
Steiner Triple 
Systems



Definition

Welcome to the Sacred Order of Steiner Systems.

              Our Motto: When in doubt ... count!

A Steiner Triple System, denoted by STS(v), is a pair 
(S,T) consisting of a set S with v elements, and a set T 
consisting of triples of S (called blocks) such that 
every pair of elements of S appear together in a 
unique triple of T.



Examples
I. v = 7
   S = {0,1,2,...,6}   T = {013, 124, 235, 346, 450, 561, 602}

II. v = 3  (a trivial example)
   S = {0,1,2}           T = {012}

III. v = 1 (an even more trivial example)
    S = {1}            T = ∅

IV. v = 9 (something with a bit more meat)
    S = {1,2,...,9}
    T = {123, 147, 159, 168, 456, 258, 267, 249, 789, 369,
            348, 357}



A Graph Theoretic View

Another way to look at Steiner Triple Systems - 

  Consider the complete graph on v vertices, K
v
. A 

decomposition of K
v
 into edge disjoint triangles (K

3
's) is 

equivalent to a Steiner Triple System.
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Necessity
The existence question (for which v's does an STS(v) 
exist?) was first posed by W.S.B. Woolhouse (Prize 
question 1733, Lady's and Gentlemens' Diary, 1844). 

The problem was solved in 1847 by Rev. T.P. Kirkman:

Theorem 1.1.3: A Steiner triple system of order v exists if 
and only if v ≡ 1 or 3 (mod 6).

We will first prove the necessity of this condition. The 
sufficiency involves constructing STS(v)'s and we shall take 
up that task next.



Necessity
Theorem 1.1.3: A Steiner triple system of order v exists if 
and only if v ≡ 1 or 3 (mod 6).

Pf (necessity): Let (S,T) be an STS(v). Any triple, {a,b,c} 
contains three 2-element subsets and S contains ½ v(v-1) 
2-element subsets. As every pair appears in a unique triple, 
we have 3|T| = ½ v(v-1), so
                        |T| = v(v-1)/6.
For any x∈S, the triples containing x partition S-{x} into 
pairs, thus v-1 is even, so v is odd. Therefore, v≡1,3 or 5 
(mod 6). However, if v = 6k+5, computing |T| gives:
        |T| = (6k+5)(6k+4)/6 = (36k2 +54k + 20)/6 
which is not an integer, so this case is eliminated.      ❑



An Old Problem

Arrange the 16 face cards of a deck of playing cards in a 4 x 
4 array so that each denomination (Ace, King, Queen, Jack) 
and each suit (Clubs, Hearts, Diamonds, Spades) appears 
only once in each row and column.

 ÍA  ÌK  ËQ  ÊJ 
 ËJ   ÊQ  ÍK  ÌA
 ÊK  ËA  ÌJ   ÍQ
 ÌQ  ÍJ   ÊA  ËK

An enumeration by type of the solutions to this problem was 
published in 1723.



Latin Squares
If we seperate the denominations and the suits we obtain:

 Í   Ì   Ë   Ê 
 Ë   Ê   Í   Ì
 Ê   Ë   Ì   Í
 Ì   Í   Ê   Ë

 A  K  Q  J 
 J   Q  K  A
 K  A  J   Q
 Q  J   A  K

Each of these is a 4x4 Latin square.

A Latin square is an n x n square matrix whose entries 
consist of n symbols such that each symbol appears exactly 
once in each row and each column.



Latin Squares

     Latin squares have a long history. The concept probably 
originated with problems concerning the movement and 
disposition of pieces on a chess board. However, the earliest 
written reference is the solutions of the card problem 
published in 1723.  The Latin square concept certainly goes 
back further than this written document. In his famous etching 
Melencholia I, the 16th Century artist Albrecht Dürer portrays 
an order 4 magic square,a relative of Latin squares, in the  
background. Magic squares can also be found in the ancient 
Chinese literature.



Melencholia I



Latin Squares

     The systematic development of Latin squares started with 
Euler (1779) and was carried on by Cayley (1877-1890) who 
showed that the multiplication table of a group is an 
appropriately bordered special Latin square. In the 1930's the 
concept arose once again in the guise of multiplication tables 
when the theory of quasi-groups and loops began to be 
developed as a  generalization of the group concept. Latin 
squares played an important role in the foundations of finite 
geometries, a subject which was also in  development at this 
time.
    Also in the 1930's, a big application area for Latin squares 
was opened by R.A.Fisher who used them and other  
combinatorial structures in the design of statistical 
experiments. 



Quasigroups
     A Quasigroup (S,⊗) is a set S together with a binary 
operation (⊗) such that:

1. The operation is closed (i.e., a⊗b∈S, ∀ a,b∈S)
2. Given a,b∈S the equations
                      
             i)    a⊗x = b   and
             ii)   y⊗a = b

     have unique solutions for x and y.



