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Maple gives the response

f solve(−12 sin(2x)− 4x cos(2x), x, .5 . . 1)

This indicates that Maple is unable to determine the solution. The reason is obvious once
the graph in Figure 1.6 is considered. The function f is always decreasing on this interval,
so no solution exists. Be suspicious when Maple returns the same response it is given; it is
as if it was questioning your request.

In summary, on [0.5, 1] the absolute maximum value is f (0.5) = 1.86004545 and
the absolute minimum value is f (1) = −3.899329036, accurate at least to the places
listed.

The following theorem is not generally presented in a basic calculus course, but is
derived by applying Rolle’s Theorem successively to f , f ′, . . . , and, finally, to f (n−1).
This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle’s Theorem)
Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f (x) = 0 at the n + 1 distinct
numbers a ≤ x0 < x1 < . . . < xn ≤ b, then a number c in (x0, xn), and hence in (a, b),
exists with f (n)(c) = 0.

We will also make frequent use of the Intermediate Value Theorem. Although its state-
ment seems reasonable, its proof is beyond the scope of the usual calculus course. It can,
however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)
If f ∈ C[a, b] and K is any number between f (a) and f (b), then there exists a number c
in (a, b) for which f (c) = K .

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate
Value Theorem. In this example there are two other possibilities.

Figure 1.7
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Example 2 Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1].
Solution Consider the function defined by f (x) = x5 − 2x3 + 3x2 − 1. The function f is
continuous on [0, 1]. In addition,
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1.1 Review of Calculus 9

f (0) = −1 < 0 and 0 < 1 = f (1).
The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which
x5 − 2x3 + 3x2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

George Fredrich Berhard
Riemann (1826–1866) made
many of the important
discoveries classifying the
functions that have integrals. He
also did fundamental work in
geometry and complex function
theory, and is regarded as one of
the profound mathematicians of
the nineteenth century.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,
provided it exists:

∫ b

a
f (x) dx = lim

max�xi→0

n∑
i=1

f (zi) �xi,

where the numbers x0, x1, . . . , xn satisfy a = x0 ≤ x1 ≤ · · · ≤ xn = b, where�xi = xi−xi−1,
for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval [xi−1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable on
[a, b]. This permits us to choose, for computational convenience, the points xi to be equally
spaced in [a, b], and for each i = 1, 2, . . . , n, to choose zi = xi. In this case,

∫ b

a
f (x) dx = lim

n→∞
b− a

n

n∑
i=1

f (xi),

where the numbers shown in Figure 1.8 as xi are xi = a+ i(b− a)/n.

Figure 1.8
y
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Two other results will be needed in our study of numerical analysis. The first is a
generalization of the usual Mean Value Theorem for Integrals.
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10 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)
Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and g(x) does not change
sign on [a, b]. Then there exists a number c in (a, b) with

∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

When g(x) ≡ 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives
the average value of the function f over the interval [a, b] as (See Figure 1.9.)

f (c) = 1

b− a

∫ b

a
f (x) dx.

Figure 1.9
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The proof of Theorem 1.13 is not generally given in a basic calculus course but can be
found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These
polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor’s Theorem)

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b],
there exists a number ξ(x) between x0 and x with

Brook Taylor (1685–1731)
described this series in 1715 in
the paper Methodus
incrementorum directa et inversa.
Special cases of the result, and
likely the result itself, had been
previously known to Isaac
Newton, James Gregory, and
others.

f (x) = Pn(x)+ Rn(x),

where

Pn(x) = f (x0)+ f ′(x0)(x − x0)+ f
′′(x0)

2! (x − x0)
2 + · · · + f

(n)(x0)

n! (x − x0)
n

=
n∑

k=0

f (k)(x0)

k! (x − x0)
k
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1.1 Review of Calculus 11

and

Rn(x) = f
(n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is called
the remainder term (or truncation error) associated with Pn(x). Since the number ξ(x)
in the truncation error Rn(x) depends on the value of x at which the polynomial Pn(x) is
being evaluated, it is a function of the variable x. However, we should not expect to be
able to explicitly determine the function ξ(x). Taylor’s Theorem simply ensures that such a
function exists, and that its value lies between x and x0. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound for the value of f (n+1)(ξ(x))
when x is in some specified interval.

Colin Maclaurin (1698–1746) is
best known as the defender of the
calculus of Newton when it came
under bitter attack by the Irish
philosopher, the Bishop George
Berkeley.

The infinite series obtained by taking the limit of Pn(x) as n→∞ is called the Taylor
series for f about x0. In the case x0 = 0, the Taylor polynomial is often called a Maclaurin
polynomial, and the Taylor series is often called a Maclaurin series.

Maclaurin did not discover the
series that bears his name; it was
known to 17th century
mathematicians before he was
born. However, he did devise a
method for solving a system of
linear equations that is known as
Cramer’s rule, which Cramer did
not publish until 1750.

The term truncation error in the Taylor polynomial refers to the error involved in
using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let f (x) = cos x and x0 = 0. Determine

(a) the second Taylor polynomial for f about x0; and

(b) the third Taylor polynomial for f about x0.

Solution Since f ∈ C∞(R), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, and f (4)(x) = cos x,

so

f (0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

(a) For n = 2 and x0 = 0, we have

cos x = f (0)+ f ′(0)x + f
′′(0)
2! x2 + f

′′′(ξ(x))
3! x3

= 1− 1

2
x2 + 1

6
x3 sin ξ(x),

where ξ(x) is some (generally unknown) number between 0 and x. (See Figure 1.10.)

