 0, and construct p1, . . . pN until

| pN − pN−1| < ε, (2.8)

| pN − pN−1|
| pN | < ε, pN �= 0, (2.9)

or

|f ( pN )| < ε. (2.10)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.3 Newton’s Method and Its Extensions 69

A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the inequal-
ities (2.8), (2.9), or (2.10) give precise information about the actual error | pN − p|. (See
Exercises 16 and 17 in Section 2.1.)

Newton’s method is a functional iteration technique with pn = g( pn−1), for which

g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
, for n ≥ 1. (2.11)

In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.

It is clear from Equation (2.7) that Newton’s method cannot be continued if f ′( pn−1) =
0 for some n. In fact, we will see that the method is most effective when f ′ is bounded away
from zero near p.

Example 1 Consider the function f (x) = cos x−x = 0. Approximate a root of f using (a) a fixed-point
method, and (b) Newton’s Method

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point
problem x = cos x, and the graph in Figure 2.9 implies that a single fixed-point p lies in
[0,π/2].

Figure 2.9
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Table 2.3 shows the results of fixed-point iteration with p0 = π/4. The best we could
conclude from these results is that p ≈ 0.74.

Table 2.3

n pn

0 0.7853981635
1 0.7071067810
2 0.7602445972
3 0.7246674808
4 0.7487198858
5 0.7325608446
6 0.7434642113
7 0.7361282565

Note that the variable in the
trigonometric function is in
radian measure, not degrees. This
will always be the case unless
specified otherwise.

(b) To apply Newton’s method to this problem we need f ′(x) = − sin x − 1. Starting
again with p0 = π/4, we generate the sequence defined, for n ≥ 1, by

pn = pn−1 − f ( pn−1)

f ( p′n−1)
= pn−1 − cos pn−1 − pn−1

− sin pn−1 − 1
.

This gives the approximations in Table 2.4. An excellent approximation is obtained with
n = 3. Because of the agreement of p3 and p4 we could reasonably expect this result to be
accurate to the places listed.

Table 2.4
Newton’s Method

n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Convergence using Newton’s Method

Example 1 shows that Newton’s method can provide extremely accurate approximations
with very few iterations. For that example, only one iteration of Newton’s method was
needed to give better accuracy than 7 iterations of the fixed-point method. It is now time to
examine Newton’s method more carefully to discover why it is so effective.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



70 C H A P T E R 2 Solutions of Equations in One Variable

The Taylor series derivation of Newton’s method at the beginning of the section points
out the importance of an accurate initial approximation. The crucial assumption is that the
term involving ( p − p0)

2 is, by comparison with | p − p0|, so small that it can be deleted.
This will clearly be false unless p0 is a good approximation to p. If p0 is not sufficiently
close to the actual root, there is little reason to suspect that Newton’s method will converge
to the root. However, in some instances, even poor initial approximations will produce
convergence. (Exercises 20 and 21 illustrate some of these possibilities.)

The following convergence theorem for Newton’s method illustrates the theoretical
importance of the choice of p0.

Theorem 2.6 Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f ( p) = 0 and f ′( p) �= 0, then there exists a
δ > 0 such that Newton’s method generates a sequence { pn}∞n=1 converging to p for any
initial approximation p0 ∈ [p− δ, p+ δ].

Proof The proof is based on analyzing Newton’s method as the functional iteration scheme
pn = g( pn−1), for n ≥ 1, with

g(x) = x − f (x)

f ′(x)
.

Let k be in (0, 1). We first find an interval [p− δ, p+ δ] that g maps into itself and for which
|g′(x)| ≤ k, for all x ∈ ( p− δ, p+ δ).

Since f ′ is continuous and f ′( p) �= 0, part (a) of Exercise 29 in Section 1.1 implies
that there exists a δ1 > 0, such that f ′(x) �= 0 for x ∈ [p − δ1, p + δ1] ⊆ [a, b]. Thus g is
defined and continuous on [p− δ1, p+ δ1]. Also

g′(x) = 1− f
′(x)f ′(x)− f (x)f ′′(x)

[f ′(x)]2 = f (x)f ′′(x)
[f ′(x)]2 ,

for x ∈ [p− δ1, p+ δ1], and, since f ∈ C2[a, b], we have g ∈ C1[p− δ1, p+ δ1].
By assumption, f ( p) = 0, so

g′( p) = f ( p)f ′′( p)

[f ′( p)]2 = 0.

