Some Properties of Hadamard Matrices

V. Kvaratskhelia, M. Menteshashvili, G. Giorgobiani

Hadamard matrix $-H=\left(h_{i j}\right) i, j=1,2, \ldots, n ; 1<n<\infty$

$$
\begin{gathered}
h_{i j}= \pm 1 \\
\left\langle h_{i} \perp h_{k}\right\rangle=0, i \neq k \\
h_{i} \equiv\left(h_{i 1}, h_{i 2}, \cdots, h_{i n}\right) \in \mathbb{R}^{n}
\end{gathered}
$$

$\mathcal{H}_{\boldsymbol{n}}$ - the class of all Hadamard matrices of order $n=4 k$.

Example: 8×8 Hadamard matrix

$$
\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1
\end{array}\right]
$$

Practical use:

- Error-correcting codes - in early satellite transmissions. For example:
1971 - 72, Mariner 9's mission to Mars, 54 billion bits of data had been transmitted;
Flybys of the outer planets in the solar system.
- Modern CDMA cellphones - minimize interference with other transmissions to the base station.
- New applications are everywhere about us such as in: pattern recognition, neuroscience, optical communication and information hiding.
- Compressive Sensing (Signal Reconstruction).
D. J. Lum et al. Fast Hadamard transforms for compressive sensing. 2015
- In Chemical Physics - Construction of the orthogonal set of molecular orbitals.
K. Balasubramanian. Molecular orbitals and Hadamard matrices 1993.

In 2002 V. Kvaratskhelia (in "Some inequalities related to Hadamard matrices". Functional Analysis and Its Applications) considered the following characteristic:

$$
\begin{gather*}
\mathbb{R}^{n} \text { is equipped with } l_{p}-\text { norm, } 1 \leq p \leq \infty \\
\|x\|_{p}=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots\left|x_{n}\right|^{p}} \\
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \\
x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} . \\
\varrho_{p, H} \equiv \max \left\{\left\|h_{1}\right\|_{p},\left\|h_{1}+h_{2}\right\|_{p}, \cdots,\left\|h_{1}+h_{2}+\cdots+h_{n}\right\|_{p}\right\}, \\
\boldsymbol{\alpha}_{\boldsymbol{p}, \mathcal{H}_{n}} \equiv \max _{\boldsymbol{H} \in \mathcal{H}_{n}} \varrho_{\boldsymbol{p}, \boldsymbol{H}} \\
\frac{1}{\sqrt{2}} \cdot n^{\left(\frac{1}{p}+\frac{1}{2}\right)} \leq \boldsymbol{\alpha}_{\boldsymbol{p}, \mathcal{H}_{n}} \leq n^{\left(\frac{1}{p}+\frac{1}{2}\right)}, 1 \leq p \leq 2, \tag{1}\\
\boldsymbol{\alpha}_{\boldsymbol{p}, \mathcal{H}_{n}}=n, 2 \leq p \leq \infty . \tag{2}
\end{gather*}
$$

Naturally arises the question to estimate the minimum

$$
\omega_{p, \mathcal{H}_{n}} \equiv \min _{H \in \mathcal{H}_{n}} \varrho_{p, H}
$$

Submitted paper (2018):
G. Giorgobiani, V. Kvaratskhelia. Maximum inequalities and their applications to Orthogonal and Hadamard matrices.

The following estimations are valid:
a) when $1 \leq p<\infty$

$$
\omega_{p, \mathcal{H}_{n}} \leq n^{\left(\frac{1}{p}+\frac{1}{2}\right)} \sqrt{7 \ln n} ;
$$

b) when $\mathrm{p}=2$

$$
\omega_{2, \mathcal{H}_{n}} \leq n
$$

c) when $p=\infty$, for some absolute constant K

$$
\omega_{\infty, \mathcal{H}_{n}} \leq K \sqrt{n} .
$$

Case $2<\boldsymbol{p}<\infty$: the bound $n^{\left(\frac{1}{p}+\frac{1}{2}\right)} \sqrt{7 \ln n}$ is asymptoticly smaller then n of (2) and this is achieved for extremely large n-s (if $p=25, n \geq 33$; if $p=2.5, n>2 \times 10^{11}$).
Case $\boldsymbol{p}=\infty$: $\boldsymbol{\omega}_{\infty, \mathcal{H}_{n}} \ll \boldsymbol{\alpha}_{\infty, \mathcal{H}_{n}}$.

Algorithms

Sign-Algorithms - Spencer; Lovett \& Meka: Partial Coloring Lemma (Herding algorithms of the Machin Learning)

Permutation-Algorithm - S. Chobanyan.

Generalization. Complex Hadamard matrices

$$
\begin{gathered}
H=\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 n} \\
\cdots & \cdots & \cdots \\
h_{n 1} & \cdots & h_{n n}
\end{array}\right] \\
h_{i j} \in \mathbb{C} \\
\left|h_{i j}\right|=1 \\
H H^{*}=n I \\
H^{*}-\text { conjugate transpose }, I-\text { identity }
\end{gathered}
$$

They are Unitary matrices after rescaling.
Example: rescaled Fourier Matrix, $n \geq 1$

$$
\begin{gathered}
H=\sqrt{n}\left[F_{n}\right]_{k, j} \\
{\left[F_{n}\right]_{k, j}=\frac{1}{\sqrt{n}} e^{2 \pi i(k-1)(j-1) / n}, k, j=1, \ldots, n}
\end{gathered}
$$

Unitary (complex) matrices are important in Particle Physics:

- CKM (Cabibbo-Kobayashi-Maskawa) matrix, appears in the coupling of quarks to $W^{ \pm}$bosons;
- Reconstruction Problem of a unitary matrix see e.g.

Auberson, G., Martin A., Mennessier G. "On the reconstruction of a unitary matrix from its moduli".
The CERN Theory Department:1990-Report \# CERN-TH-5809-90.

Applications of Complex Hadamard matrices (in 90-ies)

- various branches of mathematics,
- quantum optics,
- high-energy physics,
- quantum teleportation.

We plan to transfer our results for Real Hadamard matrices to the Complex case.

Thank you for your attention

