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1 INTRODUCTION

One hundred years ago, in 1893, Jacques Hadamard [31] found square ma-
trices of orders 12 and 20, with entries +1, which had all their rows (and
columns) pairwise orthogonal. These matrices, X = (x;;), satisfied the equal-
ity of the following inequality,

|det X |* < ﬁilxﬁlz,

i=1j=1

and so had maximal determinant among matrices with entries +1. Hadamard
actually asked the question of finding the maximal determinant of matrices
with entries on the unit disc, but his name has become associated with the
question concerning real matrices.
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432 Hadamard Matrices, Sequences, and Block Designs

Hadamard was not the first to study these matrices, for J. J. Sylvester in
1857, in his seminal paper, “Thoughts on inverse orthogonal matrices, simul-
taneous sign-successions and tesselated pavements in two or more colors with
application to Newton’s rule, ornamental tile work and the theory of numbers”
[97], had found such matrices for all orders that are powers of two. Neverthe-
less, Hadamard showed that matrices with entries +1 and maximal determi-
nant could exist only for orders 1, 2, and 4z. The Hadamard conjecture states
that “there exists an Hadamard matrix, or square matrix with every entry +1
and row (column) vectors pairwise orthogonal for these orders.” This survey
indicates the progress that has been made in the past 100 years.

Hadamard’s inequality applies to matrices with entries from the unit circle.
Matrices with entries +1, +#, and pairwise orthogonal rows (and columns) are
called complex Hadamard matrices (note the scalar product is a-b =) a;b}
for complex numbers). These matrices were first studied by R. J. Turyn [104].
We believe complex Hadamard matrices exist for every order n = 0 (mod2).
The truth of this conjecture would imply the truth of the Hadamard conjec-
ture.

We begin by mentioning a few practical applications of Hadamard matrices.
We note that it was M. Hall, Jr., L. Baumert, and S. Golomb [4] working
with the U.S. Jet Propulsion Laboratories (JPL) who sparked the interest in
Hadamard matrices in the past 30 years. In the 1960s the JPL was working
toward building the Mariner and Voyager space probes to visit Mars and the
other planets of the solar system. Those of us who saw early black-and-white
pictures of the back of the moon remember that whole lines were missing.
The black-and-white television pictures from the first landing on the moon
were extremely poor quality. How many of us remember that the recent flyby
of Neptune was by a space probe launched in the seventies? We take the high-
quality color pictures of Jupiter, Saturn, Uranus, Neptune, and their moons for
granted.

In brief, these high-quality color pictures are made by using three black-
and-white pictures taken, in turn, through red, green, and blue filters. Each
picture is then considered as a 1000 x 1000 matrix of black-and-white pixels.
Each pixel is graded on a scale of 1 to 16, according to its greyness. So white
is 1, and black is 16. These grades are then used to choose a codeword in an
eight error correction code based on the Hadamard matrix of order 32. The
codeword is transmitted to Earth, error corrected, the three black-and-white
pictures are reconstructed, and then a computer is used to obtain the colored
pictures.

Hadamard matrices were used for these codewords for two reasons. First,
error correction codes based on Hadamard matrices have maximal error cor-
rection capability for a given length of codeword. Second, the Hadamard ma-
trices of powers of two are analogous to the Walsh functions, and thus all
the computer processing can be accomplished using additions (which are very
fast and easy to implement in computer hardware) rather than multiplications
(which are far slower).
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Sylvester’s original construction for Hadamard matrices is equivalent to
finding Walsh functions [48] which are the discrete analogue of Fourier Se-
ries.

Example 1.1. Let H be a Sylvester-Hadamard matrix (see Section 2) of order
8=23

-1 1 -1 -1 1 -1 1
-1 1 -1 1 -1 1 -1

— e el e el md ed

The Walsh function wal; generated by H is the following:

walgl0,8) — 1 = 3

1 1

wal3(1, t) - E 'é‘
0

1 1

wala(z, t) - 0 2z

1 1

wals(3,8) —5 2z
0

1 N [ 1

waly(4, ) — 1 5 :

wals(5, 1) -% [] =
- 0

waly(6,8) ~+ _‘L 5 L—]l_%

want. o —3—HHHHH
0
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I_ wal,(0,t) 1
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0
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.- O waly(1,¢) V/2sin2mt
' . wal,(2,t) V2cos2mt
—& R ',L~ — waly(3,t) V2sindmt
t _>
- ._;. -1l L _%_ Walsh functions  Trigonometrical functions
2 2

Figure 1.1. Walsh functions and trigonometrical functions.

The Walsh function wal,, is constructed in a similar way from the Sylvester-
Hadamard matrix of order 2”. The points of intersections of Walsh functions
are identical with those of trigonometrical functions. See Figure 1.1.

As Figure 1.1 shows, by mapping w(i,¢) = wal,(i,f) into the interval
[-1,0], and then by extending the graph symmetrically into [0,%], we get
w(2i,t), which is an even function. By operating similarly, we get w(2i — 1,¢),
an odd function.

Just as any curve can be written as an infinite Fourler series,

z a,sinnt + b, cosnt,

n

the curve can be written in terms of Walsh functions,
> " ansaly(i,t) + bucalu(iyt) = Y cawaly(i,1),
n n

where sal,(i,t) and cal,(i, ) are, respectively, even and odd components of the
Walsh function wal,(i,¢). The hardest curve to model with Fourier series is the
step function wal,(0,¢), and errors lead to the Gibbes phenomenon. Similarly,
the hardest curve to model with Walsh functions is the basic sin27¢ or cos2m¢
curve. Still, we see that we can transform each form to the other.

Many problems require Fourier transforms to be taken, but Fourier trans-
forms require many multiplications that are slow and expensive to execute.
On the other hand, the fast Walsh-Hadamard transform uses only additions
and subtractions (addition of the complement) and so is used extensively to
transform power sequency spectrum density, band compression of television
signals or facsimile signals or image processing.

Walsh functions are easy to extend to higher dimensions (and higher dimen-
sional Hadamard matrices) to model surfaces in three and higher dimensions—
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All Hadamard matrices exist

Power X
of two X
t X
4 X
3_
9
1...
T T
135 7

0dd natural numbers q

Figure 1.2. Hadamard matrices of order 2‘q.

Fourier series are more difficult to extend. Walsh-Hadamard transforms in

higher dimensions are also effected using only additions (and subtractions).
We now give an overview of construction methods for Hadamard matri-

ces. Constructions for Hadamard matrices can be roughly classified into three

types:

1. Multiplication theorems;
‘2. “Plug-in” methods;
3. Direct constructions.

In 1976, Jennifer Seberry Wallis, in her paper, “On the existence of Hada-
mard matrices” [121], showed that “given any odd natural number g, there
exists a ¢ ~ 21log,(q — 3) so that there is an Hadamard matrix of order 2‘q (and
hence for all orders 2°q, s > ¢).” This is represented graphically in Figure 1.2.

In fact, as we show in our Appendix, Hadamard matrices are known to
exist of order 22q for most g < 3000 (we have results up to 40000 that are
similar). In many other cases, Hadamard matrices of order 23q or 2%q exist.
A quick look at the Appendix shows most of the very difficult cases are for g
(prime) = 3 (mod4).

Hadamard’s original construction for Hadamard matrices is a “multiplica-
tion theorem” as it uses the fact that the Kronecker product of Hadamard
matrices of orders 2°m and 2%# is an Hadamard matrix of order 24**mn. Our
graph shows that we would like to reduce this power of two. In his book,
Hadamard Matrices and Their Applications, Agayan [1] shows how to multi-
ply these Hadamard matrices to get an Hadamard matrix of order 2°**~1mn
(which lowers the curve in our graph except for g prime).

Paley’s 1933 “direct” construction [66], which gives Hadamard matrices of
order II; j(p; + 1)(2(g; + 1)), p; (prime power) = 3 (mod4), g; (prime power)
=1 (mod4), is extremely productive of Hadamard matrices, but we note again
the proliferation of powers of two as more products are taken.

Many people do not realize that in the same issue of the Journal of Mathe-
matics and Physics as Paley’s paper appeared, J. A. Todd showed the equiva-
lence of Hadamard matrices of order 4¢ and (4¢ — 1,27 — 1,1 — 1)-SBIBD (see
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SBIBD(4k2,2k? + k, k2 + k) —— Hadamard matrix of order 4k2
1
Regular Hadamard matrix of order 4k2,
maximal excess

SBIBD(4f — 1,2t — 1, — 1)
T

Difference set(4t — 1,2¢ —1,t —1) ——— Hadamard matrix of order 4¢

Figure 1.3. Relationship between SBIBD and Hadamard matrices.

Figure 1.3). This family of SBIBD, its complementary family (4 —1,2¢,7)-
SBIBD, and the family (452,25 £5,5% + 5)-SBIBD are called Hadamard de-
signs. The latter family satisfies the constraint v = 4(k — A), for v = 452, k =
25° + 5, and A = 52 & 5, which appears in some constructions (e.g., Shrikhande
[91]). Hadamard designs have the maximum number of one’s in their incidence
matrices among all incidence matrices of (v,k,A)-SBIBD (see Tsuzuku [103]).

In 1944, J. Williamson [128], who coined the name Hadamard matrices,
first constructed what have come to be called Williamson matrices, or with
a small set of conditions, Williamson type matrices. These matrices are used
to replace the variables of a formally orthogonal matrix. We say Williamson
type matrices are “plugged in” to the second matrix. Other matrices that can
be “plugged in” to arrays of variables are called suitable matrices. Generally
the arrays into which suitable matrices are plugged are orthogonal designs,
which have formally orthogonal rows (and columns) but may have variations
such as Goethals-Seidel arrays, Wallis-Whiteman arrays, Spence arrays, gener-
alized quarternion arrays, Agayan families, Kharaghani’s methods, and regular
s-sets of regular matrices that give new matrices. This is an extremely prolific
method of construction. We will discuss methods that give matrices to “plug
in” and matrices to “plug into.”

As a general rule, if we want to check if an Hadamard matrix of a specific
order 4pq exists, we would first check if there are Williamson type matri-
ces of order p,q,pq; then we would check if there is an OD(4¢;¢,1,1,1) for
t = q,p, pq. This failing, we would check the “direct” constructions. Finally,
we would use a “multiplication theorem.” When we talk of “strength” of a
construction, this reflects a personal preference.

Before we proceed to more detail, we will consider diagrammatically some
of the linkages between conjectures that will arise in this survey: The conjec-
ture implied is “the necessary conditions are sufficient for the existence of
(say) Hadamard matrices” (see Figure 1.4). (A weighing matrix W has entries
0, +1, is square, and satisfies WW7 = k1.)

The hierarchy of conjectures for weighing matrices and ODs is more
straightforward. Settling the OD conjecture in Table 1.1 would settle the weigh-
ing matrix conjecture to its left. This survey emphasizes those constructions,
selected by us, which we believe show the most promise toward solving the
Hadamard conjecture and which were found in the last 15 years.
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OD(2t;a,2t —a— 1) —————— Symmetric conference matrices

!

Complex Hadamard matrices

OD(4¢;t,t,t,t) ————— Hadamard matrices «— Amicable Hadamard

1 1 X !
Williamson-type matrices Symmetric Skew
Hadamard Hadamard
1 =
Regular OD(4¢;1,4t — 1)
Williamson matrices symmetric T
Hadamard Weighting:
1 W (4t,k) matrix
Regular
symmetric
Hadamard with

constant diagonal

Figure 1.4. Conjecture: “The necessary conditions are sufficient for the existence of (say) Hada-
mard matrices.”

TABLE 1.1 Weighing Matrix and OD Conjectures

Matrices OD’s
Strongest Skew-weighing OD(n;1,k)
Weighing W(n;k), n odd
Weighing W(2n,k), n odd OD(2n;a,b), n odd
Weighing W (4n,k), n odd OD(4n;a,b,c,d), n odd
Weakest W(2°'n,k), nodd, s >3 OD(2°n;u1,us,...,us), n odd

2 HADAMARD MATRICES

A square matrix with elements +1 and order A, whose distinct row vectors are
orthogonal is an Hadamard matrix of order h. The smallest examples are

o [1)



438 Hadamard Matrices, Sequences, and Block Designs

where we write — for —1. These were first studied by J. J. Sylvester [97] who
observed that if H is an Hadamard matrix, then

it ]
H -H
is also an Hadamard matrix. Indeed, using the matrix of order 2, we have

Lemma 2.1 (Sylvester [97]). There is an Hadamard matrix of order 2* for all
integers t.

We call matrices of order 2’ constructed by Sylvester’s construction Sylves-
ter-Hadamard matrices. We have seen that these matrices are naturally asso-
ciated with the discrete orthogonal functions called Walsh functions. Using
Sylvester’s method, the first few Hadamard matrices obtained are

11 1 1 1111}

1 -1 -]1 -1 -

1 1 1 1 11 - -7J1 1 - -

1 1 1 - 1 — 1 - - 1 1 - -1
[1—]’ 11 - =l 11 1 1] - - — -
1 - -1 1 - 1 — |- 1 - 1

11 - —| - - 11

1 - - 1/- 11 -]

For these matrices, we count, row by row, the number of times the sign
changes; for example, 1 — —1 changes sign twice. This gives

for the matrix of order 2 : 0,1;
for the matrix of order 4 : 0,3,1,2;

for the matrix of order 8 : 0,7,3,4,1,6,2,5.

Indeed, we will see that the set of the numbers of sign changes in the rows
of a Sylvester-Hadamard matrix of order n is {0,1,...,n— 1}, corresponding
to the number times the Walsh functions cross the x-axis.

In 1893, Jacques Hadamard [31] gave examples of Hadamard matrices for
a few small orders and conjectured that they exist for every order divisible by
4. Some examples for order 12 are



439

' =1
” T N - [ - -} -
' 1 (I R R
Lol oI I [T B
Ll I T B I B R I - e | = | - o
1= Lo T B o]
Lol R R A L LI B
Lol Lo T B B I B B I AR | | v - | [ o
e | | = ] — | e
Lo R I N | [ L T T
1___111_11_1
I I T | It - 111
Ll L T T B I T I A - = — o} ot [
1__111_11_1_ ,
Ll T N Tt ot - e - | — o=
Ll R I T I B T R | L — ] e LI I ]
| vt ot ot ot v | N T I I | | - 1 v - - - - | 1
Ll Lo B B T I I T I T I (| - = | ] -] ) e
Ll Lo T T I NI T R T LouJ S I I B I [ |
LB L T B ] LTl oo T T R T | ~ o= | - [ ] — -]
el o ] e | ] e | — = 11 [ ]
] ] e e Ll I R T - ] - [ o= - | e
Ll B I B T I T T B TR
I e | {] = | ] | or o - - | | [ ot o=
= (IR R
Lk Lo T I T I I IR |
- | ] Lol Lo R T A |
-] ) omo— [
L T I T (R R R R — [ LI [
et ]~ Ll L I I
o | [ O -1
LT N T T T T O NS B OO | lalallel I =1 (IR IR
L ] ot ot
L J L A [ | =1~
t 4 — - Lol B - Lol B
. L J

@
g
g
=
T
]
§
E




440 Hadamard Matrices, Sequences, and Block Designs

We have given these matrices in full because, unfortunately, an earlier survey
contains errors.

Two Hadamard matrices are said to be Hadamard equivalent (or just equiv-
alent) if one can be obtained from the other by a sequence of operations of
the following two types:

1. Permute rows (or columns).
2. Multiply any row (or column) by —1.

Although the Hadamard matrices of order 12 presented above appear to be
different, it is possible to show that they are equivalent.

In fact, we know that there are 5 inequivalent matrices of order 16 [32], 3
of order 20 [33], 60 of order 24 [37, 47], 486 of order 28 [44], over 15 of order
32 (N. Ito, personal communication, 1989), and over 109 of order 36 [11].

An Hadamard matrix of order 20 is given in Figure 2.1. This figure is more
easily described by calling the rows 0 to 19 and saying that the zeroth row is
all ones, the first row has ones in positions

{1,2,5,6,7,8,10,12,17,18},
the second row has ones in positions

{2,3,6,7,8,9,11,13,18,19},
the third row has ones in positions

{4,5,8,9,10,11,13,15,1,2},

and so on.

This example illustrates the use of difference sets with the parameters
(4t — 1,2t — 1,r — 1) in the construction of Hadamard matrices. {1,2,5,6,7,8,
10,12,17,18} is a difference set with parameters (19,9,4). For more informa-
tion on difference sets, see the survey by Jungnickel in this volume [40].

Hadamard matrices can also be constructed using supplementary difference
sets. The existence of supplementary difference sets in the abelian group Z3 x
Z3 and can be used to construct another Hadamard matrix of order 20 given
in Figure 2.2.

We now recall some basic properties of Hadamard matrices:

Lemma 2.2. Let H be an Hadamard matrix of order h. Then the following
hold:

1. HHT = hI,.
2. |detH| = h(1/2%,
3. HHT = HTH.
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1 *+ 11111 1111111 1 1 1 1 11
- 11 - - 1111 -1 -1 - - = —=11 -
- - 11 - -~ 1 1 11 -1 -1 -~ —-— — — 11
-1 -11 - -1 1 11 -1 - 1 =~ -~ - —1
- 11 - 11 - -11 11 -1 -1 = = — =
- =11 -11 - -11T 11 -1 -1 = — =—=
) - - =11 -11 - -1 111 -1 - 1 - -
- - - -11-11 - -1T111 -1 -1 ==
- - - =- -=-11 -11 - -1 1T 11 -1 -1
: -1 - - =111 -1 1 - -1 111 -1 -
- =1 -~ - --=-111 - 11 - -1 1 1 1 -1
-1 -1 - = - =11 -11 - -1 11 1 =
- -1 -1 - = = =11 -11 - -~ 11 11
-1 -1 -1 - - - -1 1 - 1 1 - -~ 1 1 1
-11 -1 -1 -~ - - 11 -1 1 - - 11
-1 11 -1 -1 - - - -1 1 - 11 - =1
- 1111 -1 -1 - - - - 11 -1 1 - -
- -1 1 1 1 1 -1 - - - = 11 1 1 -
- - -1 1 1 1 1 -1 - - - -1 1 1 1
-1 - =111 1 -1 -1 - — — =1 - 1
Figure 2.1. An Hadamard matrix of order 20.
1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 11 1
1 1 1 1 - -1 -1 - - -1 1 - 1 -1
1 1 1 1 1 - - - -1 - 1 - 1 1 - - - - 1
1 1 1 1 - 1 - 1 - - - 1 1 - 1 - 1 - -
1 - 11 1 - - 1 - -1 - - 1 1 - -1
1 - -1 1 1 1 1 - - - - -1 1 1 1 - -
1 b 11 - 1 - - 1 - 11 - - 1 -
1 - -1 - 1 - 1 1 1 - - -1 - 1 - - 1 1
1 1 - - - -1 11 1 - 1 - - - -1 1 - 1
1 - 1 - 1 - - 1 1 1 - - 1 - 1 - = 1 1 -
1 AR —— - - = - = = = T 1 1 T 1 1 T 1 1
1 - 1 1 - -1 - 1 - - - - 11 - 1 - 1
1 1 - 1 1 - - - -1 1 - - - - 1 1 S
1 1 - - 1 - 1 - - 1 - - - 1 - - - 1 1
1 - 1 ~ 1 1 -1 1 1 1 - - - 101
1 - -1 1 - 1 1 - - 1 1 1 - - - - 1 1
1 1 - - 11 - - 1 - 1 - 1 1 - - - 11 -
v 1 - - 1 -1 - - 1 1 1 1 1 - 1 - 1 - - -
1 1 - - - -1 1 - 1 1 - 1 1 1 1 - - - -
1 - 1 - 1 - - 1 1 - 1 1 - 1 - 1 1 - - -
- Figure 2.2. A second Hadamard matrix of order 20.

