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28. The opening example to this chapter described a physical experiment involving the temperature of a
gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m3, N = 0.00420 mol,
and R = 0.08206. Solving for T in the ideal gas law gives

T = PV

NR
= (1.00)(0.100)

(0.00420)(0.08206)
= 290.15 K = 17◦C.

In the laboratory, it was found that T was 15◦C under these conditions, and when the pressure was
doubled and the volume halved, T was 19◦C. Assume that the data are rounded values accurate to the
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal
gas law.

1.3 Algorithms and Convergence

Throughout the text we will be examining approximation procedures, called algorithms,
involving sequences of calculations. An algorithm is a procedure that describes, in an
unambiguous manner, a finite sequence of steps to be performed in a specified order. The
object of the algorithm is to implement a procedure to solve a problem or approximate a
solution to the problem.

The use of an algorithm is as old
as formal mathematics, but the
name derives from the Arabic
mathematician Muhammad
ibn-Mŝâ al-Khwarârizmî
(c. 780–850). The Latin
translation of his works begins
with the words “Dixit Algorismi”
meaning “al-Khwarârizmî says.”

We use a pseudocode to describe the algorithms. This pseudocode specifies the form
of the input to be supplied and the form of the desired output. Not all numerical procedures
give satisfactory output for arbitrarily chosen input. As a consequence, a stopping technique
independent of the numerical technique is incorporated into each algorithm to avoid infinite
loops.

Two punctuation symbols are used in the algorithms:

• a period (.) indicates the termination of a step,

• a semicolon (;) separates tasks within a step.

Indentation is used to indicate that groups of statements are to be treated as a single entity.
Looping techniques in the algorithms are either counter-controlled, such as,

For i = 1, 2, . . . , n

Set xi = a+ i · h
or condition-controlled, such as

While i < N do Steps 3–6.

To allow for conditional execution, we use the standard

If . . . then or If . . . then

else

constructions.
The steps in the algorithms follow the rules of structured program construction. They

have been arranged so that there should be minimal difficulty translating pseudocode into
any programming language suitable for scientific applications.

The algorithms are liberally laced with comments. These are written in italics and
contained within parentheses to distinguish them from the algorithmic statements.
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1.3 Algorithms and Convergence 33

Illustration The following algorithm computes x1 + x2 + · · · + xN =
N∑

i=1

xi, given N and the numbers

x1, x2, . . . , xN .

INPUT N , x1, x2, . . . , xn.

OUTPUT SUM =∑N
i=1 xi.

Step 1 Set SUM = 0. ( Initialize accumulator.)

Step 2 For i = 1, 2, . . . , N do
set SUM = SUM+ xi. ( Add the next term.)

Step 3 OUTPUT (SUM);
STOP. �

Example 1 The N th Taylor polynomial for f (x) = ln x expanded about x0 = 1 is

PN (x) =
N∑

i=1

(−1)i+1

i
(x − 1)i,

and the value of ln 1.5 to eight decimal places is 0.40546511. Construct an algorithm to
determine the minimal value of N required for

| ln 1.5− PN (1.5)| < 10−5,

without using the Taylor polynomial remainder term.

Solution From calculus we know that if
∑∞

n=1 an is an alternating series with limit A whose
terms decrease in magnitude, then A and the N th partial sum AN =∑N

n=1 an differ by less
than the magnitude of the (N + 1)st term; that is,

|A− AN | ≤ |aN+1|.
The following algorithm uses this bound.

INPUT value x, tolerance TOL, maximum number of iterations M.
OUTPUT degree N of the polynomial or a message of failure.
Step 1 Set N = 1;

y = x − 1;
SUM = 0;
POWER = y;
TERM = y;
SIGN = −1. (Used to implement alternation of signs.)

Step 2 While N ≤ M do Steps 3–5.

Step 3 Set SIGN = −SIGN; (Alternate the signs.)
SUM = SUM+ SIGN · TERM; (Accumulate the terms.)
POWER = POWER · y;
TERM = POWER/(N + 1). (Calculate the next term.)

Step 4 If |TERM| < TOL then (Test for accuracy.)
OUTPUT (N);
STOP. (The procedure was successful.)

Step 5 Set N = N + 1. (Prepare for the next iteration.)
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34 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Step 6 OUTPUT (‘Method Failed’); (The procedure was unsuccessful.)
STOP.