Figure 1.10
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12 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

When x = 0.01, this becomes

cos 0.01 = 1− 1

2
(0.01)2 + 1

6
(0.01)3 sin ξ(0.01) = 0.99995+ 10−6

6
sin ξ(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The
truncation error, or remainder term, associated with this approximation is

10−6

6
sin ξ(0.01) = 0.16× 10−6 sin ξ(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.
Although we have no way of determining sin ξ(0.01), we know that all values of the sine
lie in the interval [−1, 1], so the error occurring if we use the approximation 0.99995 for
the value of cos 0.01 is bounded by

| cos(0.01)− 0.99995| = 0.16× 10−6| sin ξ(0.01)| ≤ 0.16× 10−6.

Hence the approximation 0.99995 matches at least the first five digits of cos 0.01, and

0.9999483 < 0.99995− 1.6× 10−6 ≤ cos 0.01

≤ 0.99995+ 1.6× 10−6 < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor
bound we used for | sin ξ(x)|. It is shown in Exercise 24 that for all values of x, we have
| sin x| ≤ |x|. Since 0 ≤ ξ < 0.01, we could have used the fact that | sin ξ(x)| ≤ 0.01 in the
error formula, producing the bound 0.16× 10−8.

(b) Since f ′′′(0) = 0, the third Taylor polynomial with remainder term about x0 = 0
is

cos x = 1− 1

2
x2 + 1

24
x4 cos ξ̃ (x),

where 0 < ξ̃(x) < 0.01. The approximating polynomial remains the same, and the ap-
proximation is still 0.99995, but we now have much better accuracy assurance. Since
| cos ξ̃ (x)| ≤ 1 for all x, we have∣∣∣∣ 1

24
x4 cos ξ̃ (x)

∣∣∣∣ ≤ 1

24
(0.01)4(1) ≈ 4.2× 10−10.

So

| cos 0.01− 0.99995| ≤ 4.2× 10−10,

and

0.99994999958 = 0.99995− 4.2× 10−10

≤ cos 0.01 ≤ 0.99995+ 4.2× 10−10 = 0.99995000042.

Example 3 illustrates the two objectives of numerical analysis:

(i) Find an approximation to the solution of a given problem.

(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor
polynomial gave a much better answer to (ii) than the second Taylor polynomial.

We can also use the Taylor polynomials to give us approximations to integrals.
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Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to
approximate

∫ 0.1
0 cos x dx. We have∫ 0.1

0
cos x dx =

∫ 0.1

0

(
1− 1

2
x2

)
dx + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

=
[

x − 1

6
x3

]0.1

0

+ 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

= 0.1− 1

6
(0.1)3 + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx.

Therefore ∫ 0.1

0
cos x dx ≈ 0.1− 1

6
(0.1)3 = 0.09983.

A bound for the error in this approximation is determined from the integral of the Taylor
remainder term and the fact that | cos ξ̃ (x)| ≤ 1 for all x:

1

24

∣∣∣∣
∫ 0.1

0
x4 cos ξ̃ (x) dx

∣∣∣∣ ≤ 1

24

∫ 0.1

0
x4| cos ξ̃ (x)| dx

≤ 1

24

∫ 0.1

0
x4 dx = (0.1)5

120
= 8.3× 10−8.

The true value of this integral is∫ 0.1

0
cos x dx = sin x

]0.1

0

= sin 0.1 ≈ 0.099833416647,

so the actual error for this approximation is 8.3314 × 10−8, which is within the error
bound. �

We can also use Maple to obtain these results. Define f by

f := cos(x)

Maple allows us to place multiple statements on a line separated by either a semicolon or
a colon. A semicolon will produce all the output, and a colon suppresses all but the final
Maple response. For example, the third Taylor polynomial is given by

s3 := taylor(f , x = 0, 4) : p3 := convert(s3, polynom)

1− 1

2
x2

The first statement s3 := taylor(f , x = 0, 4) determines the Taylor polynomial about
x0 = 0 with four terms (degree 3) and an indication of its remainder. The second p3 :=
convert(s3, polynom) converts the series s3 to the polynomial p3 by dropping the remainder
term.

Maple normally displays 10 decimal digits for approximations. To instead obtain the
11 digits we want for this illustration, enter

Digits := 11

and evaluate f (0.01) and P3(0.01) with

y1 := evalf(subs(x = 0.01, f )); y2 := evalf(subs(x = 0.01, p3)
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14 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

This produces

0.99995000042

0.99995000000

To show both the function (in black) and the polynomial (in cyan) near x0 = 0, we enter

plot ((f , p3), x = −2 . . 2)

and obtain the Maple plot shown in Figure 1.11.

Figure 1.11
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The integrals of f and the polynomial are given by

q1 := int(f , x = 0 . . 0.1); q2 := int(p3, x = 0 . . 0.1)

0.099833416647

0.099833333333

We assigned the names q1 and q2 to these values so that we could easily determine the error
with the command

err := |q1− q2|

8.3314 10−8

There is an alternate method for generating the Taylor polynomials within the Numer-
icalAnalysis subpackage of Maple’s Student package. This subpackage will be discussed
in Chapter 2.

E X E R C I S E S E T 1.1

1. Show that the following equations have at least one solution in the given intervals.

a. x cos x − 2x2 + 3x − 1 = 0, [0.2, 0.3] and [1.2, 1.3]
b. (x − 2)2 − ln x = 0, [1, 2] and [e, 4]
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