4. Every Hadamard matrix is equivalent to an Hadamard matrix that has
every element of its first row and column +1 (matrices of this latter form
are called normalized).

5. h=1,2, or 4n, n an integer.
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6. If H is a normalized Hadamard matrix of order 4n, then every row (col-
umn) except the first has 2n minus ones and 2n plus ones in each row
(column); further, n minus ones in any row (column) overlap with n mi-
nus ones in each other row (column).

Definition 2.1. An Hadamard matrix H is said to be regular if the sum of all
the elements in each row or column is a constant k. Hence HJ =JH =kJ,
where J is the matrix of all ones.

Definition 2.2. If M = (m;;) is a m x p matrix and N = (n;;) is an nx g
matrix, then the Kronecker product M x N is the mn x pq matrix given by

m11N mnN cer mle
leN M22N fee M2PN
MxN =
MpaN  MyaN -+ mMppN
Example 2.1. let
-1 1 1 1
1 1 1 -1 1 1
M= [ ] and N =
1 -1 1 1 -1 1
1 1 1 -1
Then
r—1 1 1 1 -1 1 1 17
1 -1 1 1 1 -1 1 1
1 1 -1 1 1 1 -1
N N 1 1 1 -1 1 1 1 -1
MxN = [ ] =
N -N -1 1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
1 1 -1 1 -1 -1 1 -1
1 1 1 -1 -1 -1 -1 1

Lemma 2.3 (Hadamard [31]). Let H; and H, be Hadamard matrices of orders
hy and hy. Then H = Hy x H, is an Hadamard matrix of order hih;.

We now prove a stronger result than Hadamard’s, first proved by Agayan
and Sarukhanyan, and then strengthened by Seberry and Yamada [87] and
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Agayan-Sarukhanyan [1]. These theorems have the advantage of reducing the
power of two in the resulting Hadamard matrix.

Lemma 2.4 (The Multiplication Theorem of Agayan-Sarukhanyan [1]). Let
H, and H, be Hadamard matrices of orders 4h and 4k. Then there is an
Hadamard matrix of order 8hk.

Proof. Write the two Hadamard matrices as
P Q K L

R S

and H, = .

H1=
M N

We note that since HlHlT = 4hI and HZHZT = 4k I, we have

PPT + QT = RRT +SST =2hI,  PRT + QST = 0 =RPT + SQ7;

KKT + LLT = MM" + NNT =2kI, KMT+LN" =0=MK" +NL".

The required Hadamard matrix of order 8k is

IP+Q)xK+iP-Q)xM LP+Q)xL+3(P-Q)xN
IR+S)xK+31(R-S)xM LR+S)xL+LR-S)xN

which can be verified by simple algebraic manipulation. O

Example 2.2. There are Hadamard matrices of orders 12 and 20. Sylvester’s

lemma guarantees the existence of an Hadamard matrix of order 240, while

the Agayan-Sarukhanyan guarantees the existence of one of order 120.

This can also be strengthened.

Theorem 2.5 (Craigen-Seberry-Zhang [14]). Suppose that there are Hadamard
matrices of orders 4a,4b,4c,4d. Then there is an Hadamard matrix of order
16abcd.

So, for example, we can get an Hadamard matrix of order 16-15-15 from
this theorem.

3 THE STRONGEST HADAMARD CONSTRUCTION THEOREMS

For easy reference, we will now give the strongest construction theorems for
Hadamard matrices. These theorems do not give all the known orders but give
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the vast majority of those known. We leave the proofs until our later book as
well as details of when these conditions can be satisfied.

Theorem 3.1 (Paley [66]). Let p=3 (mod4) be a prime power. Then there is
an Hadamard matrix of order p + 1.

Theorem 3.2 (Paley [66]). Let p=1 (mod4) be a prime power. Then there is
an Hadamard matrix of order 2(p + 1).

_ Theorem 3.3 (Goethals-Seidel [25]). Suppose that there is an Hadamard ma-
trix of order h. Then there is a regular symmetric Hadamard matrix with constant
diagonal of order h®.

Since Hadamard matrices are of order 2 =0 (mod4) and Hadamard’s in-

equality studies matrices on the unit disc, it is natural to consider matrices
with complex entries.

Definition 3.1. A matrix C of order 2n with elements 41, +i that satisfies
CC* = 2nl will be called a complex Hadamard matrix.

The strongest theorem using complex Hadamard matrices is the following
“multiplication theorem”:

Theorem 3.4 (Turyn [104]). Suppose that there is a complex Hadamard matrix
of order 2n and an Hadamard matrix of order 4h. Then there is an Hadamard

matrix of order 8hn.

This means that the complex Hadamard conjecture is intricately woven with
the Hadamard conjecture.

Definition 3.2. X and Y are said to be amicable matrices if
xyT =yvxT. )
Now we look more precisely at definitions of matrices to “plug in.”

Definition 3.3. Four circulant symmetric +1 matrices A4,B,C,D of order w
that satisfy

AAT + BBT + ¢cCT + DDT = 4w,

will be called Williamson matrices. Four +1 matrices A,B,C,D of order w
that satisfy both

XYT=yxT for X,Ye{A4,B,C,D}
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(that is, 4,B,C,D are pairwise amicable), and

AA"T + BBT + cCT + DDT = 4wl,, ()
will be called Williamson-type matrices.

Analogously, eight circulant +1 matrices A4;,A4s,...,4g of order w which
are symmetric and which satisfy

8
> 447 =8wl,
i=1

will be called 8-Williamson matrices. Eight £1 amicable matrices A;, A,...,Ag
of order w which satisfy both

8
Y AiA] =8wl, and  A;A] = 4iAT, ij=1,..8
i=1

will be called 8-Williamson-type matrices.
The most common structure matrices are “plugged into” is the orthogonal
design, defined as follows:

Definition 3.4. An orthogonal design of order n and type (s1,...,54), Si posi-
tive integers, is an n x n matrix X, with entries {0,£xy,...,+x,} (the x; com-
muting indeterminates) satisfying

xXxT = <§u:s,~x,~2) L. 3
i=1

We write this as OD(n;51,52,...,5).

Alternatively, each row of X has s; entries of the type +x;, and the distinct
rows are orthogonal under the euclidean inner product. We may view X as a
matrix with entries in the field of fractions of the integral domain Z[xy,...,xy]
(Z the rational integers), and if we let f = (Z¥_ s;x?), then X is an invertible
matrix with inverse (1/f)X?. Thus, X X7 = fI,, and so our alternative defi-
nition that the row vectors are orthogonal applies equally well to the column
vectors of X.

An orthogonal design with no zeros and in which each of the entries is
replaced by +1 or —1 is an Hadamard matrix. A special orthogonal design, the
OD(4¢;1,t,t,t), is especially useful in the construction of Hadamard matrices.
An OD(12;3,3,3,3) was first found by L. Baumert and M. Hall, Jr. [6], and
an OD(20;5,5,5,5) by Welch (see below). OD(4¢;1,1,1,1) are sometimes called
Baumert-Hall arrays.
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Another set of matrices of a very different kind can be obtained by parti-
tioning a matrix as follows: Let M be a matrix of order tm. Then M can be
expressed as a > block M-structure when M is an orthogonal matrix:

My My - My

My My -+ My
M = . . >

My My - My

where M;; is of order m (i,j = 1,2,...,7).
Some orthogonal designs of special interest are the following:

1. The Williamson array—the OD(4;1,1,1,1):

r A B C Dj
-B A -D C i i )
the right representation of the quaternions;
-C D A -B

[
o
|
A
&
B

%
W
O
oS

the left representation of the quaternions.

L —D C -B Al
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3. The Baumert-Hall array—the OD(12;3,3,3,3):
A(x,y,z,w) =
[y x x x -z z w y —-w w z —y]
-Xx y x —-x -w  z —y -z oz -w -y
-x —-x y x -y -y z z w —z
-x X -x Yy -w —-w -z -z -y -y -z
-y =y —z —w zZ x x x -w —-w  z -y
-w —w —z y -x z x —X y y —z —w
W —w -y -X —x z X -z -y —z ’
-W -z w —Z -X x —-x z -y y -y w
-y y —z —w -z —z w Yy w x x x
zZ —z ~y —w -y -y —-w -z -x w x —x
-z -z y z -y —-w oy —w -x —x w X
zZ -w —-w Zz y -y y z -X X —-x W]
or alternatively (using the Cooper-J.Wallis theorem [12]), the OD(12;3,
3,3,3) is
[ a b b a d —c —-d a —d c -b)
a b a d -b —~d a -c ¢ —-b -d
b c a -b a a —c —d -b —d c
b —a —-d a b c —-d -b c c —a d
—a -d b a b —b ¢ —-d —a d c
—d b —-a b c a c —d —-b d c -—-a
c d —a d b —c a b c —b d a
d -a —c c a b d a -=b
—a c d —c d b c a a -b d
d -—c —c a —d b —-d -a a b c
—C b d a —-d -c —-d -a b a b
| b d —c —d —c a —-a b —d b c a]

4. The Plotkin array—the OD(24;3,3,3,3,3,3,3,3):
Let A(x,y,z,w) be as in array 3, and let
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(x,y,z,w)
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lant matrices is an M -structure:

TORTTITOYTI TRV OS
SRR EERRR I D
AR NERA RS D
SRR DS S I e
AREAIERRRRINRELAILE Rk
Yoo yF|eagey|avoggyaaxe
1oyTTlesays|vessaaaxey
CMJMJVD_BA_ABD CR_.D_BC DACA_AD
A_“JA_AF_VC BJ,.BDD_ JD_BCC ACMDD
JMP_UCMMBDD_B D_BCCn_D CA_ADDA
ARSI RN A
D_D_ACMF_,P_VJ..D_B DD_BABF_VCA_A.BM
D_ACA_AD_ﬂ_bn_DD_BP_VD_BABD CMBA_AJV
AC%D_D_ JJB%% BABDD_MBA_AF_VC
CMD_D_AD_Bn_pF_Vnw ABDD_B BA_AF_VCA_A
TYY RS TR VY TN TE[99997
Y9RRF e8I Iee Ty 8897y
NN AN LN
=TV OIS TEIC TS
AR RIRREERIERARRIREELE:

6. The Ono-Sawade-Yamamoto array—the OD(36;9,9,9,9) constructed from

16 type one matrices is an M -structure and is given on the facing page.
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7. The Goethals-Seidel array [27] (see also J. Wallis-Whiteman [113]):

A BR CR DR : A BR CR DR
-BR A -DT'R CTR —-BR A DTR -CTR
-CR DTR A -B'R of -CR -DTR A BTR |’
—-DR —-CTR B'R A -DR CcT™R -BTR 4

where A4,B,C,D are circulant (type one) matrices satisfying (2) and R is
the back diagonal (equivalent type two) (0, 1) matrix.

Definition 3.5. Suitable matrices of order w for an OD(n;s1,52,...,54) are u
pairwise amicable (i.e., pairwise satisfy (1)) matrices, 4;, i = 1,...,u, that have
entries +1 or —1 and that satisfy

> sidiA] = (Ssi)wl,. 4)
i=1

They are used in the following theorem:

Theorem 3.5 (Geramita-Seberry). Suppose that there exists an OD(Zs;;51,. ..,
sy) and u suitable matrices of order m. Then there is an Hadamard matrix of
order (Ls;)m.

If we generalize the definition of suitable matrices so that entries 0,+1,-1
are allowed, then weighing matrices rather than Hadamard matrices could be
constructed.

An overview of matrices to “plug in” and “plug into” is given in Table 3.1.

The most prolific method for constructing matrices to “plug into” uses T-
matrices or T-sequences:

Definition 3.6 (T-matrices). A set of 4 T-matrices, T;, i = 1,...,4 of order ¢
are four circulant or type one matrices that have entries 0, +1 or —1 and that
satisfy

1. T;+xT; = 0, i # j (+ denotes the Hadamard product);

2. ZleT,- is a (1, —1) matrix;

3. ELlT,-TiT = tI,; and for r/v

4. t = 12 + 12 + 2 + 12, where {; is the row [column] sum of T;.

©)

T-matrices are known (see Cohen, Rubie, Koukouvinos, Kounias, Seberry,
Yamada [10] for a recent survey) (71 occurs in [58]) for many orders including
the following:
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TABLE 3.1 The Relationship Between Matrices to “Plug in” and Matrices to
“Plug into”

Matrices to “Plug in” Matrices to “Plug into”
Hardest to find Williamson OD(41;t,t,t,t)
Williamson-type
8-Williamson OD(8t;1,t,t,1,t,1,1,1)
8-Williamson-type
Easiest to find Suitable matrices OD(2' n;uy, ua,...,us)
4 circulant suitable matrices Goethals-Seidel
4 typc one suitable matrices J. Wallis-Whiteman
Near suitable “Bordered arrays”
Regular s-sets Latin squares

M -structures
Kharaghani matrices

1,...,72,74,...,78,80,...,82,84,...,88,90,...,96,98,...,102,104,...,106,108, 110,
...,112,114,...,126,128,...,130,132,...,136, 138,140, ...,148, 150,152, ..., 156,
158,...,162,164,...,166,168, ...,172,174,...,178,180,182,184,...,190, 192,194,
...,196, 198, 200,...,210,... . T-matrices of order ¢ give Hadamard matrices of
order 4t¢.

Definition 3.7 (T-sequences). A set of four sequences A = {{ai11,...,a11},
{axn,...,a2n},{as,...,a3.},{a41,.-.,asn}} of length n, with entries 0,1,—1 so
that exactly one of {aij,asj,asj,a4;} is +1 (three are zero) for j=1,...,n
and with zero nonperiodic autocorrelation function, that is, N4(j) =0 for
j=1,...,n—1, where

n—j
Na() = (11,154 + G2iflvj + 3135+ + QaiAaj+}),
i-1

are called T-sequences.

T-matrices are a slightly weaker structure than T-sequences, being defined
on finite abelian groups rather than the infinite cyclic group. They are known
for a few important small orders, for example, 61 and 67 [36, 75] for which no
T-sequences are yet known. Sequences are discussed extensively in Section 5.
They are also known for even orders ¢ for which no T-sequences of length ¢
are known [53].

The following result, in a slightly different form, was also discovered by
R. J. Turyn. It is the single, most useful method for constructing OD(4n;n,n,
n,n), that is, matrices to “plug into.”
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Theorem 3.6 (Cooper-J. Wallis [12]). Suppose there exist circulant T-matrices
(T-sequences) X;,i = 1,...,4, of order n. Let a,b,c,d be commuting variables.
Then

A=aX) +bX; +cX3+ dXy,
=—-bX1+aX,+dX;—cXy,

C=-cXi—dXs+aX;+bX,,

D=—-dX;+cX; —bX3+aXy,

can be used in the Goethal-Seidel (or J. Wallis-Whiteman) array to obtain an
OD(4n; n,n,n,n) and an Hadamard matrix of order 4n.

Corollary 3.7. If there are T-matrices of order t, then there is an OD(4¢;1,1,
t,t).

The results on T-matrices and T-sequences as applied to Hadamard matri-
ces are given in Section 5.

The appropriate theorem for the construction of Hadamard matrices (it is
implied by Williamson, Baumert-Hall, Welch, Cooper-J. Wallis, Turyn) is

Theorem 3.8. Suppose that there exists an OD(4¢;t,t,t,t) and four suitable
matrices A,B,C,D of order w that satisfy

AAT + BBT + CCT + DD = 4w,
Then there is an Hadamard matrix of order 4wt.

Williamson matrices (which are discussed further in a later section) are suit-
able matrices for OD(4¢;t,1,t,t), and as such, Williamson matrices are plugged
into the OD.

Corollary 3.9. If there are circulant T-matrices of order t and there are Wil-
liamson matrices of order w, there is an Hadamard matrix of order 4tw. Alterna-
tively, if there are an OD(4t;1,t,1,t) and Williamson matrices of order w, there
is an Hadamard matrix of order 4tw.

We modify a construction of Turyn to obtain the first theorem which capi-
talized on M -structures. The OD(4s;uy,...,u,) of the next theorem is an M-
structure of which the Welch and Ono-Sawade-Yamamoto arrays are powerful
examples.

Theorem 3.10 (Seberry-Yamada-Turyn [87, 108]). Suppose that there are T-
matrices of order t. Further suppose that there is an OD(4s;uy, ...,un) con-
structed of 16 circulant (or type one) s x s blocks on the variables xi,...,Xn.
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Then there is an OD(4st;tuy,...,tu,). In particular, if there is an OD(4s;s,
s,5,8) constructed of 16 circulant (or type one) s x s blocks, then there is an
OD(4st;st,st,5t,5¢).

Proof. 'We write the OD as (Nj;), i,j = 1,2,3,4, where each N;; is circulant

(or type one). Hence, we are considering the OD purely as an M -structure.
Since we have an OD,

4 . .
Sk wexil,  i=j;

0, i#].

Suppose that the T-matrices are 71,73,73,74. Then form the matrices

NiNji + NoNj + NaNjs + NuNjy = {

A=T1 x N1 +T, x N1 + T3 x N31 + Ty X Ny,
B =T X Ni3+T5 X Nja + T3 x N33 + Ty X Np,
C=T1 X Ni3+T5 x Ni3 +T3 x N33 + T} X Ng3,
D=T1 x Nigy+T5 x Ny + T3 x N3g + Ty x Nys.

Now

4
AA" +BBT + CCT +DDT =) wexily,
k=1

and since A, B, C, D are type one, they can be used in the J. Wallis-Whiteman
generalization of the Goethals-Seidel array to obtain the result. O

Use the Welch and Ono-Sawade-Yamamoto arrays to see

Corollary 3.11. Suppo;ve that the T-matrices are of order t. Then there are
orthogonal designs OD(20¢t; 5¢,5t,5t,5t) and OD(36t;9¢,9¢,9¢, 9¢).

Note that to prove the Hadamard conjecture “there is an Hadamard matrix
of order 4¢ for all £ > 0,” it would be sufficient to prove:

Conjecture 3.12. There exists an OD(4¢;t,t,t,t) for every positive integer t.

The most encompassing theorem presently known, in that it gives a result
for every odd g, is proved using a “plug in” technique:

Theorem 3.13 (Seberry [121]). Let q be any odd natural number. Then there
exists an integer t < [2log,(q — 3)] + 1 so that there is an Hadamard matrix of
order 2*q. (The best known bounds are t < [log,(q — 3)(q — 7) — 1] for q (prime)
=3 (mod4) and t < [log,(q — 1)(q¢ — 5)] + 1 for p (prime) =1 (mod4).)
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The proof of this theorem allows a number of cases of interest and stronger
results in some cases where g is not prime.

Corollary 3.14 (Seberry [121]). Let g be any odd natural number. Then there
exists a regular symmetric Hadamard matrix with constant diagonal of order
2%g2, 1 <[2log,(g —3)] + 1.

Corollary 3.15 (Seberry, unpublished).

1. Let p and p + 2 be twin prime powers. Then there exists a t < [log,(p +
3)(p — 1)(p* + 2p — )] — 2 so that there is an Hadamard matrix of order
2'p(p+2).

2. Let p + 1 be the order of a symmetric Hadamard matrix. Then there ex-
ists a t < [log,(p —3)(p — 7)] — 2 so that there is an Hadamard matrix of
order 2' p.