Since g′ is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 implies that
there exists a δ, with 0 < δ < δ1, and

|g′(x)| ≤ k, for all x ∈ [p− δ, p+ δ].
It remains to show that g maps [p− δ, p+ δ] into [p− δ, p+ δ]. If x ∈ [p− δ, p+ δ],

the Mean Value Theorem implies that for some number ξ between x and p, |g(x)−g( p)| =
|g′(ξ)||x − p|. So

|g(x)− p| = |g(x)− g( p)| = |g′(ξ)||x − p| ≤ k|x − p| < |x − p|.
Since x ∈ [p− δ, p+ δ], it follows that |x− p| < δ and that |g(x)− p| < δ. Hence, g maps
[p− δ, p+ δ] into [p− δ, p+ δ].

All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence
{ pn}∞n=1, defined by

pn = g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
, for n ≥ 1,

converges to p for any p0 ∈ [p− δ, p+ δ].
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2.3 Newton’s Method and Its Extensions 71

Theorem 2.6 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the con-
stant k that bounds the derivative of g, and, consequently, indicates the speed of convergence
of the method, decreases to 0 as the procedure continues. This result is important for the
theory of Newton’s method, but it is seldom applied in practice because it does not tell us
how to determine δ.

In a practical application, an initial approximation is selected and successive approx-
imations are generated by Newton’s method. These will generally either converge quickly
to the root, or it will be clear that convergence is unlikely.

The Secant Method

Newton’s method is an extremely powerful technique, but it has a major weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f ′(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).

To circumvent the problem of the derivative evaluation in Newton’s method, we intro-
duce a slight variation. By definition,

f ′( pn−1) = lim
x→pn−1

f (x)− f ( pn−1)

x − pn−1
.

If pn−2 is close to pn−1, then

f ′( pn−1) ≈ f ( pn−2)− f ( pn−1)

pn−2 − pn−1
= f ( pn−1)− f ( pn−2)

pn−1 − pn−2
.

Using this approximation for f ′( pn−1) in Newton’s formula gives

pn = pn−1 − f ( pn−1)( pn−1 − pn−2)

f ( pn−1)− f ( pn−2)
. (2.12)

The word secant is derived from
the Latin word secan, which
means to cut. The secant method
uses a secant line, a line joining
two points that cut the curve, to
approximate a root.

This technique is called the Secant method and is presented in Algorithm 2.4. (See
Figure 2.10.) Starting with the two initial approximations p0 and p1, the approximation p2 is
the x-intercept of the line joining ( p0, f ( p0)) and ( p1, f ( p1)). The approximation p3 is the
x-intercept of the line joining ( p1, f ( p1)) and ( p2, f ( p2)), and so on. Note that only one
function evaluation is needed per step for the Secant method after p2 has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

Figure 2.10
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72 C H A P T E R 2 Solutions of Equations in One Variable

ALGORITHM

2.4
Secant

To find a solution to f (x) = 0 given initial approximations p0 and p1:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f ( p0);
q1 = f ( p1).

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p1 − q1( p1 − p0)/(q1 − q0). (Compute pi.)

Step 4 If | p− p1| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p1; (Update p0, q0, p1, q1.)
q0 = q1;
p1 = p;
q1 = f ( p).

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The next example involves a problem considered in Example 1, where we used New-
ton’s method with p0 = π/4.

Example 2 Use the Secant method to find a solution to x = cos x, and compare the approximations
with those given in Example 1 which applied Newton’s method.