The input for our problem is x = 1.5, TOL = 10−5, and perhaps M = 15. This choice
of M provides an upper bound for the number of calculations we are willing to perform,
recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output
is a value for N or the failure message depends on the precision of the computational
device.

Characterizing Algorithms

We will be considering a variety of approximation problems throughout the text, and in each
case we need to determine approximation methods that produce dependably accurate results
for a wide class of problems. Because of the differing ways in which the approximation
methods are derived, we need a variety of conditions to categorize their accuracy. Not all
of these conditions will be appropriate for any particular problem.

One criterion we will impose on an algorithm whenever possible is that small changes
in the initial data produce correspondingly small changes in the final results. An algorithm
that satisfies this property is called stable; otherwise it is unstable. Some algorithms are
stable only for certain choices of initial data, and are called conditionally stable. We will
characterize the stability properties of algorithms whenever possible.

The word stable has the same
root as the words stand and
standard. In mathematics, the
term stable applied to a problem
indicates that a small change in
initial data or conditions does not
result in a dramatic change in the
solution to the problem.

To further consider the subject of round-off error growth and its connection to algorithm
stability, suppose an error with magnitude E0 > 0 is introduced at some stage in the
calculations and that the magnitude of the error after n subsequent operations is denoted by
En. The two cases that arise most often in practice are defined as follows.

Definition 1.17 Suppose that E0 > 0 denotes an error introduced at some stage in the calculations and En

represents the magnitude of the error after n subsequent operations.

• If En ≈ CnE0, where C is a constant independent of n, then the growth of error is
said to be linear.

• If En ≈ CnE0, for some C > 1, then the growth of error is called exponential.

Linear growth of error is usually unavoidable, and when C and E0 are small the results
are generally acceptable. Exponential growth of error should be avoided, because the term Cn

becomes large for even relatively small values of n. This leads to unacceptable inaccuracies,
regardless of the size of E0. As a consequence, an algorithm that exhibits linear growth of
error is stable, whereas an algorithm exhibiting exponential error growth is unstable. (See
Figure 1.12.)

Illustration For any constants c1 and c2,

pn = c1

(
1

3

)n

+ c23n,

is a solution to the recursive equation

pn = 10

3
pn−1 − pn−2, for n = 2, 3, . . . .
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Figure 1.12
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This can be seen by noting that

10

3
pn−1 − pn−2 = 10

3

[
c1

(
1

3

)n−1

+ c23n−1

]
−
[

c1

(
1

3

)n−2

+ c23n−2

]

= c1

(
1

3

)n−2 [10

3
· 1

3
− 1

]
+ c23n−2

[
10

3
· 3− 1

]

= c1

(
1

3

)n−2 (1

9

)
+ c23n−2(9) = c1

(
1

3

)n

+ c23n = pn.

Suppose that we are given p0 = 1 and p1 = 1
3 . This determines unique values for the

constants as c1 = 1 and c2 = 0. So pn =
(

1
3

)n
for all n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by
this equation, then p̂0 = 1.0000 and p̂1 = 0.33333, which requires modifying the constants
to ĉ1 = 1.0000 and ĉ2 = −0.12500× 10−5. The sequence {p̂n}∞n=0 generated is then given
by

p̂n = 1.0000

(
1

3

)n

− 0.12500× 10−5(3)n,

which has round-off error,

pn − p̂n = 0.12500× 10−5(3n),

This procedure is unstable because the error grows exponentially with n, which is reflected
in the extreme inaccuracies after the first few terms, as shown in Table 1.5 on page 36.

Now consider this recursive equation:

pn = 2pn−1 − pn−2, for n = 2, 3, . . . .

It has the solution pn = c1 + c2n for any constants c1 and c2, because

2pn−1 − pn−2 = 2(c1 + c2(n− 1))− (c1 + c2(n− 2))

= c1(2− 1)+ c2(2n− 2− n+ 2) = c1 + c2n = pn.
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Table 1.5
n Computed p̂n Correct pn Relative Error

0 0.10000× 101 0.10000× 101

1 0.33333× 100 0.33333× 100

2 0.11110× 100 0.11111× 100 9× 10−5

3 0.37000× 10−1 0.37037× 10−1 1× 10−3

4 0.12230× 10−1 0.12346× 10−1 9× 10−3

5 0.37660× 10−2 0.41152× 10−2 8× 10−2

6 0.32300× 10−3 0.13717× 10−2 8× 10−1

7 −0.26893× 10−2 0.45725× 10−3 7× 100

8 −0.92872× 10−2 0.15242× 10−3 6× 101

If we are given p0 = 1 and p1 = 1
3 , then constants in this equation are uniquely determined

to be c1 = 1 and c2 = − 2
3 . This implies that pn = 1− 2

3 n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by this
equation, then p̂0 = 1.0000 and p̂1 = 0.33333. As a consequence, the five-digit rounding
constants are ĉ1 = 1.0000 and ĉ2 = −0.66667. Thus

p̂n = 1.0000− 0.66667n,

which has round-off error

pn − p̂n =
(

0.66667− 2

3

)
n.