Corollary 3.16 [81]. Let pq be an odd natural number. Suppose that all
OD(2°p;27a,27h,2c) exist, s >so, 2°""p=a+b+c. Then there exists an
Hadamard matrix of order 2" -p-q, s <t <[2log,((g—3)/p)]+r+1. (The
best-known bounds are s <t <[log,((q9 —3)(q — 7)/p)] — 1+ for q (prime) =
3 (mod4) and st < [log,((q — 1)(q — 5)/p)] + r + 1 for q (prime) = 1 (mod4).)

Example 3.1. Often we can find better results than indicated by Theorem
3.13. Let ¢ = 3-491. We know there is an Hadamard matrix of order 12. Now,
using the proof of Theorem 3.13, rather than the enunciation, we can find
an Hadamard matrix of order 21 -491. So there is an Hadamard matrix of
order 21¢.3.19 using the multiplication theorem. On the other hand, the
proof of the corollory gives an Hadamard matrix of order 213.3. 491 using the
OD(2!2.3;22,3,212.3 - 25).

Other similar results are known. The Appendix gives an indication of the
smallest ¢ for each odd natural number g for which an Hadamard matrix is
known. A list of the construction methods used is given in Section A.3 of the
Appendix.

Theorem 3.13 changes ideas for evaluating construction methods: We con-
sider a method to be more powerful if it lowers the power of two for the
resultant odd number. Thus, Agayan’s theorem, which gives Hadamard ma-
trices of order 8mn from Hadamard matrices of order 4m and 4n, is more
powerful than that of Hadamard, which gives a matrix of order 16mn.

We now see another way to lower the power in a multiplication method.
First, we introduce some notation.

Let M = (M;;) and N = (N,;) be orthogonal matrices or t2 block M -struc-
tures of orders ¢m and n, respectively, where M;; is of order m (i,j = 1,2,
...,t) and Ny, is of order n (g,h = 1,2,...,1).



The Strongest Hadamard Construction Theorems 455

We now define the operation () as the following:

Ly Ly -+ Ly

Ly Lyp -+ Ly
) MQON = | | D

Ly Lp - Ly

where L;;j is of order of mn, and
Lij = Miy X Nij + Mip X Naj + -+ + Mie X Nyj,
i,j = 1,2,...,t. We call this the strong Kronecker multiplication of two matrices.

We note that the strong Kronecker product preserves orthogonality but not
necessarily with entries in a useful form (i.e. equal to 0,+1).

Theorem 3.17. Let A be an OD(tm; py,..., p,) with entries xi,...,Xxu, and let
B be an OD(tn;qy,...,q;) with entries yi,...,ys, then

u s
j=1 j=1
(AQB is not an orthogonal design but an orthogonal matrix.) If A is a W(tm, p)
and B is a weighing matrix W (tn,q), then AQB = C satisfies CCT = pqlLimn.

Hereafter, let H = H;; and N = (N;;) of order 4/ and 4n, respectively, be
16 block M -structures. So

Hn Hyp His Hy
Hy Hy Hy Hy
H; Hy Hy Hy
Hy Hyp Hyp Hy

where
4 4
> HiHE =4kl =y HH},
j=1 j=1
fori =1,2,3,4, and
4 4
>l = 0= B
j=1 j=1

for i # k, i,k = 1,2,3,4, and similarly for N.
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For ease of writing, we define X; = %(H,-l + Hp), Y; = %(H,-l —Hp), Z; =
L (His + Hy), and W; = §(His — H4), where i = 1,2,3,4. Then both X; +Y; and
Z; + W; are (1,—1) matrices with X; AY; = 0 and Z; AW; = 0, where A is the
Hadamard product.
Let
X1 ——Y1 VA W
X, Y, Z, -W
X3 -Ys 23 —W3
Xy Y4 Z4y W4

Obviously, S is a (0,1, —1) matrix.
Write
i x5 Wi Z;

Y, X, W, Z,
Y X35 W3 Zj
Y. Xy Wy 2Z4

also a (0,1,—1) matrix.
We note S+ R is a (1,—1) matrix, RAS = 0, and by the previous theorem,

SST = RRT = 2h1y,.

Lemma 3.18. If there exists an Hadamard matrix of order 4h, there exists an
OD(4h;2h,2h).

Proof. Form S and R as above. Now H = § + R. Note that HH T=g5T +
RRT + SRT + RST = 4hly, and SS* = RRT = 2hly,. Hence, SR" + RST = 0.
Let x and y be commuting variables; then E = xS + yR is the required or-
thogonal design. O

In fact, exploiting the strong Kronecker product, Seberry and Zhang show

Lemma 3.19. If there exist Hadamard matrices of order 4h and 4n, there exists
a W(4hn,2hn). If there exists an Hadamard matrix of order 4h, there exists a
W (4h,2h) (h > 1).

Theorem 3.20. Suppose that 4h and 4n are the orders of Hadamard matrices;
then there exist two disjoint amicable W (4hn,2hn) whose sum and difference
are (1,—1) matrices. Suppose that there exists an Hadamard matrix of order
4h; then there exists disjoint amicable W (4h,2h) whose sum and difference are
(1,-1) matrices.

We now proceed to use the idea of orthogonal pairs or +1 matrices, S and
P of order n, satisfying
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1. ST + PPT = 2nl,
2. SPT = pST =,

first introduced by R. Craigen [13] who showed

Lemma 3.21 (Craigen). If there exist Hadamard matrices of order 4p and 4q,
then there exist two (1,—1) matrices, S and P of order 4pq, satisfying

1. SST + PPT =8pqlsp,,
2. SPT =pST =0.

Proof. By Theorem 3.20, there exist two W(4pgq,2pq), X and Y, satistying
XAY =0; X+Y is a (1,—1) matrix, and XYT =YXT. Let S=X +Y,P =
X —Y. Then both S and P are (1,—1) matrices of order 4pq. Note that

SST + PPT =2 XXT +YYT) =8pqlyp,

and
SPT =xxT_vYT =0.

Similarly, PST = 0. So S and P are the required matrices. O
These results can be combined to give

Theorem 3.22 (Craigen-Seberry-Zhang [14]). If there exist Hadamard ma-
trices of order 4m,4n,4p,4q, then there exists an Hadamard matrix of order
16mnpgq.

Proof. Let U,V be amicable W (4mn,2mn) constructed in Theorem 3.20.
By Lemma 3.21, there exist two (1,—1) matrices S and P of order 4pg satisfy-
ing conditions 1 and 2 in Lemma 3.21.

Let H=UxS+V x P. Then H is a (1,—1) matrix, and

HHT =UU” x SST + VVT x PPT = 2mnlymn(SST + PPT)
= 2mnlymp X 8pqlspg = 16mnpqlismnpg-
Thus H is the required Hadamard matrix. d
The theorem gives an improvement and extension for the result of Agayan
[1] that if there exist Hadamard matrices of order 4m and 4n, then there exists
an Hadamard matrix of order 8mn, since using Agayan’s theorem repeatedly

on four Hadamard matrices of order 4m,4n,4p,4q gives an Hadamard matrix
of order 32mnpq.
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a -b -c —d a b b d a 0 - 0
x y b a -d c -b a d -b 0 a 0 ¢
[ y —x] ¢c d a -b -b -d a b c 0 a0
d —-c b a -d b -b a 0 —¢c 0 a
(@ ®) © (@)
0OD(2;1,1); 0OD(4;1,1,1,1); 0D(4;1,1,2); OD(41,1).

Figure 4.1. Orthogonal designs.

Other similar results exist.

4 ORTHOGONAL DESIGNS AND ASYMPTOTIC EXISTENCE

The primary result regarding the asymptotic existence of Hadamard matrices
is the theorem of Seberry Wallis (Theorem 4.11 of this section). In this section
we outline the proof of this theorem. We begin this section with a discussion
of orthogonal designs. These are key ingredients in the proof of the main the-
orem.

4.1. Orthogonal Designs

An orthogonal design is a generalization of an Hadamard matrix (see Defini-
tion 3.8). First we collect a few preliminary results and give some examples.

Example 4.1. Some small orthogonal designs are shown in Figure 4.1. Notice
that Figure 4.1(b) is the Williamson array.

The following lemma gives some properties of orthogonal designs.

Lemma 4.1. Let D be an orthogonal design OD(n; ui, uy,...,u;) on the com-
muting variables xi,xy,...,x;. Then D can be written as

D =x1A1+ xA2+ - + x: Ay,
where, for each i,j € {1,...,t},

1. A; is an n x n matrix with entries 0,+1;
2. A,'AIT = u,'I,,;
3. 4 AT + 4,47 =0,i # .

‘We need one further basic result:

Lemma 4.2. Let D be an orthogonal design OD(n; uy, us, ..., u;), on the t com-
muting variables x1,x5,...,x;. Then the following orthogonal designs exist:
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a -b -c 0 x 0 y O x x y 'y z x 0 'y
b a 0 ¢ 0x 0 vy X —-x 'y -y -x z Yy
¢c 0 a b y 0 —x 0 y y —-x —x 0y -z —x
0 —¢c b a 0y 0 —x y -y —x x y 0 x -z
@ ®) © (@
0OD(41,1,1) 0OD(4;1,1) OD(4;2,2) OD(4;1,1,1)

Figure 4.2, Orthogonal designs.

1. OD(n;us,us,...,ui + uj,...,u;) on t — 1 variables (i.e., u; + u; replaces u;,
uj, L # J)

. OD(n;uy,...,Wi—1,Ui41,...,4s) on t — 1 variables;

OD(2n; uy,uy,...,u;) on t variables;

OD(2n;2u4,2uy,...,2u;) on t variables;

. OD(2n;u1,u1,uz,...,u;) on t + 1 variables;

. OD(2n;uy, y,2us,...,2u;) on t + 1 variables.

RS EY

The techniques of this lemma are exhibited in the following example:

Example 4.2. 1et D; and D, be the designs of Figure 4.2(b) and (a), respec-
tively. Applying Lemma 4.2 to these designs gives examples as follows: Dy is
an OD(4;1,1,1,1); letting b = ¢ as in case 1 of Lemma 4.2 gives the OD(4;1,
1,2) design in Figure 4.2(c); letting d = 0 as in case 2 gives the OD(4;1,1,1)
design in Figure 4.2(a). D is a (2;1,1) design; replacing variables by 2 x 2
matrices as in cases 3, 4, and 5 gives the designs OD(4;1,1), OD(4;2,2),
0OD(4;1,1,1), in Figure 4.2(b), (c), and (d), respectively.

Lemma 4.2 now lets us show

Lemma 4.3. Suppose that for all choices of nonnegative integers a,b,c with
a+ b+ c = n, an orthogonal design OD(n;a,b,c) exists. Then for all choices of
nonnegative integers x,y,z with x +y + z = 2n, an orthogonal design OD(2n;
X,y,Z) exists.

Proof. Notice first that we make the convention that an OD(n;a,b) may
also be considered as an OD(#;a,b,0), and so on.

Let x,y,z be nonnegative integers such that x +y 4+ z = 2n, and assume
that 0 < x <y <z, so that y < n. Four cases arise:

1. Both x and y are even, so we may write x = 2a,y = 2b, and a + b < n.
By hypothesis, an OD(n;a,b,c) exists, where ¢ = n—a — b. Hence, by
case 6 of Lemma 4.2, an OD(2n;a,a,2b,2¢c) exists and, by case 1, an
OD(2n;2a,2b,2c) also exists. This is the design we want.
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2. Next, let x be even and y odd, so we may take x = 2a,y = 2a + . Now
a+y=3a+!l, and z=2n—4a—1. Since y <z, we have 3a+1<n.
Thus, an OD(n;y,a,n —a—y) exists, and as before, this means that an
OD(2n;y,y,2a,2n—2a —2y) also exists. Setting x; = x4, we get an
OD(2n;y,2a,2n—2a —y). Since 2a = x and 2n—2a—y = z, the last
design is the required one.

3. If x is odd and y is even, we can take x =2a+ 1,y =2band z =2t + 1.
Since x +y + z =2n, we have a + b+t +1=n. Now, by assumption,
a<t, so x+b=2a+b+ 1< n. Hence, we have the following ortho-
gonal designs: OD(n; x,b,n — x — b), OD(2n; x, x,2b,2n — 2x — 2b), and
OD(2n; x,2b,2n — x — 2b). Since y = 2b and z = 2n — x — y, we have the
required design.

4. Finally, if x and y are both odd, we let y = x + 2b, where b > 0. Since
x + b < n, we have orthogonal designs

OD(n; x,b,n — x —b), OD(2n; x, x,2b,2n — 2x — 2b),
and finally, OD(2n; x, x + 2b,2n — 2x — 2b), as required. O

Corollary 4.4. If x,y,z are nonnegative integers such that x+y +z = 2",
then an orthogonal design OD(2™;x,y, z) exists.

Proof. From the the array in Figure 4.1(a) and Lemma 4.2, the statement
is true for m = 2. It then follows from Lemma 4.3 for all m > 2. O

Corollary 4.5. If x,y, are nonnegative integers such that x +y = 2™, then an
orthogonal design OD(2™; x,y) exists.

Proof. Apply case 1 of Lemma 4.2 to the OD(2™;x,y,z) obtained from
the previous corollary. a

4.2. An Existence Theorem for Hadamard Designs
We need one further result from number theory.
Theorem 4.6. Let x and y be positive integers such that (x,y) = 1. Then every

integer N > (x — 1)(y — 1) can be written as a linear combination N = ax + by,
where a and b are nonnegative integers.

Corollary 4.7. Let z be an odd integer. Then there exist nonnegative integers a
and b such that

a(z+ 1) +b(z-3)=n=2"

for some t.
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Proof. 1f2>9, let

2 if z=1 (mod4),

d=(z+12z-3)=
4 if z=3(mod4).

and choose m so that 2"~ < N < 2™ By Theorem 4.6 there exist nonnegative
integers a and b such that

a(z+1) + b(z-3)

— m
d d =2

and thus
a(z+ 1) + b(z — 3) = 2™m*,

where
{ 1 if z=1 (mod4),
s =

2 if z=3 (mod4),

and t = m + 5. It is easy to verify that this result also holds for odd 3 <z <09.
O

Lemma 4.8. Let p be a prime, p > 11. Then there exists a positive integer t
such that an Hadamard matrix of size 2° p exists for every s > t.

Proof. Let x=p+1 and y = p—3. By Corollary 4.7 there exist non-
negative integers a and b such that ax + by = 2 = n for some ¢. By Corol-
lary 4.4 there exists an OD(n;a,b,n — a — b) orthogonal design D on the vari-
ables xi, x3, x3.

The proof now divides into two cases.

Case 1 p=3 (mod4). We replace each variable in D by a p x p (1,—-1)
matrix: x; by Jp, x; by Jp, — 21, and x3 by the back-circulant matrix N formed
from the quadratic residues. This gives a (1,—1) matrix E which is an Hada-
mard matrix of size np = 2’p, and the Lemma follows for p = 3 (mod4).

Case 2 p=1 (mod4). There exists an OD(2n;2a,2b,n —a ~ b,n —a — b)
orthogonal design F on the variables xy, x,, x3, x4 by identity 4 of Lemma 4.2.
We replace each variable in F by a p x p (1,—1) matrix: x; by Jp,x by J, —
2I,,x3, and x4, respectively, by the circulant matrices X =Q +7 and Y =
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Q — I formed from the quadratic residue matrix Q. This gives an np x np
(1,—1) matrix G which is an Hadamard matrix of size 2np = 2'*1p, and the
lemma also follows for p =1 (mod4).

This completes the proof for all primes, except 2, 3, 5, and 7. O

Lemma 4.9. There exist Hadamard matrices of sizes 2! for all t > 1, and 2'p
forallt >2and p =3,5,7.

Proof. There exists an Hadamard matrix of size 2* for ¢ > 1.

By Sylvester’s multiplication theorem, if there exist Hadamard matrices of
sizes 12, 20, and 28, then there exist Hadamard matrices of sizes 2‘p for all
t>2and p=357.

Hadamard matrices of these orders are obtained by the Paley construction.

a

Theorem 4.10. Let q be any positive integer. Then there exists t = t(q) such
that an Hadamard matrix of size 2°q exists for every s > t.

Proof. We apply Lemma 4.8 and/or Lemma 4.9 to each prime factor of q.
Since a Kronecker product of Hadamard matrices is an Hadamard matrix, the
result follows. O

Theorem 4.11 (Seberry Wallis [121]). Let q be any positive integer, then there
exists an Hadamard matrix of order 2°q for every s > [2log,(q — 3)].

Proof. By the proof of Corollary 4.7, we can choose # so that

() (5200

where z is an odd prime and d = (z + 1,z — 3).
If z=1 (mod4), then d = 2 and we must have

y s 2= 1DEz=5)
—_— 4 .
Since
(z-37> (z- 1)z~ 5),
it is sufficient to ensure that

22> (z-3)
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that is,
t+2>2logy(z - 3).

Since ¢ is an integer, we may choose
t = [2log,(z—3)] - 1.
Similarly, if z =3 (mod4), then d = 4, and we may choose
t = [2log,(z - 5)] 3.
As in the proof of Lemma 4.8, these choices of ¢ ensure the existence of an
Hadamard matrix of size 2‘z.

If z= pq where p and q are primes, p =1 (mod4), g =1 (mod4), then
there exists an Hadamard matrix of size 2" pq, where

r = [2logy(p — 3)] + [2log,(q — 3)] < [21og,(pgq — 3)]-

Analogously, if z = []; p: for p; prime and p; = 1 (mod4), then

r= ZZlogz(p,- —-3)< 2log, (H(pi - 3))

Since an integer z that is a product of primes congruent to 1 (mod4) gives
the greatest lower bound on the value of ¢ for which we know an Hadamard
matrix of size 2’z exists, we have proved the theorem. O

We note that better bounds (i.e., smaller r) can be obtained if not all primes
in the decomposition of z are congruent to 1 (mod4). We use the equivalence
of Hadamard matrices and Hadamard designs to obtain the following corol-
lary:

Corollary 4.12. Let A be any positive integer; then there exists an s > 0 so that
an SBIBD(2°+*2)\ — 1,2571A — 1,251 — 1) exists.

In fact, as was indicated in Theorem 3.13, the value of s in Theorem 4.11 is
slightly smaller if the proof is applied carefully.

4.3. Orthogonal Designs in Order 24

In this section, we discuss the particular case of orthogonal designs of order
24. In so doing, we demonstrate how the power of s in Theorem 4.11 can be
reduced in specific cases.
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The following is an OD(12;1,2,3,6) on the variables A4, B,C,D:

r A B —-B C B B ¢ -B D B D -Ch
-B A B B B C -B D C D -C B
B -B A B C B D C -B -C B D

-C -B ~-B A B -B -B C -D C D -B
-B -B -C -B A B Cc -D -B D-B C

-B -C -B B -B A4 -D -B C -B C D
-C B -D B -Cc D A B -B -C -B -B
B -D -C -C D B -B A B -B —-B -C

-D C -B -D B -C B B C -B A B
L C -B -D B -C -D B C B B -B Al

Hence, there exists (equating variables) an OD(12;4,8).
Now, by identity 6 of Lemma 4.2, there are OD(24;2,4,3,3,12), OD(24;4,4,
16), OD(24;8,8, 8), and OD(24;1,1,4,6,12), giving
0OD(24;2,4,18);
OD(24;3,a,21 — a), a=3,4,5,6,7,
OD(24;4,a,20 — a), a=4,5,678;
0D(24;8,8,8).
Robinson [72] has found OD(24;1,1,1,1,1,5,5,9) and OD(24;1,1,1,1,1,2,
8 9) from which, by equating variables, all other OD(24;x,y,24— x — y) may
be obtained.