Solution In Example 1 we compared fixed-point iteration and Newton’s method starting
with the initial approximation p0 = π/4. For the Secant method we need two initial ap-
proximations. Suppose we use p0 = 0.5 and p1 = π/4. Succeeding approximations are
generated by the formula

pn = pn−1 − ( pn−1 − pn−2)(cos pn−1 − pn−1)

(cos pn−1 − pn−1)− (cos pn−2 − pn−2)
, for n ≥ 2.

These give the results in Table 2.5.

Table 2.5
Secant

n pn

0 0.5
1 0.7853981635
2 0.7363841388
3 0.7390581392
4 0.7390851493
5 0.7390851332

Newton
n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Comparing the results in Table 2.5 from the Secant method and Newton’s method, we
see that the Secant method approximation p5 is accurate to the tenth decimal place, whereas
Newton’s method obtained this accuracy by p3. For this example, the convergence of the
Secant method is much faster than functional iteration but slightly slower than Newton’s
method. This is generally the case. (See Exercise 14 of Section 2.4.)

Newton’s method or the Secant method is often used to refine an answer obtained by
another technique, such as the Bisection method, since these methods require good first
approximations but generally give rapid convergence.
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2.3 Newton’s Method and Its Extensions 73

The Method of False Position

Each successive pair of approximations in the Bisection method brackets a root p of the
equation; that is, for each positive integer n, a root lies between an and bn. This implies that,
for each n, the Bisection method iterations satisfy

| pn − p| < 1

2
|an − bn|,

which provides an easily calculated error bound for the approximations.
Root bracketing is not guaranteed for either Newton’s method or the Secant method.

In Example 1, Newton’s method was applied to f (x) = cos x− x, and an approximate root
was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either p0

and p1 or p1 and p2. The Secant method approximations for this problem are also given in
Table 2.5. In this case the initial approximations p0 and p1 bracket the root, but the pair of
approximations p3 and p4 fail to do so.

The term Regula Falsi, literally a
false rule or false position, refers
to a technique that uses results
that are known to be false, but in
some specific manner, to obtain
convergence to a true result. False
position problems can be found
on the Rhind papyrus, which
dates from about 1650 b.c.e.

The method of False Position (also called Regula Falsi) generates approximations
in the same manner as the Secant method, but it includes a test to ensure that the root is
always bracketed between successive iterations. Although it is not a method we generally
recommend, it illustrates how bracketing can be incorporated.

First choose initial approximations p0 and p1 with f ( p0) · f ( p1) < 0. The approxi-
mation p2 is chosen in the same manner as in the Secant method, as the x-intercept of the
line joining ( p0, f ( p0)) and ( p1, f ( p1)). To decide which secant line to use to compute p3,
consider f ( p2) · f ( p1), or more correctly sgn f ( p2) · sgn f ( p1).

• If sgn f ( p2) · sgn f ( p1) < 0, then p1 and p2 bracket a root. Choose p3 as the x-intercept
of the line joining ( p1, f ( p1)) and ( p2, f ( p2)).

• If not, choose p3 as the x-intercept of the line joining ( p0, f ( p0)) and ( p2, f ( p2)), and
then interchange the indices on p0 and p1.

In a similar manner, once p3 is found, the sign of f ( p3) · f ( p2) determines whether we
use p2 and p3 or p3 and p1 to compute p4. In the latter case a relabeling of p2 and p1 is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

Figure 2.11
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74 C H A P T E R 2 Solutions of Equations in One Variable

ALGORITHM

2.5
False Position

To find a solution to f (x) = 0 given the continuous function f on the interval [ p0, p1]
where f ( p0) and f ( p1) have opposite signs:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f ( p0);
q1 = f ( p1).

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 Set p = p1 − q1( p1 − p0)/(q1 − q0). (Compute pi.)

Step 4 If | p− p1| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1;
q = f ( p).

Step 6 If q · q1 < 0 then set p0 = p1;
q0 = q1.

Step 7 Set p1 = p;
q1 = q.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure unsuccessful.)
STOP.

Example 3 Use the method of False Position to find a solution to x = cos x, and compare the approx-
imations with those given in Example 1 which applied fixed-point iteration and Newton’s
method, and to those found in Example 2 which applied the Secant method.