This procedure is stable because the error grows grows linearly with n, which is reflected
in the approximations shown in Table 1.6. �

Table 1.6
n Computed p̂n Correct pn Relative Error

0 0.10000× 101 0.10000× 101

1 0.33333× 100 0.33333× 100

2 −0.33330× 100 −0.33333× 100 9× 10−5

3 −0.10000× 101 −0.10000× 101 0
4 −0.16667× 101 −0.16667× 101 0
5 −0.23334× 101 −0.23333× 101 4× 10−5

6 −0.30000× 101 −0.30000× 101 0
7 −0.36667× 101 −0.36667× 101 0
8 −0.43334× 101 −0.43333× 101 2× 10−5

The effects of round-off error can be reduced by using high-order-digit arithmetic such
as the double- or multiple-precision option available on most computers. Disadvantages in
using double-precision arithmetic are that it takes more computation time and the growth
of round-off error is not entirely eliminated.

One approach to estimating round-off error is to use interval arithmetic (that is, to
retain the largest and smallest possible values at each step), so that, in the end, we obtain
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an interval that contains the true value. Unfortunately, a very small interval may be needed
for reasonable implementation.

Rates of Convergence

Since iterative techniques involving sequences are often used, this section concludes with a
brief discussion of some terminology used to describe the rate at which convergence occurs.
In general, we would like the technique to converge as rapidly as possible. The following
definition is used to compare the convergence rates of sequences.

Definition 1.18 Suppose {βn}∞n=1 is a sequence known to converge to zero, and {αn}∞n=1 converges to a
number α. If a positive constant K exists with

|αn − α| ≤ K|βn|, for large n,

then we say that {αn}∞n=1 converges to α with rate, or order, of convergence O(βn). (This
expression is read “big oh of βn”.) It is indicated by writing αn = α + O(βn).

Although Definition 1.18 permits {αn}∞n=1 to be compared with an arbitrary sequence
{βn}∞n=1, in nearly every situation we use

βn = 1

np
,

for some number p > 0. We are generally interested in the largest value of p with αn =
α + O(1/np).

Example 2 Suppose that, for n ≥ 1,

αn = n+ 1

n2
and α̂n = n+ 3

n3
.

Both limn→∞ αn = 0 and limn→∞ α̂n = 0, but the sequence {α̂n} converges to this limit
much faster than the sequence {αn}. Using five-digit rounding arithmetic we have the values
shown in Table 1.7. Determine rates of convergence for these two sequences.

Table 1.7
n 1 2 3 4 5 6 7

αn 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
α̂n 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

There are numerous other ways
of describing the growth of
sequences and functions, some of
which require bounds both above
and below the sequence or
function under consideration.
Any good book that analyzes
algorithms, for example [CLRS],
will include this information.

Solution Define the sequences βn = 1/n and β̂n = 1/n2. Then

|αn − 0| = n+ 1

n2
≤ n+ n

n2
= 2 · 1

n
= 2βn

and

|α̂n − 0| = n+ 3

n3
≤ n+ 3n

n3
= 4 · 1

n2
= 4β̂n.
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38 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Hence the rate of convergence of {αn} to zero is similar to the convergence of {1/n} to zero,
whereas {α̂n} converges to zero at a rate similar to the more rapidly convergent sequence
{1/n2}. We express this by writing

αn = 0+ O

(
1

n

)
and α̂n = 0+ O

(
1

n2

)
.

We also use the O (big oh) notation to describe the rate at which functions converge.

Definition 1.19 Suppose that limh→0 G(h) = 0 and limh→0 F(h) = L. If a positive constant K exists with

|F(h)− L| ≤ K|G(h)|, for sufficiently small h,

then we write F(h) = L + O(G(h)).

The functions we use for comparison generally have the form G(h) = hp, where p > 0.
We are interested in the largest value of p for which F(h) = L + O(hp).