Consider the following matrices, M; and M,: (we use the convention that
X=—x)

e | dhfg|gfhh| fghh| gfhh | gfhh
dhfg| € |fghh|gfhh|gfhh |gfhh
gﬁh ]_‘gﬁh g dhef Ehgg hhff

" Tehh| gTRR | dhef | g | WSS | hheg
gfhh | gfhh | hhgg | hhff | f | dhge

gfhh gfhh | hhff | hhgg | dhge | f

M,




Orthogonal Designs and Asymptotic Existence 465

e |dfhf | hhgg | hhgg | hghg | hghg
dfhf | € | hhgg | hhgg | hghg | hghg
hhgg | hhgg | g | dgeh |gghh | hhff
" hihgg | higz |dgen| z | WhfS | gghh
hghg | hghg | gghh | hhff | g | dghe
hghg | hghg | hhff | gghh | dghe | &

Let Ni and N, be the matrices obtained from M; and M, by replacing the
diagonal entries, y, of M; by

~ ol o S
a < 8 o
SR < o
Q O O =

and the off-diagonal block entries p,q,r,s of M; by

P q r s
q p s T
r s p gq
s ¥ gq p.

Then Ny and N, give orthogonal designs of order 24 and types (1,1,1,1,1,5,
5,9) and (1,1,1,1,1,2,8,9), respectively.
Hence, we have

Lemma 4.13 (P. Robinson [72]). All three-tuples (x,y,z), x +y + z = 24, are
the types of orthogonal designs in order 24. That is, all OD(24;x,y,24 — x — y)
exist.

Proceeding as in Theorem 4.10 we obtain

Theorem 4.14. Let g be a positive integer. Then there exists a t = t(q) so that
there is an Hadamard matrix of order 2° -3 - q for all s > t.

Remark. A few other results of the kind in this section are known for
orders 4- p-q and 3 < p < 11. The importance of this result lies in the fact
that the power s will be smaller than the power ¢ obtained from Theorem 3.13
(see [81]).
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5 SEQUENCES

A special orthogonal design, the OD(4¢;¢,¢,t,t), is especially useful in con-
structing Hadamard matrices. An OD(12;3,3,3,3) was first found by Baumert-
Hall [6] and an OD(20;5,5,5,5) by Welch. These were given in Section 3.
OD(4¢;t,t,t,t) are sometimes called Baumert-Hall arrays. This chapter concen-
trates on the powerful construction techniques for these OD(4z;¢,¢,¢,t) using
disjoint orthogonal matrices and sequences with zero autocorrelation.

Since we are concerned with orthogonal designs, we will consider sequences
of commuting variables. Let X = {{a11,...,a11},{@21,.-,@2n} .- -{@m1s--,@mn} }
be m sequences of commuting variables of length n. The nonperiodic auto-
correlation function of the family of sequences X (denoted Nx) is a function
defined by

n—j
Nx(j) = (a1,a1i+j + Q2424 + == + AmilOm,itj)-
i=1

Early work of Golay [28, 29] was concerned with two (1,—1) sequences
with zero nonperiodic autocorrelation function, but Welti [123], Tseng [101],
and Tseng and Liu [102] approached the subject from the point of view of two
orthonormal vectors, each corresponding to one of two orthogonal waveforms.
Later work, including Turyn’s [108, 107], used four or more sequences.

Note that if the following collection of m matrices of order n is formed,

an 4 - QAin ay 4axp -+ Qazn
an ain—1 azi azn—1
’ " b

0 an 0 an

Am1 Gm2 - Qmn

Am1 Amn—1
b
0 am1

then Nx(j) is simply the sum of the inner products of rows 1 and j+ 1 of
these matrices.

The periodic autocorrelation function of the family of sequences X (denoted
Pyx) is a function defined by

n
Px(j) = Z(al,ial,i+j +azi@irj+ o + Amilmi+j)
i=1
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where we assume the second subscript is actually chosen from the complete
set of residues (mod n).

We can interpret the function Py in the following way: Form the m circu-
lant matrices that have first rows, respectively,

[annaiz...a),[a262...a2,:), ..., [@m1Gm2 .. . Gmn];

then Px(j) is the sum of the inner products of rows 1 and j+ 1 of these
matrices. In these matrices, all a;; are chosen from the set {0,1,—1}.

We say the weight of a set of sequences X is the number of nonzero entries
in X. If X is as above with Nx(j) =0, j = 1,2,...,n~ 1, then we will call X
m-complementary sequences of length n. If

X = {Ay, A,..., Ay}

are m-complementary sequences of length n and weight 2k such that

y = { (A1 + A2) (A1—Ay)  (Azi1+ Ay) (Azio — Az) }
R B e 5 , 5 e

are also m-complementary sequences (of weight k), then X will be said to
be m-complementary disjointable sequences of length n. X will be said to be
m~complementary disjoint sequences of length n if all (') pairs of sequences
are disjoint.

For example {1101}, {0010 —-1},{00000100 —1},{0000001
—1} are disjoint as they have zero nonperiodic autocorrelation function and
precisely one a;; # 0 for each j.

One more piece of notation is in order. If g, denotes a sequence of integers
of length r, then by xg, we mean the sequence of integers of length r obtained
from g, by multiplying each member of g, by x.

Proposition 5.1. Let X be a family of m sequences of commuting variables.
Then
Px(j)= Nx(j)+ Nx(n—j), j=1..,n—-1

Corollary 5.2. If Nx(j)=O0forall j=1,...,.n—1, then Px(j)=0forall j =
1,...,n—1.

Note: Px(j) may equal O for all j =1,...,n—1, even though the Nx(j) do
not.

If X ={{a,...,an},{b1,...,bn}} are two sequences where a;,b; € {1,—1}
and Nx(j)=0for j=1,...,n—1, then the sequences in X are called Golay
complementary sequences of length n. For example, writing — for minus 1, we
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have

n=2 11 and 1— :

n=10 1--1-1--—-1land1—————— 11—

n=26 m--1m-1-———- 1-11--1———— and
-—-1n---1-1-1-1-11--1——=——

We note that if X is as above, if A4 is the circulant matrix with first row
{ai,...,a,}, and, if B the circulant matrix with first row {by,...,b,}, then

n
AA" + BB =) (a} + b})I, = 2nl,.
i=1

Consequently, such matrices may be used to obtain Hadamard matrices con-
structed from two circulants.

We would like to use Golay sequences to construct other orthogonal de-
signs, but first we consider some of their properties.

Lemma 53. Let X = {{ay,...,an},{by,...,bs}} be Golay complementary se-
quences of length n. Suppose that ki of the a; are positive and k, of the b; are
positive. Then

n=(ky + ko — n)? + (k1 — k)%,

and n is even.

Proof. Since Px(j) =0 for all j, we may consider the two sequences as
2 — {n;ky,k2;A} supplementary difference sets with A =k + k3 — %n. But
the parameters (counting differences two ways) satisfy A(n — 1) = kq(k; — 1)+
ka(k2 — 1). On substituting A in this equation we obtain the result of the enun-
ciation. O

Geramita and Seberry [23, pp. 133-137], Andres [2] and James [38] have
studied the smaller values of n,k;,k; of the lemma, showing the only lengths
< 68 for which Golay sequences exist are 2, 4, 8, 10, 16, 20, 26, 32, 40, 52, and
64. Malcolm Griffin [30] has shown no Golay sequences can exist for lengths
n=2-%. The value n = 18, which was previously excluded by a complete
search, is now theoretically excluded by Griffin’s theorem and independently
by a result of Kruskal [62] and C. H. Yang [133, 134]. Andres [2] and James
[38] have found greatly improved computer algorithms for studying these se-
quences.

Recent theoretical work of Koukouvinos, Kounias, and Sotirakoglou [50]
and Eliahou, Kervaire, and Saffari [20] shows that Golay sequences do not ex-
ist for n =2p where p has any prime factor =3 (mod4). This means the
unresolved cases < 200 are n = 74,82,106,116,122,130,136,146,148,164,170,
178,194.
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Constraints can be found on the elements of a Golay sequence. One useful
result (see Geramita and Seberry [23]) is

Lemma 54. For Golay sequences X = {{x;},{yi}} of length n,
Xn—i+1 = €iXj <& Yn—i+1 = —€iYi,

where e; = £1. That is,

Xn—i+1Xi = —Yn—i+1Yi-

Example 5.1. The sequences of length 10 are

1-—1-1———1and
1—-—— - 11—
Clearly, ey =1, e =1,e3=1, €4 =~1, and e5s = —1.

Proof (of Lemma 5.4). We use the fact that if x,y,z are £1,(x +y)z =
x+y (mod4) and x + y = xy + 1 (mod4).

Let i = 1. Clearly, the result holds. We proceed by induction. Suppose that
the result is true for every i < k — 1. Now consider N(k) = N(n—k) =0, and
we have

0= X1Xn41-k + X2Xps2—k + - + Xk Xn + Y1Yn+1-k + Y2Vnt2—k + - + Yi¥n

= Xp€pXp + Xp€k_1Xp—1 + -0+ Xp€1X1 + YiYu+1—k — Y2€k-1Vk—1
— = Y1

=er+ey+ -+ +yiyn1-k —€k—1— - — €2 — yre1y1 (mod4)

=ey + ek + Y1Yn+1-k — Yk€1y1 (mod4)

=er + YrYn+1—-k (mod4)

=0 (mod4).

SO yn+1-k = —€kYk. O

5.1. Summary of Golay Properties

Two sequences {xi,...,X,} and {y1,...,yn} are called Golay complementary
sequences of length n if all their entries are +1 and

n—j ’
Z(xixi+,-+y,-y,-+,-)=0 forevery j#0, j=1,..,n-1,
i=1
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that is, Ny = 0. These sequences have the following properties:

1.

2.
3.
4.

Sy (Xixisj + yiyisj) =0 for every j#0, j=1,...,n—1 (where the
subscripts are reduced modulo r), i.e., Px = 0.
n is even and the sum of two squares.

Xn—i+1l = €iX; & Yp_i+1 = —€;y;, where ¢; = 1.

2 2 2
[inRe(CZiﬂ)] + [Ex,-lm((z”l)] + [zy,-lm(gz”l)]

ies i€D ies
2 1
+ [Z)’i RC((ZM)] =5m
ieD

where § ={i:0<i<n,e;=1},D={i:0<i<ne =-1},and (isa
2nth root of unity (Griffin [30]).

. They exist for orders 2¢ 10°26°, a,b,c nonnegative integers.
. They do not exist for orders 2- % (c a positive integer) (Griffin [30]), or

for orders 34, 36, 50, 58, or 68.

. They do not exist for orders 2-49° (¢ a positive integer) (Koukouvinos,

Kounias, and Sotirakoglou [50]).

. They do not exist for orders 2p where p has any prime factor = 3 (mod4)

(Eliahou, Kervaire, and Saffari [20]).

We now discuss other sequences with zero autocorrelation function.

5.2,

Other Sequences with Zero Autocorrelation Function

Lemma 5.5. Suppose that X = {X1,X3,..., X} is a set of (0,1,—1) sequences
of length n for which Nx = 0 or Px = 0. Further suppose that the weight of X;
is x; and the sum of the elements of X; is a;. Then

m

m
2
Sa=3 o

i=1 i=1

Proof. Form circulant matrices Y; for each X;. Then

m
YJ=aJ and > V¥ =) xl
i=1 i=1
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Now considering
m m m
YYYIr=>alr =) xJ,
i=1 i=1 i=1
we have the result. O

Example 5.2. Suppose that X, X3, X3, X4 have elements from +1 and —1 and
lengths 19,19,18, 18. The total weight of these sequences is 74. The sum of the
squares of the four row sums must be 74, so we could have

P+12+8+0° 12+ 12+ 6+ 62
T+ 5+ 0% +0? or
T+32+424+02  24+32+62+22

A row sum of 8 and length 18 would require that there are 13 elements +1
and 5 elements —1 considerably shortening any search.

Now a few simple observations are in order. For convenience, we put them
together as a lemma—though more has been observed by Whitehead [124].

Lemma 5.6. Let X ={Ai,As,...,An} be m-complementary sequences of
length n. Then

1. Y = {4},45,..., A}, Ai+1,...,Am} are m-complementary sequences of
length n where A} means “reverse the elements of A;”;

2. W ={A4,,A,,...,4i,— Ai+1,...,— Am} are m-complementary sequences of
length n;

3.Z= {{AlaAZ}’ {Ab _A2}7 veey {AZi—lyAZi}7 {AZi—ly _AZi}a . '} are m-(or
m + 1- if m is odd, in which case we let Ay, +1 be n zeros) complementary
sequences of length 2n;

4. U = {{Al/Az},{Al/ — Az},. ces {Az,'_l/Azi}, {Az,'_l/ — Az},. ..}, where
A}/ Ay means that aj1,ar1,8j2,0r2,...Ajn,Akn, are m- (or m+1- if m is
odd, in which case we let A,,11 be n zeros) complementary sequences of
length 2n.

5.V ={A],A7,...,A}}, where A} = {an,—air,ai3,—ais,...} are m-com-
plementary sequences of length n.

By a lengthy but straightforward calculation, it can be shown that

Theorem 5.7. Suppose that X = {Ay,..., Az} are 2m-complementary se-
quences of length n and weight u and Y = {By,B;} are 2-complementary dis-
jointable sequences of length t and weight 2k. Then there are 2m-complementary
sequences of length nt and weight ku.
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The same result is true if X are 2m-complementary disjointable sequences of
length n and weight 2u and Y are 2-complementary sequences of weight k.

Proof. 'Write X* for the sequence whose elements are the reverse of those
in the sequence X. Using an idea of R. J. Turyn, we consider

Ay 1 X —-———(Bl ;BZ) + Ay x ————(Bl -2_ BZ) and
A2i—l X (Bl ;BZ) _AZi x (Bl ;BZ)’

for i = 1,...,m, which are the required sequences in the first case. While

A + Ay 1 — Ay

(A2 12+ 2')xB1+(A2' 12 Az’)sz‘ and
Ay 1+ Ay Ay 1 — Ay
(i_lz_zﬂsz_Q_zz__m)xB;

for i = 1,...,m, are the required sequences for the second case. (Note here
that x is the normal Kronecker product.)

The proof now follows by an exceptionally tedious but straightforward ver-
ification. a

Corollary 5.8. Since there are Golay sequences of lengths 2, 10 and 26, there
are Golay sequences of length 2°10°26° for a,b,c nonnegative integers.

Corollary 5.9. There are 2-complementary sequences of lengths 2°6°10°14426¢
of weights 245°10°13%26¢, where a,b,c,d, e are nonnegative integers.

Proof. Use the sequences of Tables 5 and 6 of Appendix H of [23]. O

5.3. T-Sequences and Base Sequences

The bulk of the remainder of this chapter will be devoted to obtaining 7-
sequences. We recall that T-sequences always yield T-matrices. If there are
T-sequences of length ¢ and Williamson matrices of order w there is an Hada-
mard matrix of order 4tw.

Four sequences of elements +1, —1 of lengths m + p,m + p,m,m where p
is odd, and which have zero nonperiodic autocorrelation function, are called
base sequences. In Table 5.1 base sequences are displayed for lengths m +
1L,m+1,mm for m+1€{2,3,...,30}. If X and Y are Golay sequences,
{1, X},{1,—-X},{Y},{Y} are base sequences of lengths m + 1,m + 1,m,m. So
base sequences exist for all m = 2910°26°, a,b,c nonnegative integers, p = 1.
The cases for m =17, p = 1, were found by A. Sproul and J. Seberry; for
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m =23, p=1 by R. Turyn; and for m = 22,24,26,27,28, p =1 by Koukou-
vinos, Kounias, and Sotirakoglou [51]. These sequences are also discussed in
Geramita and Seberry [23, pp. 129-148)].

Base sequences are crucial to Yang’s [138, 135, 136, 137] constructions for
finding longer T-sequences of odd length.

Lemma 5.10. Consider four (1,—1) sequences A = {X,U,Y,W }, where
X = {x1 = 1, x2,x3,...,xm,hmxm,...,h3x3,h2x2,h1x1 = —1},
U= {ul = 1’ U, u37'--’um;fmuma-'-yf3u37f2u27f1u1 = 1}7
Y = {y1,¥2, s Ym—1Yms8m—1Ym—1,- -+, 83Y3, 822,811},

V= {'Ul, U2y s Um—1,Um;€m—-1Vm—1,...,€30U3, ezvz,elvl}‘

Then N4 = 0 implies that h; = f; for i > 2 and that g; = e; for i > 1. Here -

m 2 m 2 m—1 2
8m—2= <Zx,- + x,-h,) + (Zui + u,f,-) + (ym + i +yigi>
i=1

i=1 i=1

m—1 2
+ <Um + Z’U,’ + vie,-> .
i=1
Corollary 5.11. Consider four (1, — 1) sequences A= {X,U,Y,V }, where

X = {xl = 1,XZ,X3,...,xm,—xm,...,—X3,—XZ,—.X1 = —'1}7
U= {ul = 1) u2;u3a--->umafmum,---af3u3;f2u21flu1 = l};
Y = {)’1,)’2,-~-,)’m—1,)’m,)’m—1,---,Y3,}’2,)’1}:

V = {U1,Y2.,Um—1,Um, €m—1Um—1, - - -, €3U3, €20, €101 }.

Then N4 = 0implies that all e; = +1 and that all f; for i > 2 = —1. Here 8m — 6
is the sum of two squares.

Corollary 5.12. Consider four (1,—1) sequences A = {X,U,Y,V}, where
X = {X1 = 17x2’x3a"-,xmy Xm+1sXmy ooy X3, X2, X1 = 1}:
U= {ul = 1,“27 Uz, ..., Um, um+1’fmum""7f3u37f2u27'—1}1
Y = {}’1,}’27---a}’m,"}’mw--a—,)’z,—)’l},

V = {v1,V2,-,UmyemUm,...,€2V2,€1V1 }.

