Maple gives the response

$$
f \text { solve }(-12 \sin (2 x)-4 x \cos (2 x), x, .5 \ldots 1)
$$

This indicates that Maple is unable to determine the solution. The reason is obvious once the graph in Figure 1.6 is considered. The function f is always decreasing on this interval, so no solution exists. Be suspicious when Maple returns the same response it is given; it is as if it was questioning your request.

In summary, on $[0.5,1]$ the absolute maximum value is $f(0.5)=1.86004545$ and the absolute minimum value is $f(1)=-3.899329036$, accurate at least to the places listed.

The following theorem is not generally presented in a basic calculus course, but is derived by applying Rolle's Theorem successively to f, f^{\prime}, \ldots, and, finally, to $f^{(n-1)}$. This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If $f(x)=0$ at the $n+1$ distinct numbers $a \leq x_{0}<x_{1}<\ldots<x_{n} \leq b$, then a number c in $\left(x_{0}, x_{n}\right)$, and hence in (a, b), exists with $f^{(n)}(c)=0$.

We will also make frequent use of the Intermediate Value Theorem. Although its statement seems reasonable, its proof is beyond the scope of the usual calculus course. It can, however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number c in (a, b) for which $f(c)=K$.

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate Value Theorem. In this example there are two other possibilities.

Figure 1.7

Example 2 Show that $x^{5}-2 x^{3}+3 x^{2}-1=0$ has a solution in the interval $[0,1]$.
Solution Consider the function defined by $f(x)=x^{5}-2 x^{3}+3 x^{2}-1$. The function f is continuous on $[0,1]$. In addition,

$$
f(0)=-1<0 \quad \text { and } \quad 0<1=f(1)
$$

The Intermediate Value Theorem implies that a number x exists, with $0<x<1$, for which $x^{5}-2 x^{3}+3 x^{2}-1=0$.

As seen in Example 2, the Intermediate Value Theorem is used to determine when solutions to certain problems exist. It does not, however, give an efficient means for finding these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

Definition 1.12 The Riemann integral of the function f on the interval $[a, b]$ is the following limit,

George Fredrich Berhard
Riemann (1826-1866) made many of the important discoveries classifying the functions that have integrals. He also did fundamental work in geometry and complex function theory, and is regarded as one of the profound mathematicians of the nineteenth century.
provided it exists:

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i}
$$

where the numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfy $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, where $\Delta x_{i}=x_{i}-x_{i-1}$, for each $i=1,2, \ldots, n$, and z_{i} is arbitrarily chosen in the interval $\left[x_{i-1}, x_{i}\right]$.

A function f that is continuous on an interval $[a, b]$ is also Riemann integrable on [a, b]. This permits us to choose, for computational convenience, the points x_{i} to be equally spaced in $[a, b]$, and for each $i=1,2, \ldots, n$, to choose $z_{i}=x_{i}$. In this case,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

where the numbers shown in Figure 1.8 as x_{i} are $x_{i}=a+i(b-a) / n$.

Figure 1.8

Two other results will be needed in our study of numerical analysis. The first is a generalization of the usual Mean Value Theorem for Integrals.

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a, b]$, the Riemann integral of g exists on $[a, b]$, and $g(x)$ does not change sign on $[a, b]$. Then there exists a number c in (a, b) with

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

When $g(x) \equiv 1$, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives the average value of the function f over the interval $[a, b]$ as (See Figure 1.9.)

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Figure 1.9

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor's Theorem)

Brook Taylor (1685-1731)
described this series in 1715 in the paper Methodus incrementorum directa et inversa.
Special cases of the result, and likely the result itself, had been previously known to Isaac Newton, James Gregory, and others.

Suppose $f \in C^{n}[a, b]$, that $f^{(n+1)}$ exists on $[a, b]$, and $x_{0} \in[a, b]$. For every $x \in[a, b]$, there exists a number $\xi(x)$ between x_{0} and x with

$$
f(x)=P_{n}(x)+R_{n}(x),
$$

where

$$
\begin{aligned}
P_{n}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
\end{aligned}
$$

Colin Maclaurin (1698-1746) is best known as the defender of the calculus of Newton when it came under bitter attack by the Irish philosopher, the Bishop George Berkeley.