Example 3 Use the third Taylor polynomial about h = 0 to show that cos h+ 1

2
h2 = 1+ O(h4).

Solution In Example 3(b) of Section 1.1 we found that this polynomial is

cos h = 1− 1

2
h2 + 1

24
h4 cos ξ̃ (h),

for some number ξ̃ (h) between zero and h. This implies that

cos h+ 1

2
h2 = 1+ 1

24
h4 cos ξ̃ (h).

Hence ∣∣∣∣
(

cos h+ 1

2
h2

)
− 1

∣∣∣∣ =
∣∣∣∣ 1

24
cos ξ̃ (h)

∣∣∣∣ h4 ≤ 1

24
h4,

so as h→ 0, cos h + 1
2 h2 converges to its limit, 1, about as fast as h4 converges to 0. That

is,

cos h+ 1

2
h2 = 1+ O(h4).

Maple uses the O notation to indicate the form of the error in Taylor polynomials and
in other situations. For example, at the end of Section 1.1 the third Taylor polynomial for
f (x) = cos(x) was found by first defining

f := cos(x)

and then calling the third Taylor polynomial with

taylor(f , x = 0, 4)

Maple responds with

1− 1

2
x2 + O(x4)

to indicate that the lowest term in the truncation error is x4.
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E X E R C I S E S E T 1.3

1. a. Use three-digit chopping arithmetic to compute the sum
∑10

i=1(1/i
2) first by 1

1 + 1
4 + · · · + 1

100
and then by 1

100 + 1
81 + · · · + 1

1 . Which method is more accurate, and why?

b. Write an algorithm to sum the finite series
∑N

i=1 xi in reverse order.

2. The number e is defined by e = ∑∞
n=0(1/n!), where n! = n(n − 1) · · · 2 · 1 for n �= 0 and 0! = 1.

Use four-digit chopping arithmetic to compute the following approximations to e, and determine the
absolute and relative errors.

a. e ≈
5∑

n=0

1

n! b. e ≈
5∑

j=0

1

(5− j)!

c. e ≈
10∑

n=0

1

n! d. e ≈
10∑

j=0

1

(10− j)!
3. The Maclaurin series for the arctangent function converges for −1 < x ≤ 1 and is given by

arctan x = lim
n→∞Pn(x) = lim

n→∞

n∑
i=1

(−1)i+1 x2i−1

2i − 1
.

a. Use the fact that tan π/4 = 1 to determine the number of n terms of the series that need to be
summed to ensure that |4Pn(1)− π | < 10−3.

b. The C++ programming language requires the value of π to be within 10−10. How many terms
of the series would we need to sum to obtain this degree of accuracy?

4. Exercise 3 details a rather inefficient means of obtaining an approximation to π . The method can
be improved substantially by observing that π/4 = arctan 1

2 + arctan 1
3 and evaluating the series

for the arctangent at 1
2 and at 1

3 . Determine the number of terms that must be summed to ensure an
approximation to π to within 10−3.

5. Another formula for computing π can be deduced from the identity π/4 = 4 arctan 1
5 − arctan 1

239 .
Determine the number of terms that must be summed to ensure an approximation to π to within 10−3.

6. Find the rates of convergence of the following sequences as n→∞.

a. lim
n→∞ sin

1

n
= 0 b. lim

n→∞ sin
1

n2
= 0

c. lim
n→∞

(
sin

1

n

)2

= 0 d. lim
n→∞[ln(n+ 1)− ln(n)] = 0

7. Find the rates of convergence of the following functions as h→ 0.

a. lim
h→0

sin h

h
= 1 b. lim

h→0

1− cos h

h
= 0

c. lim
h→0

sin h− h cos h

h
= 0 d. lim

h→0

1− eh

h
= −1

8. a. How many multiplications and additions are required to determine a sum of the form

n∑
i=1

i∑
j=1

aibj?

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations.

9. Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial, and let x0 be given. Construct an
algorithm to evaluate P(x0) using nested multiplication.

10. Equations (1.2) and (1.3) in Section 1.2 give alternative formulas for the roots x1 and x2 of
ax2 + bx + c = 0. Construct an algorithm with input a, b, c and output x1, x2 that computes
the roots x1 and x2 (which may be equal or be complex conjugates) using the best formula for each
root.

11. Construct an algorithm that has as input an integer n ≥ 1, numbers x0, x1, . . . , xn, and a number x and
that produces as output the product (x − x0)(x − x1) · · · (x − xn).
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