Then N, =0 implies that e; = —1 for all i and that f; = +1 for all i. Here
8m + 2 is the sum of two squares.
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TABLE 5.1 Base Sequences of Lengths m+1,m+1,m,m

Length Sums of squares Sequences

m+1=2 22+0°+12412 ++,+—,+,+

m+1=3 32+124+0+0%2 +++,++—,+—,+—

m+1=4 22+0°+3%2+12 ++—+,++——+++,+—+

m+1=5 32+34+024+02 ++—++,++++—++—— +—+—

m+1=5 3Z+12+422+22 ++++—,—+++—,++—+,++—+

m+1=6 2240°+32+3%2 ++—+—+,+++——— ++—++,
++-—++

m+1=7 3Z+124+424+0° ++—+—++++———+-,
—++++H,——++—+

m+1=7 +12+0°+0> +++—+++,++———+—,
-ttt —+——

m+1=8 22+02+52+1> ++++———+,++—+—+——,
t++—+++H+——+——+

m+1=8 42422432 +12 —+4++++—+,+++——+—+,
e i S e e

m+1=9 2+32+0°+0> ++++—++—+,—+++—++—+,
e+t ———F— bttt ——— +—

m+1=10 42+2*+3*+3% +++++——+—+,
—++++——+ -+,
t++—+++——
t—+t++—++-—

m+1=11 52+32+22422 ++——++++++-,
—t——+t+t+++ -,
— 4ttt —+ 4,
R E e e

m+1=11 1>+52+0°+4 ++—++————++,
—++——++++++,
——t -+ —+ -+,
—+t+—+—++++

m+1=12 +0+3*+12 —+++—+—+++++,
— ittt ———++—,
—— 4ttt -+t
e ek e

m+1=12 £4+22+524+12 ++++++——+—+-,
- ++—+—+,
t+++——++—++,
ot ——F+———+

m+1=13 P+12+02+0 +4+++—+—+—++++,
e+t ——F—+——++—,
t++—Ft——F——
t++——t -+t ———

m+1=13 2+524+024+0° 4+ —— — 44— —+——

++—+——+—+++++
R R
-ttt ——+———
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Length

Sums of squares

Sequences

m+1=13

m+1=14

m+1=14

m+1=14

m+1=15

m+1=16

m+1=16

m+1=17

m+1=17

m+1=17

m+1=17

2 +12+6%+2%

6+42+12+1°

240247+ 17

62+ 0% +32+32

72 +32 402+ 0%

+42+32+1°

+02+52+12

T+ 12+42+07

2+ + 42+ 02

SP+32+ 424+ 4

1P+ 12+8 +07

++++—+——++—— 4,
A+ t—t——Ft———,
t++++—+—+—++4,
ttt——t—+——++
+H+ttt——tt—+—+,
o -+t
tttt—————+——,
t—t——t———+++—
———t bt -+,
e e
t—t++—+++—+++,
t—tt—t————+++
t++—++—+++++——,
t+Htt——t————+—+,
o ——+H+—++—
b+ —+—t+++
R & Tk
+t+t—tt———F+—++—,
ettt ——F—tt————,
to—m—— -ttt + -
t+++t—tF——F
ot —— - ——+ 4,
t—t+t+t++t——+—F——+,

ot ——t——F++++++ 4
t++t—t——F—F——F+——,
t—t—F+—+++t——++++,
t+t————+t++-++-——+
Aot — = ——,
A+t ——dt———t———+ —+,
Fomm—t— - —— 4,
t+t—t————t++——+—++
t—t+t+t——t+t—F+++—+++-,
N ek o A S R
R o e
o —t At ——+——
t++tt+t——F—+—+——++ 4,
t——tt—F—Ft—FF————— ,
tH+tt——tt—F—t+——,
o+ttt —+t—F—++——
bom bt -+ ——— 4,
tht—Ftt———t————++—,
++++t—t++++——+
ottt t——+——++
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TABLE 5.1 Base Sequences of Lengths m + 1,m + 1,m,m (continued)

Length

Sums of squares

Sequences

m+1=18

m+1=18

m+1=19

m+1=19

m+1=19

m+1=20

m+1=21

m+1=21

m+1=22

m+1=23

£+22+7+71

42422452+ 5

P +32 44207

3241248+ 02

2+124+62+62

24+07+7+5

72 +52 422422

P+124+62+6°

6+ 02 +7+ 12

32 4+32+6%+6°

-ttt ——— -+ ——,
At ————F——Ft—+———+,
Yot —F——F -+ttt +,
t++t——Ft———t——+—+
t—tt—t——ttt———++++,
t—Ftt——Ft————Ft++++—,
e T o S e
t++—t++—F+t+t+—Ft——+—
t++t——tt—Ft—t++++—++—+4,
th bt — b ———— ,
t+——F——F++———++++++,
t————t+H+—Ft—F——++—+
ot —t—F+—F—++++,
t+t+++—tt————— ++ -+
t+++t———+++—+++ -+,
t——t—tt———t++——++—+
tt+tt———— -t -+ —+——+ 4,
t—t——F——ttt -ttt +———,
-ttt -+ttt -+,
tHt++t—t -+t ——t++——
tt———————++ -+ ++++ -,
-t -t -ttt —t——F—+——,
-+ttt ——F++—+—F++++,

-ttt -ttt —F—++—,
-+ttt -ttt —++—,
bttt ettt ———F—+——+,
t——+t++++t—Ft———+—+——+
tt——tttt ettt ——F—+——— 4,
-+ttt tr—t——F—+——— 4,
te——tttttt——t+t—F—t+++-,
t——tttttt——Ft—F—+++—
T S t——t -+
tt————+t—F—Ft———F+—t+++ 4,
t—tt—tttttt———++——+++,
tt—t -+ttt ——FF————+
ot ——— -+ttt —++++
—tt—— bttt ++—+,
tt—t——F—F++ -ttt —+—+++-,
—t——t++t -ttt -ttt t——F—+++
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TABLE 5.1 Base Sequences of Lengths m + 1,m + 1,m,m (continued)

Length Sums of squares Sequences

m+1=24 8+224+524+12 + - 4 —+—_4+++————— - — -,
e e gy
ot —— b b ———————— 4 — 4,
ettt F—F—ttt—t-——t———+

m+1=25 TP+T+0+0° ————+++—++—++++++++-+—+—+,
-+ttt tttt————tt—t—+++— 4,
B T S e e
-t ——F—tt———— ottt -+t —+

m+1=26 +62+12+12 ++++++++——+++——F——++—+—+—+,
oo m ot d b ——h——
e+ttt bttt ——F—t+——,
-ttt t——tt————F+++++—

m+1=27 PP+5?+42+4 +4+++——+++—+——+—
t—t -+ttt
ettt —— bt —— 4
-t -+t —+++4,
ettt At —+F—++
o ik e T o S A RS

m+1=28 42+224324+9% _ 44 _t4+———t+++——

m+1=29 32+12+22+10°

m+1=30 8+62+32+32

—— -ttt -+ +
et —F -ttt ———
ot t——+—+++,
++—t—+++++-—+-+
ottt —t———,

O S kb R
—tt+ttth bt ——
t——ttttt—ttt——+-
e

tt——F—F———t——t+++
tt———++++——+-,
tt—+t—++t+t——Ft——
ttt—t———— - +,
++++tr—trt———+—+

R o T e e
R T A

——tttt—t———+—+,
S
bt —— -+ttt

t++t—t———t—t++-———+

—— i+ttt -,
S T o S o O e
—tt—t———t—++-
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TABLE 5.1 Base Sequences of Lengths m + 1,m + 1,m, m (continued)

Length Sums of squares _ Sequences

m+1=31 P+82 4482422 4+ttt ——F——F+——
++++ttF ot ——— 44,
o - +++-——+
t-t ot ———++ -+ +-,

I I o o o S g
+++—++——+++—+,
—— -ttt ——ttt++——
t+ttt———t———+

Definition 5.1 (Turyn Sequences). Four (1,—1) sequences 4 = (X,U,Y,V),
where

X = {xl = 13x2’x37'-'7XM7_xm"--7—x3,_x27_x1 = _1}’
U= {ul =1, u2’u3:"',uM7_umy'--7“u3;_u271}7

Y = {YI,}’Zy---a}’m-—ly)’m,}’m—l,---,}’3,}'2,)’1},

V = {U1,V2,- -, Um—1,Um, Um 1, .-, VU3, U2, V1 },
which have N4 = 0 and 8m — 6 is the sum of two squares, or where
X ={x1=1,%0,X3,0c.s Xmy Xrm 1, Xmy- - -, X3, X2, X1 = 1},
U= {u1 = 1,u2,u3,...,um,um+1,um,...,u3,u2,—1},

Y ={yuys- s Ymy—Ym--,—y2,—y1},

V = {’Ul,’Uz,...,’Um,—’Um,...,—’Uz,—’Ul},

which have N, = 0 and 8m + 2 is the sum of two squares will be called Turyn
sequences of length n+ 1,n + 1,n,n (they have weights n + 1,n + 1,n,n also),
where n = 2m — 1 in the first case and n = 2m in the second case.

Known Turyn sequences are given in Table 5.2. Note that in that table n
represents the length of the shorter sequences.

Geramita and Seberry [23, pp. 142-143] quote Robinson and Seberry (Wal-
lis) [68] results giving such sequences where the longer sequence is of length
2,3,4,5,6,7, 8, 13, 15 (though the result for 5 has a typographical error and
the last sequence should be 1—1-), that they cannot exist for 11, 12, 17, or
18. A complete machine search showed they do not exist for (longer) lengths
9, 10, 14, or 16. Koukouvinos, Kounias, and Sotirakoglou [51] developed an
algorithm and proved through an exhaustive search that Turyn sequences do
not exist for (longer) lengths 19,...,28 (Genet Edmondson [19] has now estab-
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TABLE 5.2 Turyn Sequences of Lengths n + 1,n+ 1,n,n

Length Sequences

n=1 {{1_1}’ {1 1}, {1}9 {1}}

n=2 {{111}) {11—1}7 {1-1}’ {1_1}}

n=3 f11-1-1}, {11-11}, {111}, {1-11}}

n=4  {{11-111},{1111-1}, {11-1-1}, {1-11-1}}

n=5  {{111-1-1-1}, {11-11-11}, {11-111}, {11-111}}

n=6  {{111-1111}, {11-1-1-11-1}, {11-11-1-1},
11-11-1-1})

n=7 {{11-11-11-1-1}, {1111-1-1-11},
111-1111}, {1-1-11-1-11}}

n=12  {{1111-11-11-11111},
{111-1-11-11-1-111-1},
{111-111-1-11-1-1-1},
f111-1-11-111-1-1-1}}

n=14  {{11-1111-11-1111-111},
{1i1-111-1-1-111-111-1},
{1111-1-11-111-1-1-1-1},
1-1-1-1-11-11-11111 —1}}

lished that they do not exist for all lengths less than 42 aside fron those listed
here). The first unsettled case is m +1 = 43.

A sequence X = {xi,...,x,} will be called skew if n is even and x; =
—Xn-i+1, and symmetric if n is odd and x; = xp—i+1.
Theorem 5.13 (Turyn). Suppose that A = {X,U,Y,V'} are Turyn sequences of

lengths m + 1,m + 1,m,m. Then there are T-sequences of lengths 2m + 1 and
4m + 3.

Proof. We use the notation A/B as before to denote the interleaving of
two sequences A = {a1,...,4n,} and B = {by,...,bm_1}:

A
E = {a17b17a27b27 . ~abm-17am}-
Let 0, be a sequence of zeros of length 7. Then

Tl = {{%(X + U)!OM}: {%(X - U)10M}: {0m+1, %(Y + V)}’{Omﬂ’ %(Y - V)}}

and

X U 0
I:.’, = {{1;O4m+2}, {Oa ?’02m+1} ’ {0702m+1’6;;} 3 {0a02m+17_";%1}}

are T-sequences of lengths 2m + 1 and 4m + 3, respectively. a
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Theorem 5.14. If X and Y are Golay sequences of length r, then writing 0, for
the vector of r zeros, we have that T = {{1,0,;}, {0,2(X +Y) }, {0,3(X - Y)},
{0,+1}} are T-sequences of length r +1.

Corollary 5.15 (Turyn). There exist T-sequences of lengths 1+ 2°10°26",
where a,b,c are nonnegative integers.

Combining the two theorems we find

Corollary 5.16. There exist T-sequences of lengths 3,5,7,...,33,41,51,53,59,
65,81,101.

A desire to fill the gaps in the list in Corollary 5.7 leads to the following
idea:

Lemma 5.17. Suppose that X = {A,B,C,D} are 4-complementary sequences
of length m + 1,m + 1, m, m, respectively, and weight k. Then

Y ={{4, C}’{A’_C}?{B>D}7{B’_D}}

are 4-complementary sequences of length 2m + 1 and weight 2k. Further, if
%(A + B) and 3(C + D) are also (0,1,—1) sequences, then, with 0, the sequence
of t zeros,

Z = {{3(A+ B),0n},{3(4— B),0m},{0m+1,3(C + D)},{0n+1,5(C — D)}}

are 4-complementary sequences of length 2m + 1 and weight k. If A,B,C,D are
(1,—1) sequences, then Z consists of T-sequences of length 2m + 1.

Lemma 5.18. If there are Turyn sequences of length m + 1,m + 1,m,m, there
are base sequences of lengths 2m +2,2m +2,2m+ 1,2m + 1.

Proof. let X,U,Y,V be the Turyn sequences as in Table 5.2. Then

A R R e

are 4-complementary base sequences of lengths 2m +2,2m +2,2m +1,2m +
1, respectively. O

Corollary 5.19. There are base sequences of lengths m+ 1,m + 1,m,m for m
equal to

1. ¢, 2t + 1, where there are Turyn sequences of length t + 1, t + 1, ¢, t;
2. 9,11,13,25,29;
3. g, where there are Golay sequences of length g;
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4. 17 (Seberry-Sproul), 23 (Turyn), 22,24,26,27,28 (Koukouvinos, Kounias,
Sotirakoglou) given in Table 5.1 and Table 5.3.

Corollary 5.20. There are base sequences of lengths m +1,m +1,m m for
me {1,2,...,29} UG, where G={g : g =2%- 10? - 26°, a,b,c non-negative in-
tegers}.

Now Cooper-(Seberry)Wallis-Turyn have shown how 4 disjoint complemen-
tary sequences of length ¢ and zero nonperiodic (or periodic) autocorrelation
function can be used to form OD(41;¢,¢,¢t,t) (formerly called Baumert-Hall
arrays) [12]. First, the sequences (variously called T-sequences or Turyn se-
quences, but the latter has two different usages) are turned into 7-matrices and
then the Cooper-(Seberry)Wallis construction can be applied (see Section 3).
Thus, it becomes important to know for which lengths (and decomposition
into squares) T-sequences exist. First,

Lemma 5.21. If there are base sequences of length m + 1,m + 1,m,m, there
are

1. 4 (disjoint) T-sequences of length 2m + 1,
2. 4-complementary sequences of length 2m + 1.

Proof. Let X,U,Y,V be the base sequences of lengths m +1,m + 1,m, m,
then

(X +U),0u), {3(X = U),00}, (01, 3OV + V), O, 3OV = V)
are the T-sequences of length 2m + 1 and
{X,Y},{X,-Y},{U,V},{U,V}
are 4-complementary sequences of length 2m + 1. a
Corollary 5.22. There are T-sequences of lengths t for the following t < 106:

1,3,...,59,65,81,101, 105.

5.4. On Yang’s Theorems on T-Sequences

In an a series of papers in 1982 and 1983, Yang [135, 136, 137] found that
base sequences can be multiplied by 3, 7, 13, and 2g + 1, where g = 221026,
a,b,c > 0: These are instances of what are termed Yang numbers. If y is a
Yang number and there are base sequences of lengths m + p,m + p,m,m,
then there are (4-complementary) T-sequences of length y(2m + p). This is of
most interest when 2m + p is odd. (A new construction for the Yang number
57 is given in [58].)
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Yang numbers currently exist for y € {3,5,...,33,37,39,41,45,49,51,53,57,
59,65,81,..., and 2g + 1> 81, g € G}, where

G = {g : g = 2°10°26°, a,b,c nonnegative integers}.

Base sequences currently exist for p =1 and m € {1,2,...,29} U G. We re-
prove and restate Yang’s theorems from [138] to illustrate why they work.

Theorem 5.23 (Yang). Let A,B,C,D be base sequences of lengths m + p,m +
pym,m, and let F = (f,) and G = (g;) be Golay sequences of length s. Then the
following Q,R,S,T become 4-complementary sequences (i.e., the sum of nonpe-
riodic autocorrelation functions is 0), using X* to denote the reverse of X :

Q = (Afs,Cg1; 0,0, Afs—1,Cg2;0,0;...;Af1,Cgs; 0,0; —B*,0);
R= (staDgs; 0)0, st—ngs—l; ana cens Bfl,Dgl; 0,07 A*’O)y
S = (0,0, Ags,—Cf1; 0,0; Ags_1,—Cf;...; 0,0; Ag1,—Cfs; 0,—D*);

T =(0,0; Bg1,—Dfi; 0,0; Bg2,—Dfs;...; 0,0; Bgs,—Dfs; 0,C*).
Furthermore, if we define sequences
X =(Q +R)/2, Y =(Q - R)/2, V=(S+T)/2, W =(S-1)/2,
then these sequences become T-sequences of length t(2s + 1), 1 = 2m + p.

Note: The interesting case for Yang’s theorem is for base sequences of
lengths m + p,m + p,m,m, where p is odd for then Yang’s theorem produces
T-sequences of odd length, for example, 3(2m + p).

Restatement 5.24 (Yang). Suppose that E,F,G,H are base sequences of
lengths m + p,m + p,m,m. Define A= X(E+F), B=3E-F), C=1(G+
H), and D = %(G — F) to be suitable sequences. Then the following sequences
are disjoint T-sequences of length 3(2m + p):

X =A4,C; 0,0'; B*,0;
Y = B,D; 0,0'; —A4*,0;
Z=00; A,—-C; 0,D*

w =0,0'; B,—D; 0,—C*;
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and
X =B*0'; 4,C; 0,0';
=—-A4*0'; B,D; 0,0;
Z=0,D* 0,0; 4,-C;
W =0,-C*; 0,0'; B,—D.

In these sequences 0 and 0 are sequences of zeros of lengths m + p and m,
respectively.

The next two theorems deal with multiplication by 7 and 13. They can be
used recursively, but as the sequences produced are of equal lengths, the next
recursive use of the theorems gives sequences of (equal) even length.

Theorem 5.25 (Yang [137]). Let (E,F,G,H) be the base sequences of length
m+p,m+pmm. Let t =2m+ p and define the suitable sequences A=
NE+F), B=LE-F), C=4(G+H), and D=3(G—H) of lengths
m+ p,m+ p,m and m. Then the following X,Y,Z,W are 4-disjoint T-sequen-
ces of length Tt (where X means negate all the elements of the sequence and X *
means reverse all the elements of the sequence):

X =(4,C; 0,0; A,D; 0,0; 4,C; 0,0; B",0);
Y = (B,D; 0,0; B,C; 0,0; B,D; 0,0; A*,0);
Z = (0,05 A,C; 0,0; B,C; 0,0; 4,C; O,B*);
W =(0,0; B,D; 0,0; A4,D; 0,0; B,D; 0,C*).

Theorem 5.26 (Yang [137]). Let (E,F,G,H) be the base sequences of length
m+pm+ pmm. Let t =2m+ p, and define the suitable sequences A =
NE+F), B=YE-F), C=LYG+H), and D = (G — H) of lengths m +
p,m+ p,m, and m. Then the following X,Y,Z,W are 4-disjoint T-sequences
of length 13t:

Q = (4,D*; A,G; A,D*; A,C; A,D*; A,C; 0,C; 0,0; 0,0; 0,0; 0,0; 0,0;
0,0);

R = (B,C*; B,D; B,C*; B,D; B,C*; B,D; 0,D; 0,0; 0,0; 0,0; 0,0; 0,0; 0,0);

s = (0,0, 0,0; 0,0; 0,0; 0,0; 0,0; A4,0; A,C; B*,C; 4,C; B*,C; A,C; B*,C);

T = (0,0, 0,0; 0,0; 0,0; 0,0; 0,0; B,0; B,D; A*,D; B,D; A*,D; B,D; A*,D).

Yang [137] has also shown how to multiply by 11. The sequences obtained

are not disjoint and so cannot be used in another iteration but still are
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vital in that they give complementary sequences of length 11(2m + p),
and hence Hadamard matrices of order 44(2m + p). Using the Yang numbers
y =3,5,7,9,13,17,21,33,41, 53, 61,65, 81 with base sequences gives T-sequences,
SO

Corollary 5.27. Yang numbers and base sequences of lengths m+1,m+ 1,

m,m can be used to give T-sequences of lengths t = y(2m + 1) for the following
r < 200:

1,3,...,41,45,...,59,61,63,65,69,75,77,81,85,91,
93,95,99,101,105,111,115,...,125,133, 135,141, ...,
147,153,155,159,161,165,169,171,175,177,183,187,189, 195.
The gaps in these sets can sometimes be filled by T-matrices. Thus, using
Table 5.3 and Corollary 5.22 and noting that T-sequences give T-matrices, we

have

Lemma 5.28. T-matrices exist for the following t < 196:

13,...,71,75,77,81,85,87,91,93,95,99,101,105,111,115,...,
125,129,...,135,141,...,147,153,155,159,...,
165,169,171,175,177,187,189,195.
These are given in more detail in Cohen, Rubie, Koukouvinos, Kounias, Se-
berry, and Yamada [10], Koukouvinos, Kounias, and Seberry [56], and Kouk-
ouvinos, Kounias and Sotirakoglou [51]. Further results, including muitiplica-

tion and construction theorems, are given in recent work of Koukouvinos,
Kounias, Seberry, C. H. Yang, and J. Yang [57, 58].