Solution To make a reasonable comparison we will use the same initial approximations as
in the Secant method, that is, p0 = 0.5 and p1 = π/4. Table 2.6 shows the results of the
method of False Position applied to f (x) = cos x−x together with those we obtained using
the Secant and Newton’s methods. Notice that the False Position and Secant approximations
agree through p3 and that the method of False Position requires an additional iteration to
obtain the same accuracy as the Secant method.

Table 2.6 False Position Secant Newton
n pn pn pn

0 0.5 0.5 0.7853981635
1 0.7853981635 0.7853981635 0.7395361337
2 0.7363841388 0.7363841388 0.7390851781
3 0.7390581392 0.7390581392 0.7390851332
4 0.7390848638 0.7390851493 0.7390851332
5 0.7390851305 0.7390851332
6 0.7390851332
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2.3 Newton’s Method and Its Extensions 75

The added insurance of the method of False Position commonly requires more calcula-
tion than the Secant method, just as the simplification that the Secant method provides over
Newton’s method usually comes at the expense of additional iterations. Further examples
of the positive and negative features of these methods can be seen by working Exercises 17
and 18.

Maple has Newton’s method, the Secant method, and the method of False Position
implemented in its NumericalAnalysis package. The options that were available for the
Bisection method are also available for these techniques. For example, to generate the
results in Tables 2.4, 2.5, and 2.6 we could use the commands

with(Student[NumericalAnalysis])

f := cos(x)− x

Newton
(
f , x = π

4.0
, tolerance = 10−8, output = sequence, maxiterations = 20

)
Secant

(
f , x =

[
0.5,

π

4.0

]
, tolerance = 10−8, output = sequence, maxiterations = 20

)
and

FalsePosition
(
f , x =

[
0.5,

π

4.0

]
, tolerance=10−8, output=sequence, maxiterations=20

)

E X E R C I S E S E T 2.3

1. Let f (x) = x2 − 6 and p0 = 1. Use Newton’s method to find p2.

2. Let f (x) = −x3 − cos x and p0 = −1. Use Newton’s method to find p2. Could p0 = 0 be used?

3. Let f (x) = x2 − 6. With p0 = 3 and p1 = 2, find p3.

a. Use the Secant method.

b. Use the method of False Position.

c. Which of a. or b. is closer to
√

6?

4. Let f (x) = −x3 − cos x. With p0 = −1 and p1 = 0, find p3.

a. Use the Secant method. b. Use the method of False Position.

5. Use Newton’s method to find solutions accurate to within 10−4 for the following problems.

a. x3 − 2x2 − 5 = 0, [1, 4] b. x3 + 3x2 − 1 = 0, [−3,−2]
c. x − cos x = 0, [0,π/2] d. x − 0.8− 0.2 sin x = 0, [0,π/2]

6. Use Newton’s method to find solutions accurate to within 10−5 for the following problems.

a. ex + 2−x + 2 cos x − 6 = 0 for 1 ≤ x ≤ 2

b. ln(x − 1)+ cos(x − 1) = 0 for 1.3 ≤ x ≤ 2

c. 2x cos 2x − (x − 2)2 = 0 for 2 ≤ x ≤ 3 and 3 ≤ x ≤ 4

d. (x − 2)2 − ln x = 0 for 1 ≤ x ≤ 2 and e ≤ x ≤ 4

e. ex − 3x2 = 0 for 0 ≤ x ≤ 1 and 3 ≤ x ≤ 5

f. sin x − e−x = 0 for 0 ≤ x ≤ 1 3 ≤ x ≤ 4 and 6 ≤ x ≤ 7

7. Repeat Exercise 5 using the Secant method.

8. Repeat Exercise 6 using the Secant method.

9. Repeat Exercise 5 using the method of False Position.

10. Repeat Exercise 6 using the method of False Position.

11. Use all three methods in this Section to find solutions to within 10−5 for the following problems.

a. 3xex = 0 for 1 ≤ x ≤ 2

b. 2x + 3 cos x − ex = 0 for 0 ≤ x ≤ 1
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