Example

     A simple example of a finite quasigroup is given by the set 
{0,1,2}  with the operation ⊗ defined by  a⊗b = 2a+b+1 where 
the operations on the right are the usual multiplication and 
addition modulo 3. The  multiplication table for this 
quasigroup is given below:

                               (⊗)   0  1   2 
                                 0    1  2   0 
                                 1    0  1   2
                                 2    2  0   1



Latin Squares and Quasigroups
     The simple result which causes our interest in these algebraic 
forms is:

Theorem I.1.1.1 - The multiplication table of a quasigroup is a 
Latin square. 

Proof: Let a
1
 ,a

2
 ,...,a

n
  be the elements of the quasigroup and let 

its multiplication table be as below:
a1 a2 ⋯ as ⋯ an

a1 a11 a12 ⋯ a1 s ⋯ a1n
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
ar ar1 ar2 ⋯ ars ⋯ arn
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
an an1 an2 ⋯ ans ⋯ ann

.



Latin Squares and Quasigroups

Theorem I.1.1.1 - The multiplication table of a quasigroup is a 
Latin square. 

Proof (cont):   Where the entry a
rs
  which occurs in the r-th row 

and s-th column is the product a
r
⊗a

s
 of the elements a

r
 and a

s
 . If 

the same entry occured twice in the r-th row, say in the s-th
and t-th columns so that a

rs
  =  a

rt
 = b say, we would have two 

solutions to the equation  a
r
⊗x = b,  in contradiction to the 

quasigroup axiom. Similarly, if the same entry occurred twice in 
the s-th column, we would have two solutions to the equation 
y⊗a

s
  = c for some c. We conclude that each element of the 

quasigroup occurs exactly once in each row and column, and so 
the unbordered  multiplication table (which is an nxn array) is a 
latin square.           ❑



Quasigroup Properties

A quasigroup (latin square) is idempotent if a ⊗ a = a ∀ a 
(cell (i,i) contains symbol i for 1 ≤ i ≤ n.)

A quasigroup (latin square) is commutative if a ⊗ b = b ⊗ a 
∀ a,b (cells (i,j) and (j,i) contain the same symbol for 
1 ≤ i,j ≤ n.)

Examples of commutative idempotent latin squares:
                                              1 4 2 5 3
              1 3 2                        4 2 5 3 1
              3 2 1                        2 5 3 1 4
              2 1 3                        5 3 1 4 2
                                              3 1 4 2 5



Commutative Idempotent LS's

There is no commutative idempotent latin square of even 
order (prove this).

For any n = 2k+1, there exists a commutative idempotent 
latin square of order n.

     Start with the addition table of the cyclic group ℤ
2n+1

 and 
rename the elements so that the main diagonal is in the 
appropriate order.

0 1 2 3 4 5 6                                    0 4 1 5 2 6 3
1 2 3 4 5 6 0                                    4 1 5 2 6 3 0
2 3 4 5 6 0 1                                    1 5 2 6 3 0 4
3 4 5 6 0 1 2                 ⇒               5 2 6 3 0 4 1
4 5 6 0 1 2 3                                    2 6 3 0 4 1 5
5 6 0 1 2 3 4                                    6 3 0 4 1 5 2
6 0 1 2 3 4 5                                    3 0 4 1 5 2 6



Bose Construction (v=6n+3)
The Bose construction of an STS(6n+3) for any natural 
number n, utilizes a commutative idempotent quasigroup 
(Q,⊗) of order 2n+1.
   The set S consists of the 6n+3 ordered pairs of Q x {0,1,2} 
and the triples T are of two types:
  Type 1 : {(i,0), (i,1), (i,2)} for each i ∈ Q. 
  Type 2 : {(i,k), (j,k), (i⊗j, k+1 (mod 3))} for i ≠ j

We can visualize the triples by considering 3 copies of Q:



Bose Construction
To show that this construction gives an STS we first count 
the number of triples:

   There are 2n+1 triples of type 1 and 3(2n+1)(2n)/2 = 
6n2+3n triples of type 2. Thus, 

         |T| = 6n2+5n+1 = (6n+3)(6n+2)/6 = v(v-1)/6.

To prove that this is an STS we need only show that each 
pair of distinct elements of S are contained in a triple (since 
the number of triples is correct this will force each pair to be 
in a unique triple).



Bose Construction
  Let (a,b) and (c,d) be distinct elements of S.

  If a = c then this pair is in a triple of type 1. We now 
assume that a ≠ c. If b = d, the pair is in a triple of type 2.

 We now also assume that b ≠ d. Now, either d = b+1(mod 
3) or d = b-1 (mod 3). In the first case, let x be the unique 
solution of a⊗x = c in Q. The triple containing the pair is 
thus {(a,b), (x,b), (c,d)}. In the second case, let y be the 
unique solution of y⊗c = a in Q. The triple is then {(y,d), 
(c,d), (a,b)}.



Half-Idempotent Commutative 
Latin Squares

While there are no commutative idempotent latin squares of 
even order, we can obtain something similar.

A latin square (quasigroup) L of order 2n is half-idempotent 
if the cells (i,i) and (n+i,n+i) contain the symbol i, for every
1 ≤ i ≤ n. 