5.5. Koukouvinos and Kounias

We call k a Koukouvinos-Kounias number, or KK number, if
K=g81+1+g2,
where g; and g; are both the lengths of Golay sequences. Then we have

Lemma 529. Let k be a KK number and y be a Yang number. Then there are
T-sequences of length t and OD(4¢;t,t,t,t) for t = yk.
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TABLE 5.3 T-Matrices Used

Order Sum of squares T; Sets

31 +32432422 T (1,5, -8 -9, 11, —14, 24, 25, 27}
T, {26, 10, —12, 19, —21, 26, —29, 30}
: s {4,7, -16, 17, —18, 20, 22, 23, —28}
T, {3,13, 15, —31}

39 @+12+12+12 T, {17,20, 21,23, 24, 26, 35, 38}
. T, {14, 15, —16, —18, 19, 22, 25, —34, —36, —37, 39}
s {-4, -7, -8 10, 11, 13, 28, —29, —31, 32, 33}
T, {1,2, -3, =5, 6, -9, 12, 27, 30}

43 4432432432 T, {1,4,-5,6,7,8,9, —13, —14, 15, 16, —17,
—-18, 21}
T, {-2,3, 10,11, —12, 19, 20}
s {-22, 23,24, 26,29, 31, 34, 36, -39, —41, 42}
T, {-25, -27, 28, 30, 32, 33, —35, 37, —38, 40, 43}

49 A2+42+482+12 T1 {4,618, 19, 21, —32, 34, 44, 45, —46}
T, {-8,9, 10, 12, 14, 25, 26, 28, —36, 37, 38, —40,
—42, —48)
T {11, 13,22, —23, —24, 27, 39, —41, 47, 49}
T. {-1,23,5,7, 15, —16, —17, —20, 29, —30,

—31, 33, 35, —43}
49 S2+42+22422 T, {1,-2, -3,5,7, —15, 16, 17, 20, —29, 30, 31,
33, 35, —43}

T, {11, —13, 22,23, 24, —27, 39, 41, 47, 49}

Ts  {—4,6,18, —19, —21, 32, 34, 44, 45, —46}

T, {8, -9, —10, 12, 14, 25, 26, 28, 36, —37, —38,
—40, —42, 48}

55 2457422412 Ty {1,2,-57 8 -9, 10, 11, —23, —24, 27, 29, 30,
—31, 32, 33, —45, —47, 48}
T, {-14, 15, 17, -36, 37, 39, 51, 52, —53, 54, 55}
T, {12, 13, —16, 18, 19, —20, 21, 22, 34, 35, —38,
—40, —41, 42, —43, —44}
T, {-3,4,6,25 —26, —28, —46, 49, 50}

57 £+424+4243% T, {-24,-25,29, 30, —31, 32, 33, 35, 36, 37, 38, 53}
. T, {20,21, 22, —23, ~26, 27, —28, 34, 49, 50, 51,
—52, 54, 55, —56, 57}
T; {5,6, —10, 11, —12, 13, 14, —16, 17, 18, 19, 40,
—41, 42, 45, —46, —47, —48}
T, {1,2,3, -4, -7,8, -9, 15, —39, 43, 44)
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TABLE 5.3 T-Matrices Used (continued)

Order

Sum of squares

T;

Sets

61

67

7

85

87

6% + 5%

+12+17+1°

6 +52+3%2+12

7+ 62

7?+62+12+ 17

T

T

T3

n
T

T
T3

T

T

o3

T

T,
T

T
T

T4
T

T
T

T

(2,7, 10, 17, 18, —26, 29, —30, 31, —32, 35, 40,
—44, 51, 55, 61}

(3,4, -8, —11, —12, 13, 14, 15, 16, 19, 22, —25,
27, —28, 36, —37, —38, 41, —42, —47, 49, 52,
56, —57, 60}

{-1,5,6, =9, —20, 21, —23, —24, —33, —34,
39, 43, 45, 46, 48, —50, —53, 54, —58, 59}

{¢}

{-1,5,9, 13, 14, 15, 18, 25, 27, 29, —31, 32,
—39, 43, 50, —67}

{2, -8, —12, 16, 17, 23, —40, 41, 42, —45, —46,
—47, —53, 54, 56, 65, 66}

{6, 7,11, 19, 20, —21, 24, —26, —28, —37, 38,
44, —49, 57, —58, ~59, 61}

{=3, —4, 10, 22, 30, —33, 34, —35, 36, 48, 51,
—52, 55, —60, —62, 63, 64}

{1, -2, -3,4,5,6,-7,8,9,10, —11, —12, —13,
—14, 15, 16, —17, 18, 19, —20, 21, 22, 23, 24}
{25, 26, 27, 28, —29, 30, 31, =32, 33, 34, 35,

36, 37, —38, 39, —40, 41, —42, —43, —44,

—45, 46, 47}

{48, 49, 50, 51, —52, —56, 57, 58, 60, —64, 65,
—66, —71}

{53, 54, 55,59, —61, 62, —63, —67, —68, 69, 70}

{1,2,4, -5, —11, 12, 14, —15, 21, 22, 24,
225,31, 32, 34, 35, —41, —42, —44, 45, 51, 52,
—54, 55, 61, 62, 64, —65, 71, 72, —74, 75, —81}
(3, 13,23, 33, —43, 53, 63, 73, 82, 83}

{6, ~7, -9, 10, 16, 17, —19, 20, —26, —27, —29,
30, —36, —37, 39, —40, —46, —47, —49, 50,

56, 57, —59, 60, 66, 67, 69, —70, 76, 77, —79, 80}
{8, 18, 28, —38, —48, —58, 68, —78, —84, 85}

{=2, 3,5, 6,10, 11, 13, —14, 15, 16, —17, 20,
21, 24, ~25, 28, 29, —62, —65, 66, 67, 70, 73}
(30, =33, —36, —37, 38, 41, —47, 48, 51, 52, 55,
56, 74,75, —78, 79, 82, 83, —86, 87}

{1, -4, -7, -8, 9, 12, 18, —19, —22, —23, 26,
27, 59, —60, 61, 63, 64, 68, 69, —71, —72}
{31, =32, 34, 35, 39, 40, 42, —43, 44, —45, 46,
49, —50, —53, 54, —57, —58, —76, 77, 80, 81,
84, —85}
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TABLE 5.3 T-Matrices Used (continued)

Order Sum of squares T : Sets

91 S52+52+5%2+4* T, {-1,-2,3,5 -6, -8, 10, 11, 13, 27, 28, —29,

-31, 32, 35, 38, 53, 54, —55, —57, 58, —60, 62,
63, 65, —79, —82}

T, {-4,-7,9, 12, 30, 33, 34, —36, —37, —39, 56,
59, 61, 64, 80, —81, —83, 84, 85}

T {17,20,, —22, —25, 40, 41, —42, —44, 45, —48,
—51, 69, 72, 74, 77, 86, 88, 89, —91}

T, {-14, 15, 16, 18, —19, —21, 23, 24, 26, 43, 46,
—47, 49, 50, 52, —66, —67, 68, 70, —71, 73,
—175, =76, —78, 87, 90}

93  6+5+42+47 v {2,3,4,5 -6,7,8 -9, 10, 11, 12, 13, ~14,
15, —16, 17, 19, 21, 23, —25, —27, =29, 31, —78}
T {1, 18, —20, —22, 24, ~26, —28, 30, —63, 64, —65,
66, 67, 68, —69, —70, 71, 72, —73, 74, 75, 76, 77}
T {33, 34, 35, 36, —37, 38, 39, —40, —41, 42, 43,
44, —45, 46, —47, —48, —50, —52, —54, 56, 58,
60, —62, —80, 82, 84, —86, 88, 90, —92}
T, {32, —49, 51, 53, —55, 57, 59, —61, 79, —81,
—83, -85, 87, 89, 91, 93}

This gives T-sequences of lengths

2-101,2-109,2-113,8-127,2-129,2 - 131,8- 151,
8-157,16-163,2-173,4-179,4 - 185,4-193,2 - 201.

6 AMICABLE HADAMARD MATRICES AND AOD

Two matrices M = I + U and N will be called [complex] amicable Hadamard
matrices if M is a (complex) skew Hadamard matrix and N a [complex]
Hadamard matrix satisfying

NT=N, MNT=NMT ifreal,
N*=N, MN*=NM* if complex.

Amicable Hadamard matrices are useful in constructing skew Hadamard
matrices: They are algebraically powerful and elegant. We will only use con-
structions with real matrices to construct (real) amicable Hadamard matrices.
It is obvious, however, that if complex matrices are used, then complex ami-
cable Hadamard matrices can be obtained.

We note that the truth of the conjecture implicit in Seberry [77] and Se-
berry-Yamada [86], that “amicable Hadamard matrices exist for every order 2
and 4n, n > 1,” would imply the two conjectures that “skew Hadamard matri-
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ces exist for every order 2 and 4n, n > 1” (which appears to be hard to prove)
and that “symmetric Hadamard matrices exist for every order 2 and 4n, n > 17
(which appears to be the easier to prove).

6.1. Other Amicable Matrices

M and N of order n are said to be amicable orthogonal designs of type
AOD(n;(my,...,mp); (M1,...,nq)) if M is an OD(n;my,...,mp), N is an or-
thogonal design OD(n; ny,...,ng), and MNT = NMT. If M comprises the vari-
ables xi,...,x, and N comprises the variables y1,...,¥q, then

p q
MMT =Zm,~x,-21,., NNT=En,~yfI,,
i=1 j=1

and
zZ" = (mle +---+ mpx?,)(nlyf 4.+ nqyg)l,,,

where Z = MNT. Wolfe and Shapiro (see [23]) have studied and solved the
algebraic necessary conditions for amicable orthogonal designs, but the suffi-
ciency conditions are largely unresolved (see [71, 23, 79] for partial results).

Amicable orthogonal designs AOD(n;(1,n — 1);(n)) give amicable Hada-
mard matrices (they are not the same since the orthogonal designs have no
symmetry or skew symmetry conditions). Normalized amicable Hadamard ma-
trices of order k4 can be written in the form

11 - 1 11 - 1
- 1

where

sT=-s, P'=p, R'=R, PRT+RPT=0,
RRT =1, SJ=PJ=0, RJ=-J, SPT=psT,
SRT =RST, SsSsT=PPT=(h-1)I-1J.

Amicable orthogonal designs, amicable Hadamard matrices, and skew
Hadamard matrices have proved difficult to find. The Kronecker product of
skew Hadamard matrices is not a skew Hadamard matrix. However, if h;
and h, are the orders of amicable Hadamard matrices, then there are ami-
cable Hadamard matrices of order hjh,; further, if g is the order of a skew
Hadamard matrix, there are skew Hadamard matrices of orders f1g and h,g
[114]. We list the orders for which amicable matrices are known, but we do not
prove these results here. The recent result of Seberry and Yamada [86], which
is class AIIl, indicate that powerful results may remain to be discovered.
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6.2. Summary and Tables of Amicable Hadamard Matrices

Al 2f ta nonnegatiize integer; J. Wallis [110]
All p +1 P" (prime power) = 3 (mod4); J. Wallis [110]

Alll (p-1*+1 p the order of normalized amicable Hadamard
matrices, there are normalized amicable
Hadamard matrices of order (p—1)*+1, u >0
an odd integer;
Seberry and Yamada [86]

AV 2(g+1) 2q + 1 is a prime power, g (prime) = 1 (mod4);
J. Wallis [114, p. 304]

AV  (Jt|+1)(g+1) q (prime power) =5 (mod8) = s? + 472,
s =1 (mod4), and |¢| + 1 is the order of
amicable orthogonal designs of type
AOD(1 + [t (1, ]e]); ((1t] + 1), 3(J¢] + 1));

[23, §5.7]
2(g+1) q (prime power) = 5 (mod8) = 5% + 4(2" — 1),
s =1 (mod4), r some integer; [23, §5.7]
2(g+1) q =5 (mod8); J. Wallis [116]
AVI § S is a product of the above orders; J. Wallis
[110]

Constructions for amicable orthogonal designs can be found in [23], [70],
[69], [77, [79], [86], [96], [110], [116], [114], [119]. A summary of the orders
for which skew Hadamard matrices are known can be found at the end of
Section 7. Amicable Hadamard matrices appear in Table 6.1. In this table, a

(13844

.” means “unknown” and a blank means “2.”

TABLE 6.1 Orders 2'q for Which Amicable Hadamard Matrices Exist

q t q ! q t q ! q t
. 1 23 4 45 67 5 89 4
3 25 3 47 4 69 4 91 3
5 27 49 4 gt 93 3
7 29 4 51 4 73 7 95
- 9 3 31 3 53 75 3 97 9
11 33 55 3 77 99 4
13 3 35 57 79 3 101 .
15 37 . 59 . 81 3 103 3
17 39 3 61 3 83 105
19 3 41 63 85 4 107

21 43 3 65 4 87 109 9
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TABLE 6.1 Orders 2'q for Which Amicable Hadamard Matrices Exist (continued)

q t q t q t q t q t
111 201 3 291 381 4711 3
113 8 203 293 \—/323 473 5
115 205 4 295 5 38 3 475 4
117 207 297 387 S 477
19 4 209 4 299 4 389 i 479 )
121 3 211 4 301 S 391 S 481 3
123 213 4 303 3 393 483
125 215 305 5 395 485 4
127 ) 217 S 307 i 397 5 487 5
129 3 209 7 309 4 399 3 489 3
131 221 311 i 401 i 491 i
133 3 23 3 313 3 40 6 493 3
135 4 25 4 315 4 405 495
137 227 317 6 407 497
139 4 29 3 319 3 409 3 499 3
141 231 3 321 411 4 501
143 233 4 323 413 4 503
145 5 235 3 325 5 415 3 505
147 237 327 417 507
149 4 239 4 329 6 419 4 509 )
151 5 241 ) 331 3 21 7 511 5
153 3 243 333 3 423 4 513 4
155 245 4 335 7 425 515 5
157 5 247 6 337 ) Q7 4 s17 6
159 4 249 4 339 3 29 4 519 4
161 251 6 341 S 431 521
163 3 253 6 43 6 33 3 523 7
165 255 345 4 35 4 525
167 4 257 4 347 ) 437 527 4
169 5 259 S 349 3 439 3 52 3
17 261 3 351 4 41 3 31 7
173 263 353 4 43 6 533
175 3 265 4 355 4 445 3 535
177 ) 267 4 357 447 37 5
179 8 269 8 359 4 449 ) 539 4
181 3 271 7 361 3 451 3 s4a1 3
183 4 273 363 453 543 5
185 2715 5 365 455 S 545
187 4 217 5 367 457 i 547
189 3 279 4 369 4 459 3 549 3
191 ) 281 371 461 i 551
193 3 283 ) 3137 463 7 553 3
195 3 285 4 375 465 3 555 4
197 287 4 377 7 467 557

199 3 289 3 379 . 469 7 559 5
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TABLE 6.1 Orders 2'q for Which Amicable Hadamard Matrices Exist (continued)

q ! q 4 q t q t q t
561 649 7 737 7 825 913 4
563 651 5 739 . 827 915
565 3 653 741 829 . 917 4
567 655 4 743 831 919 3
569 4 657 5 745 6 833 921 6
571 3 659 . 747 4 835 3 923
573 3 661 . 749 . 837 925 4
575 4 663 3 751 3 839 . 927 4
577 . 665 753 841 8 929 .
579 5 667 8 755 843 931 5
581 4 669 3 757 5 845 7 933
583 3 671 759 4 847 4 935
585 673 7 761 . 849 3 937 5
587 675 763 11 851 . 939 4
589 6 677 765 3 853 3 941 .
591 4 679 3 767 855 4 943 6
593 681 4 769 3 857 4 945
595 3 683 771 S 859 3 947 6
597 4 685 3 773 . 861 4 949 3
599 . 687 775 3 863 4 951
601 5 689 5 777 4 865 4 953 .
603 691 3 779 5 867 955 3
605 4 693 4 781 3 869 4 957 5
607 5 695 4 783 3 871 3 959 4
609 3 697 4 785 7 873 961 3
611 6 699 3 787 5 875 963 .
613 3 701 789 3 877 . 965 4
615 703 3 791 879 4 967 .
617 705 793 3 881 6 969 4
619 3 707 6 795 3 883 . 971 6
621 3 709 . 797 885 973 6
623 4 711 799 6 887 975 5
625 3 713 801 889 5 977
627 4 715 4 803 9 891 3 979 5
629 . 77 4 805 4 893 981

- 631 . 719 4 807 4 895 3 983
633 721 5 809 . 897 5 985 4
635 723 3 811 5 899 7 987
637 5 725 6 813 901 3 989 4
- 639 4 727 . 815 903 4 991 3
641 6 729 4 817 6 905 4 993 4
643 . 731 5 819 3 907 5 995 4
645 733 . 821 6 909 4 997

647 . 735 823 . 911 999 5
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7 CONSTRUCTIONS FOR SKEW WMD MATRICES

Some of the most powerful methods for constructing Hadamard matrices de-
pend on the existence of skew Hadamard matrices. Skew Hadamard matrices
are known to be equivalent to doubly regular tournaments. The analogue of a
skew Hadamard matrix in orders =2 (mod4) is a symmetric conference ma-
trix, but very few symmetric conference matrices are known whose orders are
not of the form prime power plus one or those derived from skew Hadamard
matrices.

The properties of these matrices were noticed as long ago as 1933 and 1944
by Paley and Williamson, but it has only been recently when the talents of
Szekeres, Seberry, and Whiteman (among others) were directed toward their
study that significant understanding of their nature was achieved.

N. Ito has determined that for general skew Hadamard matrices, there is a
unique matrix of each order less than 16, two of order 16, and 16 of order 24.
Kimura has found 49 of order 28 [45] and 6 of order 32 [46].

For completeness, we will restate results given earlier that are corollaries of
the stronger theorems on amicable Hadamard matrices. The smallest known
skew Hadamard matrices are listed. The first rows of circulant matrices of
small order that give skew Hadamard matrices are listed.

Jennifer Wallis [111] used a computer to obtain skew Hadamard matrices
using the Williamson matrix

Those of order < 92 only took at most a few minutes to find, but the ma-
trix of order 92 took many hours on an ICL 1904A. Subsequently, Szekeres
and Hunt [35], using a bigger computer, developed indexing techniques
that allowed the matrix of order 100 to be found in about one hour. Szekeres
[100] has now extended these results and corrected minor errors. The num-
ber of inequivalent Hadamard matrices of this type depends on the decom-
position into squares, but for order 12, he found one; for 20, one; for 28,
three; for 36, one; for 44, three; for 52, six; for 60, eleven; for 68, two; for 76,
eight; for 84, ten; for 92, six; for 100, nine; for 108, twelve; for 116, five; and
for 124, three.