Maclaurin did not discover the series that bears his name; it was known to 17th century mathematicians before he was born. However, he did devise a method for solving a system of linear equations that is known as Cramer's rule, which Cramer did not publish until 1750 .
and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Here $P_{n}(x)$ is called the \boldsymbol{n} th Taylor polynomial for f about x_{0}, and $R_{n}(x)$ is called the remainder term (or truncation error) associated with $P_{n}(x)$. Since the number $\xi(x)$ in the truncation error $R_{n}(x)$ depends on the value of x at which the polynomial $P_{n}(x)$ is being evaluated, it is a function of the variable x. However, we should not expect to be able to explicitly determine the function $\xi(x)$. Taylor's Theorem simply ensures that such a function exists, and that its value lies between x and x_{0}. In fact, one of the common problems in numerical methods is to try to determine a realistic bound for the value of $f^{(n+1)}(\xi(x))$ when x is in some specified interval.

The infinite series obtained by taking the limit of $P_{n}(x)$ as $n \rightarrow \infty$ is called the Taylor series for f about x_{0}. In the case $x_{0}=0$, the Taylor polynomial is often called a Maclaurin polynomial, and the Taylor series is often called a Maclaurin series.

The term truncation error in the Taylor polynomial refers to the error involved in using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let $f(x)=\cos x$ and $x_{0}=0$. Determine
(a) the second Taylor polynomial for f about x_{0}; and
(b) the third Taylor polynomial for f about x_{0}.

Solution Since $f \in C^{\infty}(\mathbb{R})$, Taylor's Theorem can be applied for any $n \geq 0$. Also,

$$
f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x, f^{\prime \prime \prime}(x)=\sin x, \quad \text { and } \quad f^{(4)}(x)=\cos x
$$

So

$$
f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(0)=-1, \quad \text { and } \quad f^{\prime \prime \prime}(0)=0
$$

(a) For $n=2$ and $x_{0}=0$, we have

$$
\begin{aligned}
\cos x & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(\xi(x))}{3!} x^{3} \\
& =1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3} \sin \xi(x),
\end{aligned}
$$

where $\xi(x)$ is some (generally unknown) number between 0 and x. (See Figure 1.10.)
Figure 1.10

When $x=0.01$, this becomes

$$
\cos 0.01=1-\frac{1}{2}(0.01)^{2}+\frac{1}{6}(0.01)^{3} \sin \xi(0.01)=0.99995+\frac{10^{-6}}{6} \sin \xi(0.01)
$$

The approximation to $\cos 0.01$ given by the Taylor polynomial is therefore 0.99995 . The truncation error, or remainder term, associated with this approximation is

$$
\frac{10^{-6}}{6} \sin \xi(0.01)=0.1 \overline{6} \times 10^{-6} \sin \xi(0.01)
$$

where the bar over the 6 in $0.1 \overline{6}$ is used to indicate that this digit repeats indefinitely. Although we have no way of determining $\sin \xi(0.01)$, we know that all values of the sine lie in the interval $[-1,1]$, so the error occurring if we use the approximation 0.99995 for the value of $\cos 0.01$ is bounded by

$$
|\cos (0.01)-0.99995|=0.1 \overline{6} \times 10^{-6}|\sin \xi(0.01)| \leq 0.1 \overline{6} \times 10^{-6}
$$

Hence the approximation 0.99995 matches at least the first five digits of $\cos 0.01$, and

$$
\begin{aligned}
0.9999483<0.99995-1 . \overline{6} \times 10^{-6} & \leq \cos 0.01 \\
& \leq 0.99995+1 . \overline{6} \times 10^{-6}<0.9999517 .
\end{aligned}
$$

The error bound is much larger than the actual error. This is due in part to the poor bound we used for $|\sin \xi(x)|$. It is shown in Exercise 24 that for all values of x, we have $|\sin x| \leq|x|$. Since $0 \leq \xi<0.01$, we could have used the fact that $|\sin \xi(x)| \leq 0.01$ in the error formula, producing the bound $0.1 \overline{6} \times 10^{-8}$.
(b) Since $f^{\prime \prime \prime}(0)=0$, the third Taylor polynomial with remainder term about $x_{0}=0$ is

$$
\cos x=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \cos \tilde{\xi}(x),
$$

where $0<\tilde{\xi}(x)<0.01$. The approximating polynomial remains the same, and the approximation is still 0.99995 , but we now have much better accuracy assurance. Since $|\cos \tilde{\xi}(x)| \leq 1$ for all x, we have

$$
\left|\frac{1}{24} x^{4} \cos \tilde{\xi}(x)\right| \leq \frac{1}{24}(0.01)^{4}(1) \approx 4.2 \times 10^{-10} .
$$

So

$$
|\cos 0.01-0.99995| \leq 4.2 \times 10^{-10},
$$

and

$$
\begin{aligned}
0.99994999958 & =0.99995-4.2 \times 10^{-10} \\
& \leq \cos 0.01 \leq 0.99995+4.2 \times 10^{-10}=0.99995000042 .
\end{aligned}
$$

Example 3 illustrates the two objectives of numerical analysis:
(i) Find an approximation to the solution of a given problem.
(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor polynomial gave a much better answer to (ii) than the second Taylor polynomial.