Examples:
                                              1 4 2 5 3 6
              1 3 2 4                     4 2 5 3 6 1
              3 2 4 1                     2 5 3 6 1 4
              2 4 1 3                     5 3 6 1 4 2
              4 1 3 2                     3 6 1 4 2 5
                                              6 1 4 2 5 3



Half-Idempotent Commutative 
Latin Squares

Commutative half-idempotent latin squares exist for all even 
orders 2n (n ≥ 1):
   Write the addition table for ℤ

2n
 and then rename the 

elements so that the main diagonal is appropriate:

              0 1 2 3 4 5                     1 4 2 5 3 6
              1 2 3 4 5 0                     4 2 5 3 6 1
              2 3 4 5 0 1      ⇒           2 5 3 6 1 4
              3 4 5 0 1 2                     5 3 6 1 4 2
              4 5 0 1 2 3                     3 6 1 4 2 5
              5 0 1 2 3 4                     6 1 4 2 5 3

     using the bijection 0 → 1, 1 → 4, 2 → 2, 3 → 5, 4 → 3, 5 → 6.



Skolem Construction (v=6n+1)
This construction of an STS(6n+1) starts with a set S 
consisting of the 6n ordered pairs of Qx{0,1,2}, where (Q,⊗) 
is a commutative half-idempotent quasigroup of order 2n, 
together with a special symbol called ∞.
   To describe the triples we assume that the quasigroup Q 
has symbols {1,2,...,2n}. The triples are then:
     Type 1:   {(i,0), (i,1), (i,2)} for 1 ≤ i ≤ n. (note: it stops at n)
     Type 2:   { ∞, (i,k), (n+i, k-1 mod 3)} for 1 ≤ i ≤ n.
     Type 3:   {(i,k), (j,k), (i⊗j, k+1 (mod 3))} for 1 ≤ i < j ≤ 2n.

Note that the type 3 triples here are precisely the same as 
the type 2 triples in the Bose construction.



Skolem Construction
We again count the number of triples:
   There are n triples of type 1, 3n triples of type 2 and
    3(2n)(2n-1)/2 = 6n2 – 3n triples of type 3. This gives
         |T| = 6n2 + n = (6n+1)(6n)/6 = v(v-1)/6.

Again, to show that we have constructed an STS, we need 
to show that each pair of elements is contained in a triple.

   Any pair including the symbol ∞ is contained in a type 2 
triple.
   Suppose (a,b) and (c,d) are a pair of elements of S.
If a = c and a ≤ n, then the pair is contained in a triple of 
type 1. 



Skolem Construction
   Suppose (a,b) and (c,d) are a pair of elements of S.
 Now suppose that a = c and a > n. Since  b ≠ d, either d = 
b+1(mod 3) or d = b-1 (mod 3). In the first case, let x be the 
unique solution of a⊗x = a in Q. Since a > n, x ≠ a. The triple 
containing the pair is thus {(a,b), (x,b), (a,d)}. In the second 
case, let y be the unique solution of y⊗a = a in Q. Again, 
y ≠ a and the triple is then {(y,d), (a,d), (a,b)}.
  We can now assume that a ≠ c. If b = d, then a triple of type 
3 contains the pair, so we can also assume that b ≠ d. Again, 
either d = b+1(mod 3) or d = b-1 (mod 3). In the first case, let 
x be the unique solution of a⊗x = c in Q. If x ≠ a, then the 
type 3 triple {(a,b), (x,b), (c,d)} contains the pair. If on the 
other hand x = a, then a > n, since a ≠ c. In this case, 
a = n + c and the pair is in the type 2 triple {∞, (c,d), (n+c,b)}. 
The other possibility for d is treated similarly.



Theorem 1.1.3

These two constructions prove the sufficiency part of the 
existence theorem for Steiner Triple systems.

We will now ask the question ... How close to an STS can 
we get with a set of size v = 6n+5? As we shall see, we can 
get very close .... all the blocks have size 3 except for one 
of size 5. This of course is not an STS, but it is of interest 
and will be useful for other constructions.



Linear Spaces

A Linear Space is a pair (S,B) where S is a set and B is a 
collection of subsets of S (whose sizes may vary) such that 
every pair of elements of S appear together in a unique 
subset in B. The subsets of B are called blocks.

Linear spaces are also called Pairwise Block Designs 
(PBD's), a terminology preferred by design theorists (and the 
authors of our text).

Note that STS's are just PBD's with the additional restriction 
that all blocks have size 3.



The 6n+5 Construction
We can construct a PBD with 6n+5 elements having one 
block of size 5 and all remaining blocks of size 3.

The construction uses an idempotent commutative 
quasigroup (Q,⊗) on the set {1,2,...,2n+1} and a permutation 
of this set, α = (1)(2 3 4 ... 2n+1).

The set S consists of two special elements ∞
1
 and ∞

2
, and 

the ordered pairs of Qx{0,1,2}.

The blocks are:
    Type 1: (the unique block of size 5)
          {∞

1
 , ∞

2
, (1,0), (1,1), (1,2)}



The 6n+5 Construction
Type 2:

∞
1
  ∞

2

Black edges together with ∞
1
  and red edges with ∞

2

Type 3:
i j

i⊗j

i⊗j

(i⊗j)α

i

i

j

j