The following first rows for 4,B,C,D generate the required matrices: The
results for 21,25 were found by Hunt; for 27,29,31 by Szekeres; and the re-
mainder by (Seberry) Wallis:
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1 1 1-1 1-1

1-1-1

1-1-1-1-1-1 1-1 1-1-1-1
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25

1-1 1

1

1

1-1 1-1 1
111

1

1

1-1

111 1-1
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1-1-1-1
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1-1-1

1
1
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1
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1-1
1
1-1 1
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11 1-1 1 1-1-1~-1-1-1-1

1
1-1-1 1-1-1-1-1

1-1-1-1

1-1

1-1 1-1-1 1 1-1
1-1-1-1 1 1-1

1-1

1-1
1

1

1

1-1

1

1
1-1-1-1

1

1
1

1
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1-1
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1
1
1

1-1
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1

1-1
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1
1

1-1-1-1

1
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1
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1-1
1
1-1-1

1

1-1

1-1-1-1-1 1

1

1
1

1-1 1-1-1-1 1

1-1 1

1-1-1-1

1 -1
1-1-1-1 1-1

1111 1-1-1-1
1-1-1 1 1-1-1-1-1

1

1-1

1

1-1 1 1

1
1

1
1

1-1 1-1
1-1-1-1-1

1
1-1-1 1-1 1-1-1

1

31

1

1

1 1-1

1-1

1

1-1-1 1-1-1 1-1-1-1
1 11

1

1

1-1-1

1-1-1 1

1-1-1-1 1-1-1

1

1

1-1-1 1

1-1

1
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7.1. The Goethals-Seidel Type

Goethals and Seidel modified the Williamson matrix so that the matrix entries
did not have to be circulant and symmetric. Their matrix, which has been
valuable in constructing many new Hadamard matrices, was orginally given to
construct a skew Hadamard matrix of order 36 [27].

Theorem 7.1 (Goethals and Seidel [27]). If A,B,C,D are square circulant
matrices of order m, and R = (r;;) is defined by rim_i = 1,i =1,...,m, then if
A is skew type, and if '

AAT + BBT + ¢CT + DDT = 4ml, (6)
then the array 7 in Section 3 is skew Hadamard of order 4m.

This construction gave the first skew Hadamard matrices of orders 36 and 52.

Recently, Djokovic [17, 16] has carried out a computer search for circulant
matrices that can be used in the Goethals-Seidel array and found matrices to
give skew Hadamard matrices of order 4n, n = 37,43,49,67,113,127,157,163,
181, and 241.

The following two pairs of four sets are 4-(37;18, 18, 16,13;28) and 4-(37,18,
15,15,15;26) supplementary difference sets, respectively, found by Djokovic
[17], which may be used to construct circulant (1,—1) matrices that give, using
the Goethals-Seidel array, skew Hadamard matrices of order 4-37 = 148:

1,3,4,10,14,17,18,21,22, 24, 25,26, 28,29, 30,31, 32,35
1,6,8,9,10,11, 12,14, 16,17, 22,23, 26,27,29, 31,35,36
0,5,6,7,8,11,13,18,19,23,24,27, 32, 33,34,36
0,2,5,11,13,15,17, 19,20,22, 27,35, 36

1,7,9,10,12,14,16,17,18,22,24,26,29,31, 32,33,34,35
1,5,6,7,8,10,13,18,19,23,24,26, 32,33, 34
2,5,11,13,14,15,18, 19,20, 24,27,29, 31,32, 36
2,5,6,8,9,12,13,14,15,16,19,20,23, 29,31

The following four sets, also found by Djokovic [17], give 4-(43;21,21,21,15;
35) supplementary difference sets and may be used similarly to form a skew
Hadamard matrix of order 4-43 = 172:

2,3,5,7,8,12,18,19,20,22, 26,27, 28,29, 30,32, 33, 34,36, 39,42 (twice)
1,3,4,5,6,10,11,12, 16,19, 20,21, 23,24, 31, 33,35, 36, 38, 40, 41
0,6,7,10, 18,23,24,26, 28,29, 30,31, 34, 38, 40.
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7.2. An Adaption of Wallis-Whiteman

We note the following adapation of the Goethals-Seidel matrix that does not
require the matrix entries to be circulant at all:

Theorem 7.2 (J. Wallis-Whiteman [113]). Suppose that X, Y, and W are
type one incidence matrices and that Z is a type two incidence matrix of 4

{v;k1,ka2,k3,kq; ELI k; — v} supplementary difference sets. If
A=2X -1, B=2Y-J, C=2Z-1J, D=2W-J,

then
A B C D

H= -BT AT D C ™
| -c DT 4 -BT
-DT ¢ B AT
is an Hadamard matrix of order 4v.

Further, if A is skew-type (CT = C as Z is of type two) then H is skew
Hadamard.

This matrix can be used when the sets are from any finite abelian group. We
now show how Theorem 7.2 may be further modified to obtain useful results.

Theorem 7.3 (J. Wallis-Whiteman [113]). Suppose that X, Y, and W are type
one incidence matrices and that Z is a type two incidence matrix of 4-{2m +
1, m;2(m — 1)} supplementary difference sets. If

A=2X -, B=2Y-J, C=2Z-1J, D=2w-1J,

and e is the 1 x (2m + 1) matrix with every entry 1, then

[ -1 -1 -1 -1 e e e e’

1 -1 1 -1 —e e —e e

1 -1 -1 1 —e e e —e

1 1 -1 -1 —e —e e e

H= T T T T

e e e e A B C D

—eT eI —ef e BT AT -D Cc

—ef e T —eT —-c DT 4 -BT

|—eT —eT e e _DpT —Cc B AT

is an Hadamard matrix of order 8(m + 1). Further, if A is skew type, H is skew
Hadamard.
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Delsarte, Goethals, and Seidel’s [15] important result states that if there
exists a W(n,n—1) for n=0 (moMj,LtT);i there exists a skew symmetric
W(n,n — 1). This is used in the next result which uses orthogonal designs and
is due to Seberry. The results for skew Hadamard matrices are far less com-
plete than for Hadamard matrices.

Theorem 7.4 (Seberry [77]). Let q=5 (mod8) be a prime power and p =
2(q + 1) be a prime. Then there is a skew Hadamard matrix of order 2* p, where

t < [2logy(p —-2))

7.3. Summary and Tables of Skew Hadamard Orders

Skew Hadamard matrices are known for the following orders (the reader
should consult [114, pp. 451], [77] and Geramita and Seberry [23]):

SI 2'Tik; t,r;, all nonnegative positive integers
ki —1=3 (mod4) a prime power [66]

S (p-1)*+1 p the order of a skew Hadamard matrix, u > 0 an
odd integer [105]

SII 2(qg+1) g =5 (mod8) a prime power [98]
SIV 2(q+1) q = p' is a prime power with p =5 (mod8) and
t =2 (mod4) [99, 125]
SV 4dm m ¢ {odd integers between 3 and 31 inclusive} [35,

100]; m € {37, 39, 43, 49, 65, 67, 93, 113, 121,127,129,
133,157,163,181,217,219,241,267} [17, 16]

SVI mn(n—-1) n the order of amicable orthogonal designs of types
((1,n—1);(n)) and nm the order of an orthogonal
design of type (1,m,mn—m—1) [77]

SVII 4(¢qg+1) q =9 (mod 16) a prime power [113]

SVIII (t|+1)(g+1) q=s%+4=5 (mod8) a prime power, and |¢| + 1
the order of a skew Hadamard matrix [117]

SIX 4(q*+q+1) g aprime power and g% + ¢ + 1= 3,5, or 7 (mod8)
a prime power or 2(q*> + q + 1) + 1 a prime power
[94]

SX 24q q = 5% + 4r? =5 (mod8) a prime power, and an
orthogonal design OD(2%;1,a,b,c,c + |r]) exists
where 1+a+b+2c+|r|=2" and
a(qg+1)+b(q—4)=2"[77]

SXI hm h the order of a skew Hadamard matrix; m the
order of amicable Hadamard matrices [121]
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Spence [95] has found a new construction for STV and Whiteman [125] a
new construction for ST when k; — 1 =3 (mod8). These are of considerable
interest because of the structure involved and have use in the construction of
orthogonal designs.

In Table 7.1, the lowest power of two for which a skew Hadamard matrix is
known is indicated. For example, the entry (193,3) means a skew Hadamard
matrix of order 23-193 is known, the entry (59,.) means a skew Hadamard
matrix of order 2‘ - 59 is not yet known for any ¢. Also, a blank represents 2.

8 M-STRUCTURES

Named after Mieko Yamada and Masahiko Miyamoto, M -structures have
proved to be very powerful in attacking the question “if there is an Hadamard
matrix of order 4¢, is there an Hadamard matrix of order 8 + 4?7 M -structures
provide another variety of “plug in” matrices that have yet to be fully ex-
ploited.

Table A.1 gives the present knowledge of Williamson matrices. The theo-
rems were applied to get the table.

Definition 8.1. An orthogonal matrix of order 4¢ can be divided into 16 7 x ¢
blocks M;;. This partitioned matrix is said to be an M-structure. If the orthog-
onal matrix can be partitioned into 64 s x s blocks M;;, it will be called a 64
block M-structure.

An Hadamard matrix made from (symmetric) Williamson matrices Wy, W5,
W3, W, is an M-structure with

Wi =My = My = M3z = My,

Wy =M = —My = My = —May,
Wi = Miz = —M3; = —Mpy = Mu,
Wy=My=-My =My=—-Mz.

An Hadamard matrix made from four (4) circulant (or type 1) matrices Ay,
A, As, A4 of order n [where R is the matrix that makes all of the A4;R back
circulant (or type 2)] is an M-structure with

Ay = My = My = Mz = My,

Ay = Mi3R= —MuR = RM}, = —RM},
Ay = M;3R = —My R = —RM%, = RM],
Ay =MyR = —MyR = RM%4 = —-RM},.
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TABLE 7.1 Orders for Which Skew Hadamard Matrices Exist

q t q t q t q t q t
1 89 4 177 . 265 4 353 4
3 91 179 8 267 355

5 5 93 181 269 8 357
7 95 183 271 359 4
9 97 9 185 273 361 3

11 99 187 275 4 363

13 101 10 189 277 5 365

15 103 3 191 . 279 367

17 105 193 3 281 369 4

19 107 . 195 283 . 371

21 109 9 197 285 3 373 7

23 111 199 287 4 375

25 113 201 3 289 3 377 6

27 115 203 291 379

29 117 205 3 293 381

31 119 4 207 295 5 383

33 121 209 4 297 385 3

35 123 211 299 4 387

37 125 213 4 301 3 389 15

39 127 215 303 3 391 4

41 129 217 305 4 393

43 131 219 307 395

45 133 221 309 3 397 5

47 4 135 223 3 311 . 399

49 137 225 4 313 401 .

51 139 227 315 403 5

53 141 229 3 317 6 405

S5 143 231 319 3 407

57 145 h] 233 4 321 409 3

59 . 147 235 3 323 411

61 149 4 237 325 5 413 4

63 151 5 239 4 327 415

65 153 3 241 329 6 417

67 155 243 331 3 419 4

69 3 157 245 4 333 421

. 71 159 247 6 335 7 423 4

73 161 249 4 337 18 425

75 163 251 6 339 427

77 165 253 4 341 4 429 3

‘ 79 167 4 255 343 6 431

81 3 169 5 257 4 345 4 433 3

83 171 259 5 347 . 435 4

85 173 261 3 349 3 437

87 175 263 351 439
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TABLE 7.1 Orders for Which Skew Hadamard Matrices Exist (continued)

q t q t q t. q t q t
441 3 529 3 617 705 793 3
443 6 531 619 707 4 795 3
445 3 533 621 3 709 . 797
447 535 623 4 711 799
449 . 537 5 625 3 713 801
451 3 539 4 627 4 715 803 9
453 541 3 629 . 717 4 805 4
455 4 543 5 631 . 719 4 807
457 . 545 633 721 5 809
459 3 547 635 723 3 811
461 17 549 3 637 4 725 6 813
463 7 551 639 727 815
465 3 553 3 641 6 729 4 817 5
467 555 643 . 731 S 819
469 3 557 . 645 733 . 821 6
471 559 647 . 735 823 3
473 5 561 649 7 737 7 825
475 4 563 651 739 . 827
477 565 3 653 . 741 829
479 . 567 655 4 743 831
481 3 569 4 657 S 745 6 833
483 57 3 659 . 747 835
485 4 573 3 661 . 749 . 837
487 5 575 4 663 751 3 839 .
489 3 577 . 665 753 841 8
491 . 579 5 667 6 755 843
493 3 581 4 669 3 757 845 6
495 583 3 671 759 4 847
497 585 673 7 761 . 849 3
499 587 675 763 11 851 .
501 589 5 677 765 4 853 3
503 591 679 3 767 855
505 . 593 681 4 769 3 857 4
507 595 3 683 711 859 3
509 . 597 4 685 773 . 861 4
511 599 . 687 775 863 4
513 4 601 5 689 4 777 4 865 4
515 5 603 691 779 4 867
517 6 605 4 693 4 781 3 869 4
519 4 607 695 4 783 871
521 609 3 697 4 785 7 873
523 7 611 6 699 3 787 5 875
525 613 3 701 789 3 877

527 4 615 703 3 791 879
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TABLE 7.1 Orders for Which Skew Hadamard Matrices Exist (continued)

q t q t q t q ! q t
881 6 905 4 929 . 953 . 977
883 . 907 5 931 955 3 979 5
885 909 4 933 . 957 4 981
887 911 935 959 4 983
889 5 913 4 937 5 961 3 985 3
891 3 915 939 963 987
893 917 4 941 6 965 4 989 4
895 919 3 943 4 967 991 3
897 5 921 4 945 969 4 993
899 6 923 947 6 971 6 995 4
901 3 925 3 949 3 973 4 997
903 4 927 4 951 975 999

8.1. Multiplication Theorems Using M -Structures

In this section, the reader wishing more details of constructions is referred to
Seberry and Yamada [87]. As shown in Section 3, the power of M -structures
comprising wholly circulant or type one blocks permits them to be multiplied
by the order of T-matrices.

Theorem 8.1. Suppose that there is an M-structure orthogonal matrix of order
4m with each block circulant or type one. Then there is an M-structure orthogo-
nal matrix of order 4mt where t is the order of T-matrices.

Further,

Theorem 82. Let N = (N;j), i,j =1,2,3,4, be an Hadamard matrix of order
4n of M-structure. Further, let T;;, i,j = 1,2,3,4, be 16 (0,+1,-1) type 1 or
circulant matrices of order t that satisfy

L T;j*Ty =0, Tji*Ti; = 0, j # k (+ is the Hadamard product);
2. EZ=1 Tix is a (1,—1) matrix;

3. 22=1 I;kI;{ =1l = El‘:=1TkiTk1;;

4. Ez=1TikTﬁ =0= }:Z=1 Tk,-Tij, i#].

C)

Then there is an M-structure Hadamard matrix of order 4nt.

Corollary 8.3. If there exists an Hadamard matrix of order 4h and an orthogo-
nal design OD(4u; uy, Uy, us, us), then an OD(8hu; 2huy, 2hu,,2hus, 2huy) exists.
In particular, the u;’s can be equal.

This gives the theorem of Agayan and Sarukhanyan [1] as a corollary by
setting all variables equal to one:
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Corollary 8.4. If there exist Hadamard matrices of orders 4h and 4u, then
there exists an Hadamard matrix of order 8hu.

We now give as a corollary a result motivated by (and a little stronger than)
that of Agayan and Sarukhanyan [1]:

Corollary 8.5. Suppose that there are Williamson or Williamson-type matrices
of orders u and v. Then there are Williamson-type matrices of order 2uv. If the
matrices of orders u and v are symmetric, the matrices of order 2uv are also
symmetric. If the matrices of orders u and v are circulant and/or type one, the
matrices of order 2uv are type 1.

Proof. Suppose A, B, C, D are (symmetric) Williamson or Williamson
type matrices of order u, then they are pairwise amicable. Define

E=1A4+B), F=%4-B) G=Yc+D) H=4C-D),
then E, F, G, H are pairwise amicable (and symmetric) and satisfy
EET + FFT + GGT + HHT = 2ul,.

Now define

E 0 F 0 0 G
0 E 0 F G 0

and Ty = [

so that

1 =T =T =T =Ty,
T =T =-Tn=Tu=—-T14,
T3 =Tz =Ty = T =Tp,

Th=Tuy=-Ty=Tn=-Tx,

in the theorem. Note that Ty, T, T3, Ty are pairwise amicable. If 4, B, C, D
were circulant (or type 1) they would be type 1 of order 2u.

Let X, Y, Z, W be the Williamson or Williamson-type (symmetric) matrices
of order v. Then X, Y, Z, W are pairwise amicable and

xXxXT+yvYT +2ZT + wwT = quI,,.
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Then

L=TixX+DxY+TyxZ+TaxW,
M=-TI1xY+DOLxX+DGxW-TyxZ,
=-TNixZ-HxW+Thix X +T, xY,

P=-T1xW+DhxZ-TzxY+T)xX,

are 4 Williamson type (symmetric) matrices of order 2uv. If the matrices of
orders u and v were circulant or type 1, these matrices are type 1. O

8.2. Miyamoto’s Theorem and Corollaries via M -Structures

In this section, we reformulate Miyamoto’s [64] results so that symmetric Wil-
liamson-type matrices can be obtained. The results given here are due to
Miyamoto, Seberry, and Yamada.

Lemma 8.6 (Miyamoto’s Lemma Reformulated by Seberry-Yamada [87]). Let
U,Vj, i,j = 1,2,3,4, be (0,+1,—1) matrices of order n that satisfy

. U;,U; are pairwise amicable, i # J;

. Vi,V; are pairwise amicable, i # j;

. U2V are (+1,—1) matrices, i = 1,2,3,4;

. the row sum of Uy is 1, and the row sum of U; is zero, i = 2,3,4;
LY UUT = @n+ DI=2], S ViVE = 2n+ DI

N A W -

Then there are four Williamson type matrices of order 2n + 1. Hence, there
is a Williamson-type Hadamard matrix of order 42n+1). If U; and V; are
symmetric, i = 1,2,3,4, then the Williamson type matrices are symmetric.

Proof. Let $1, S2, S3, S4 be 4 (+1,—1)-matrices of order 2n defined by

11 1 -1
S,-=U,-x[ ]+V,~x[ ]
11 -1 1

So the row sum of §; =2 and of §; =0, i = 2,3,4. Now define

1 —e
Xl — [ 2n

1 e
T ] and X; = { 2
—eZn S1

. i=234.
€ Si ]
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First, note that since U;,Uj, i # j, and V,,V;, i # j, are pairwise amicable,

- 1 1 1 -1 (. r 11 T 1 -1
S,-Sj=(U,~><[1 1]+V,-x 1 1)(ijl 1+ij_1 1>

r [2 2 r 2 -2
=UU; x + ViV x
2 2 -2 2

= SjSiT.

(Note that this relationship is valid if and only if conditions (1) and (2) of the
theorem are valid.)

i:ssT iUUT [2 2]+24:VVT [ 2 _2]
% T . S Vo X
'=1” i=1 - 2 2 i=1H -2 2

_, [2(2n+ DI —27 —27 ]
B —27 22n+ 1)1 —27

= 4(2n + Db, — 4),.

Next, we observe that

1-2n e
X1XiT = [ r 2 T] = X1X1T, i =234,
and
1+2n €
A T . - . T . . + .
Further,

4

1+2n 3e
Sxxf=| T
— —3el T+ 5187

_[4@n+1) 0 ]
_[ 0 4] +42n+ DI —-47]"

[1+2n e ]

4
>

T T
i=2 ezn J+S[Si

Thus, we have shown that Xj, X5, X3, Xy are 4 Williamson-type matrices of
order 2n + 1. Hence, there is a Williamson-type Hadamard matrix of order
42n + 1). O

Many powerful corollaries which give many new results exist by suitable
choices in the theorem. For example,
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Corollary 8.7. Let g =1 (mod4) be a prime power. Then there are symmetric
Williamson-type matrices of order q + 2 whenever %(q + 1) is a prime power
or %(q + 3) is the order of a symmetric conference matrix. Also, there exists an
Hadamard matrix of Williamson type of order 4(q + 2).