We can also use the Taylor polynomials to give us approximations to integrals.

Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to approximate $\int_{0}^{0.1} \cos x d x$. We have

$$
\begin{aligned}
\int_{0}^{0.1} \cos x d x & =\int_{0}^{0.1}\left(1-\frac{1}{2} x^{2}\right) d x+\frac{1}{24} \int_{0}^{0.1} x^{4} \cos \tilde{\xi}(x) d x \\
& =\left[x-\frac{1}{6} x^{3}\right]_{0}^{0.1}+\frac{1}{24} \int_{0}^{0.1} x^{4} \cos \tilde{\xi}(x) d x \\
& =0.1-\frac{1}{6}(0.1)^{3}+\frac{1}{24} \int_{0}^{0.1} x^{4} \cos \tilde{\xi}(x) d x
\end{aligned}
$$

Therefore

$$
\int_{0}^{0.1} \cos x d x \approx 0.1-\frac{1}{6}(0.1)^{3}=0.0998 \overline{3}
$$

A bound for the error in this approximation is determined from the integral of the Taylor remainder term and the fact that $|\cos \tilde{\xi}(x)| \leq 1$ for all x :

$$
\begin{aligned}
\frac{1}{24}\left|\int_{0}^{0.1} x^{4} \cos \tilde{\xi}(x) d x\right| & \leq \frac{1}{24} \int_{0}^{0.1} x^{4}|\cos \tilde{\xi}(x)| d x \\
& \leq \frac{1}{24} \int_{0}^{0.1} x^{4} d x=\frac{(0.1)^{5}}{120}=8 . \overline{3} \times 10^{-8}
\end{aligned}
$$

The true value of this integral is

$$
\left.\int_{0}^{0.1} \cos x d x=\sin x\right]_{0}^{0.1}=\sin 0.1 \approx 0.099833416647
$$

so the actual error for this approximation is 8.3314×10^{-8}, which is within the error bound.

We can also use Maple to obtain these results. Define f by
$f:=\cos (x)$
Maple allows us to place multiple statements on a line separated by either a semicolon or a colon. A semicolon will produce all the output, and a colon suppresses all but the final Maple response. For example, the third Taylor polynomial is given by
$s 3:=\operatorname{taylor}(f, x=0,4): p 3:=\operatorname{convert}(s 3$, polynom $)$

$$
1-\frac{1}{2} x^{2}
$$

The first statement $s 3:=\operatorname{tay} \operatorname{lor}(f, x=0,4)$ determines the Taylor polynomial about $x_{0}=0$ with four terms (degree 3) and an indication of its remainder. The second $p 3:=$ convert($s 3$, polynom) converts the series $s 3$ to the polynomial $p 3$ by dropping the remainder term.

Maple normally displays 10 decimal digits for approximations. To instead obtain the 11 digits we want for this illustration, enter
Digits $:=11$
and evaluate $f(0.01)$ and $P_{3}(0.01)$ with
$y 1:=\operatorname{evalf}(\operatorname{subs}(x=0.01, f)) ; y 2:=\operatorname{evalf}(\operatorname{subs}(x=0.01, p 3)$

This produces

0.99995000042

To show both the function (in black) and the polynomial (in cyan) near $x_{0}=0$, we enter plot $((f, p 3), x=-2 . .2)$ and obtain the Maple plot shown in Figure 1.11.

Figure 1.11

The integrals of f and the polynomial are given by
$q 1:=\operatorname{int}(f, x=0 \ldots 0.1) ; q 2:=\operatorname{int}(p 3, x=0 \ldots 0.1)$
0.099833416647
0.099833333333

We assigned the names $q 1$ and $q 2$ to these values so that we could easily determine the error with the command
err $:=|q 1-q 2|$

$$
8.331410^{-8}
$$

There is an alternate method for generating the Taylor polynomials within the NumericalAnalysis subpackage of Maple's Student package. This subpackage will be discussed in Chapter 2.

EXERCISE SET 1.1

1. Show that the following equations have at least one solution in the given intervals.
a. $\quad x \cos x-2 x^{2}+3 x-1=0, \quad[0.2,0.3]$ and $[1.2,1.3]$
b. $\quad(x-2)^{2}-\ln x=0, \quad[1,2]$ and $[e, 4]$