Corollary 8.8. Let g =1 (mod4) be a prime power. Then

1. if there are Williamson type matrices of order (q — 1)/4 or an Hadamard
matrix of order %(q — 1), there exist Williamson type matrices of order q;

2. if there exist symmetric conference matrices of order %(q —1) or a sym-
metric Hadamard matrix of order %(q — 1), then there exist symmetric
Williamson type matrices of order q.

Hence, there exists an Hadamard matrix of Williamson type of order 4q.

Corollary 8.9. Let g =1 (mod4) be a prime power or q + 1 be the order of
a symmetric conference matrix. Let 2q — 1 be a prime power. Then there exist
symmetric Williamson type matrices of order 2q + 1 and an Hadamard matrix
of Williamson type of order 4(2q +1).

Note that this last corollary is a modified version of Miyamoto’s Corollary
5 (original manuscript).

Theorem 8.10 (Miyamoto’s Theorem [64] reformulated by Seberry-Yamada
[87)). Let U;;,Vij, i,j = 1,2,3,4, be (0,+1,—1) matrices of order n that sat-
isfy

Uyi, Uy are pairwise amicable, k = 1,2,3,4, 1 # j;

Vii,Vij are pairwise amicable, k = 1,2,3,4, i # J;

Ui £ Vi are (+1,—1) matrices, i,k = 1,2,3,4;

the row sum of Uj; is 1, and the row sum of U;j is zero, i # j, i,j = 1,2,3,4;
YL UUE = @n+ DI =21, Y ViVE = @n+ DI, j=1,2,3,4
S UGUE =0, i ViVE =0, j #k, jk =1,23,4.

LRI S S

If conditions 1 to 5 hold, there are four Williamson-type matrices of or-
der 2n+ 1 and thus a Williamson type Hadamard matrix of order 4(2n +1).
Furthermore, if the matrices Uy; and Vy,; are symmetric for all i,j = 1,2,3,4, the
Williamson matrices obtained of order 2n + 1 are also symmetric.

If conditions 3 to 6 hold, there is an M-structure Hadamard matrix of order
42n + 1).

Proof. We prove the first assertion. Let S;;, i,j = 1,2,3,4, be 16 (+1,-1)-
matrices of order 2n defined by

1 1 1 -1
Sij = Uij x 11 +Vij x 1 il
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So the row sum of S;; =2 and of S;; =0, i # j, i,j = 1,2,3,4. Now define

[ -1 —e [1 e [1 e [—1 e ]
= [ —eT Su] Az = [T 512:l r Ans [ T 513] r Aus eI Sul’
[1 e [ -1 —e [1 e [-1 e ]
o= T Szl], Xz = L —eT 522]’ == Le” SB]’ = LT Sl
1 e (1 e [ -1 —e [—1 e ]
o= e S31] et T 532] e | —eT S33] » Hu= [T S5’
[—-1 e [ 1 e [—-1 e [ -1  -—e
Xu = 1 —S41] » Xap= o7 —542] y X3 = B —S43] y Xy = T s,

Thus, X4, X2, X3, X44 are 4 Williamson-type matrices of order 2n + 1,
and thus a Williamson-type Hadamard matrix of order 4(2n + 1) exists. O

Note that if we write our M -structure from the theorem as

-1 1 1 -1 —e e e e
1 -1 1 -1 e —e e e
1 1 -1 -1 e e —e e
1 1 1 1 —e —e —e e

—eT eT eT eT Su S12 513 514
el  —eT e el S5 S»n Sun Su
eT eT —eT eT S31 S32 333 S34

—eT —eT —eT eT S41 S42 S43 S44

then we can see Yamada’s matrix with trimming [131] or the J. Wallis-White-
man [113] matrix with a border embodied in the construction.

Corollary 8.11. Suppose that there exists a symmetric conference matrix of
order q +1 = 4t + 2 and an Hadamard matrix of order 4 = q — 1. Then there
is an Hadamard matrix with M -structure of order 4(4t + 1) = 4q. Further, if
the Hadamard matrix is symmetric, the Hadamard matrix of order 4q is of the

form
7 x)

where X, Y are amicable and symmetric.

In a similar fashion, we consider the following lemma so symmetric 8-
Williamson-type matrices can be obtained.
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Lemma 8.12 (Seberry-Yamada [87]). Ler U,Vj, i,j = 1,...,8, be (0, +1,-1)
matrices of order n that satisfy

U;,Uj, i # j are pairwise amicable;

Vi,Vj, i # j are pairwise amicable;

U; £ V; are (+1,—1) matrices, i = 1,...,8;

. the row (column) sums of Uy and U, are both 1, and the row sum of U;,
i =3,...,8is zero;

5. Y80 UUT =22n+ DI -4, Y} ViVE =2(2n+ 1)1

bl ol i

Then there are 8-Williamson-type matrices of order 2n + 1. Furthermore, if the
U; and V; are symmetric, i = 1,...,8, then the 8-Williamson-type matrices are
symmetric. Hence, there is a block-type Hadamard matrix of order 8(2n + 1).

Proof. Let Sy,...,Ss be 8 (+1,—1)-matrices of order 2n defined by

11 1 -1
Sj=ij[ ]+ij[ ]
11 -1 1

So the row sums of S; and S, are both 2 and those of S; are 0, i = 3,...,8.
Now define

1 —e
X; = [ . 2"], j=12  and
—€2n Si
X = [ : ez"] i=3...8
1 e%‘n Si ’ (AR ] .

Thus, we have that X,..., X3 are 8-Williamson type matrices of order 2n + 1.

Hence, there is a block-type Hadamard matrix of order 8(2n + 1) obtained
by replacing the variables of an orthogonal design OD(8;1,1,1,1,1,1,1,1) by
the 8-Williamson-type matrices. O

Some very powerful corollaries are

Corollary 8.13 [87]. Let q + 1 be the order of amicable Hadamard matrices
I+ S and P. Suppose that there exist 4 Williamson-type matrices of order q.
Then there exist Williamson-type matrices of order 2q + 1. Furthermore, there
exists a 64 block M -structure Hadamard matrix of order 8(2q + 1).

Corollary 8.14. Let q be a prime power and let (q — 1)/2 be the order of (sym-
metric) 4 Williamson-type matrices. Then there exist (symmetric) 8 Williamson-
type matrices of order q and a 64-block M -structure Hadamard matrix of order

8q.
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Corollary 8.15. Let g =1 (mod4) be a prime power or q + 1 be the order of a
symmetric conference matrix. Suppose that there exist (symmetric) 4 Williamson-
type matrices of order q. Then there exist (symmetric) 8-Williamson-type ma-
trices of order 2q + 1 and a 64-block M -structure Hadamard matrix of order
8(2q +1).

Proof. Form the core Q. Thus, we choose

hh=I+90, U,=1-0, Us=Us=Q, Us=Us=U; =Us =0,
and W =W=0, Vi=Vy=1, Viea=W,

i =1,2,3,4, where W; are (symmetric) Williamson-type matrices. Then

8 8
Y UUF =2Qq+D)I-41, ) ViVl =202q+ I
i=1 i=1

These U; and V; are then used in Lemma 8.12 to obtain the (symmetric)
8-Williamson-type matrices. O

This corollary gives 8-Williamson-type matrices for many new orders, but it
does not give new Hadamard matrices for these orders.

Corollary 8.16 [87]. Let g =9, t > 0. There exist (symmetric) 4 William-
son-type matrices of order %, t > 0. Hence, there exist (symmetric) 8-Williamson
type matrices of order 2-% + 1, t > 0, and an Hadamard matrix of block struc-
ture of order 8(2-% +1).

Also we have the following theorem:

Theorem 8.17 (Seberry-Yamada [87]). Let Uj, Vij, i,j =1,...,8, be (0,+1,-1)
matrices of order n that satisfy

1. Uy;,Uxj are pairwise amicable, k = 1,...,8,i # J;
2. Vii,Vkj are pairwise amicable, k = 1,...,8, i # j;
3. Uy + Vi are (+1,-1) matrices, i,k = 1,...,8;
4. the row (column) sum of Uy is 1 for (a,b) € {(i,i),(i,i +1),(i + 1,i)},
i =1,3,5,7; the row (column) sum of U,, is —1 for a = 2,4,6,8; and other-
wise, the row (column) sum of Ujj, i # j is zero;
5. Vi Uik =2Qn+ DI =47, 0, ViVE =22n+ DI, j = 1,...,8;
6. Y0 UiUL =0, 3 _ ViVE=0,j#k, jk=1,.,8
If conditions 1to 5 hold, there are 8-Williamson-type matrices of order 2n + 1
and thus a block-type Hadamard matrix of order 8(2n + 1). Further, if Uy, V3
are symmetric, 1 <i < 8, then the 8Williamson-type matrices are symmetric.

If conditions 3 to 6 hold, there is a 64-block M -structure Hadamard matrix
of order 8(2n +1).
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Proof. Let S;; be 64 (+1,—1)-matrices of order 2n defined by

1 11 1 -1
S,‘j=Uijx : 1]+V,~,~x[_1 1].

So the row (column) sum of Sji, Sii+1, Si+1i ¢ = 1,3,5,7, is 2, the row (col-
umn) sum of S;; is —2 for (i,i), i = 2,4,6,8, and otherwise, the row (column)
sum of S;; =0, i # j. Now define

-1 —e -1 -e [1 e ] 1 e
Xu= [—eT Su] s [—CT 312] » Aes [T s3] A= LT 514] ’
1 e 1 e -1 e] -1 e
s = LT 515] ’ ° LT 316] B [T Sy’ uw = LT SIB} ,
-1 -e 1 e 1 e -1 —e]
= [—eT 321] ’ 2= [eT szz] X = T Sul’ Yo = | —eT Sy ’
[1 e ] -1 -—e -1 e ] F1  —e]
X = el Sy X [—eT S%] T | T Sy ] » AmT L —eT Sy ’
F1 e ] 1 e -1 —e [ -1 —e]
X3 = [T §3 ] ’ Yo = LT 332] y AwT [—CT 533] » Xus | —eT  S34) ’
[1 e ] 1 e - e -1 e
Xas = [T S)° o= LT SM:I = LT 337] r wT [CT 538] ’
[1 e ] -1 =—e -1 =—e 1 e
Yas P Yo = [—eT 542] r oS [—eT 543] P s [eT 544] ,
1 e ] -1 —e -1 e] 1 -—e
Xos = T S5’ e = [—eT s“]’ Yo = [eT Ser)’ Y= [—eT s“]’
1 e ] 1 e 1 e] 1 e
o= [T Ss1] o= LT Ssz] KT LT Ss3)’ = LT 554] ’
-1 -—e -1 -—e [-1 e ] -1 e
s = {—eT Sss] e [—CT 556] T LT Ss7]’ Yo = LT Sss] ’
1 e -1 -e [1 e ] [ -1 —e]
o= LT 561] » Koo [—eT 362] y AeT [eT S ) y Kas | —eT Se ’
[ -1 —e] 1 e [—1 e [ 1 —e]
s = .—eT Ses ’ oo = [eT S66:| ’ Xer = _eT Sm} . Xe= | —eT  Sgs ’
[ 1 —e] 1 -—e 1 -—e [ -1 -—e]
xn= [—eT su]’ = [—ET 572} s [—CT 573] r s [-eT Sl
[ 1 —e] 1 -—e 1 e 1 e
Xos = T s’ X7 = [—eT S76] , Xm= LT Sn] ) Xog = LT S78] )
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1 —e -1 e 1 —e -1 e
X81 = » X82 = » X83 = » 4= »
—eT Sgl eT 532 . —eT SS3 eT Ss4

% 1 —e -1 e 1 e -1 -e

= , Xz = , Xg1 = N Xgg = .

® —eT Sgs % eT Sge & eT S37 ® —eT Sss
Then provided conditions 1 to 5 hold, and S% =87, 1 =1,...,8, are sym-

metric, X7, i =1,...,8, are symmetric 8-Williamson-type matrices. Other-

wise, X7, i =1,...,8, are 8-Williamson-type matrices. This can be verified by

straightforward checking. Hence, there is an Hadamard matrix of block

structure of order 8(2n + 1).
If conditions 3 to 6 hold, then straightforward verification shows the 64-
block M -structure X;; is an Hadamard matrix of order 8(2n + 1). O

Corollary 8.18. Let q be an odd prime power, and suppose that there exist
Williamson-type matrices of order 3(q—1). Then there exists an M-structure
Hadamard matrix of order 8q.

Corollary 8.19. Let g =2m +1=9 (mod16) be a prime power. Suppose that
there are Williamson-type matrices of order q. Then there is a M-structure
Hada-

mard matrix of order 8(2q + 1).

The analogous Yamada-J. Wallis-Whiteman structure to Theorem 8.17 is

-1 1 1 1 -1 1 -1 1 —e e e —e € —e e -—e
1 1 -1 -1 1 1 -1 -1 e e —e —e € e e e
1 -1 -1 1 1 -1 -1 1 e —e —e e e -—e € —¢
1 1 1 1 -1 -1 -1 -1 e e [4 e —e —e e e
1 -1 1 -1 -1 1 -1 1 e —e € —e —€ e e —e
1 1 1 1 1 1 1 1 —e —e —e —-€e —e —e¢ e [
1 -1 1 -1 1 -1 1 -1 —e e -—-e —e e e —e e
—el —eT T eT eF T e T Sy S Sz Su Sis S Sy Sis
—eT T el  —eT T _—eT T —eT S S»n Su Su S S Sy Sy
eT T _eT _eT T e T o7 S Sp Sy Sy S35 S Sy Sy
eT  —eT —eT T e —eT T —eT Sy Sio Sz Sus Sss S Sy7 Sas
eT eT el el —eT —eT T T S5 S5 Ss3 Ssa Sss Sss Ss7 Ssg
el —eT T  _—eT _oT T T —eT S Soo Sz Ses Ses Ses Sev Ses
—eT —elT —eT _eT _eT _—eT T T 85 Sn S Su S5 S Sy Si
—eT  eT  _eT T  _eT T T _—eT S5 Sz Ss3 Sss Ssgs Sss Sg7 Sgs
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With some trimming, we can see Yamada’s matrix [131] or the J. Wallis-
Whiteman [113] matrix with a border embodied in the construction. Miyamoto
has done further work using the quaternions rather than the complex numbers
to build bigger M -structures [64]. This work is probably further extendable.

9 WILLIAMSON AND WILLIAMSON-TYPE MATRICES

In the previous section, we saw many constructions for Williamson-type ma-
trices using M -structures. Williamson matrices and Williamson-type matrices
were defined in Section 3. They are the most used “plug in” matrices and give
many previously unknown Hadamard matrices.

Williamson’s famous theorem is

Theorem 9.1 (Williamson [128]). Suppose that there exist four symmetric
(1,—1) matrices A,B,C,D of order n that commute in pairs. Further, suppose
that

A% + B2 + C*+ D?* = 4nl,.

Then
A B cC D
-B A -D C
H= &)
-C D A -—-B

-D -C B 4
is an Hadamard matrix of order 4n of Williamson type or quaternion type.

Theorem 9.2 (Williamson). If there exist solutions to the equations
s - .
=142y Hwl W, i=1,2,3,4
j=1

where s = %(n— 1), wis an nth. root of unity, exactly one of t1j,bj,t3j,14; is
nonzero and equals +1 for each j = 1,2,...,s, and

B2+ 5+ g+ pg = 4,

then there exist matrices A,B,C,D satisfying Theorem 9.1 of the form

n—1
A=>"al', a=1 a=a,;==l;
i=0

n—1
B=> BT, by=1, b=by==l;
i=0
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n-1
C=>caT', =1 c=cui=4%]
0 :

n—1
D= ZdiTi, do=1, di=dy_1==%1
i=0

where T is the matrix whose (i, ]) entry is 1 if j —i = 1 (modn) and 0 otherwise.
Hence, there exists an Hadamard matrix of order 4n.

Table 9.1 shows the p; found by Williamson [128}, Baumert and Hall {5],
Djokovic [18], Koukouvinos and Kounias [52], and Sawade [74]. We write w;

for w/ + w"~/ and w,; for w? + w”~?. Williamson found the results for 148
and 172, Baumert and Hall for 92, Baumert for 116, Sawade for 100 and 108,
Koukouvinos and Kounias for 132, and Djokovic for 156. Results have also
appeared in Baumert {3, 4], Koukouvinos [49], and Yamada [130].

Note: The sums of squares in Table 9.1 are not necessarily those of the
corresponding +1 matrix. For example, the +1 matrices corresponding to
92 = 12 + 12 + (-3)? + 9* have row sums 3,3,7,-5.

Example 9.1. How to turn the formulas in Table 9.1 into Williamson ma-
trices? Let ¢ =13, n =52, p? + p2 + p3 + p2 =12+ 12 + 12 + 72. Form four
sums:

o1 = —j1+ 2+ p3+ pg =2+ 2wy — 2wy — 2wz — 2wy + 2ws — 2w,
02 = i1 — P + p3 + plg = 2+ 2w — 2wy — 2wz — 2wy + 2ws — 2w,
O3 =1+ fip — Py + pg = 2= 2wy — 2wy —2w3 + 2wy — 2ws + 2w,
04 = 1+ f2 + p3 — pa = 2+ 2wq + 2wp + 2w — 2wy + 2ws — 2w,
Then, recalling w; = w +w'i we use 01,02,03,04 to form the first rows

(coefficients of Ti) of the circulant matrices A,B,C, D, respectively. o1 gives
ap,dl,...,412 as

ap =1, ag=ap =1, a =ayn = -1, as = ay = -1,
a4=a9=—1, a5=a3=1, a6=a7=—1
so the first row of A is

11---1--1~---1 and lof=(-3)"



Williamson and Williamson-Type Matrices 513

For B,C,D, we have

11-——-1--1-——1 and lo?=(-3)
1-——1-11-1--— and }6i=(-3%
1111 -1--1-111 and i0j=5%,

where 4n = 52 = 32 + 32 + 32 4+ 52,

We now introduce some matrices that were first used by Seberry and White-
man [85] in the construction of conference matrices. Matrices obeying the
same equations are constructed using auxilliary matrices from projective planes
in [80].

Suppose that By, B, ..., B; are square (1,—1) matrices of order b that satisfy

Bi2=BiBj=J, i,jE{l,Z,...,S};
BiBf=BfBi=J, i#j, i,je{1,2,...,5};
B;J =al, acZt (10)
§
> B:Bf + B B; = 2sbl;.
i=1
Call s matrices satisfying equations (10) a regular s-set of matrices. Define, in
particular,
Ai=B;xX(B+BT)+ B,y x3(B-B"), i=13,.,5-1,
Aisi=-B; x }(C—CT)+ Biy x 3(C+ CT),

where B, C is a regular 2-set and Bj, j = 1,...,s, is a regular s-set of matrices.
Then Aj,..., A is a regular s-set of matrices. Thus, we have

Lemma 9.3. If there exists a regular s-set of matrices of order a, and a regular
2-set of order b, then there exists a regular s-set of order ab.

So in the special case s = ¢ =2, if A4y, 4, is a regular 2-set of order a and
B1,B; is a regular 2-set of order b, then Ci,C; is a regular 2-set of order
¢ = ab.

In Seberry and Whiteman [85], it is shown that

Theorem 9.4 (Seberry-Whiteman). If n=3 (mod4) is a prime power, then
there exists a regular 1(n + 1)-set of matrices of order n?.

In particular, if n = 3, there is a regular 2-set of matrices of order 9. Hence,
using Lemma 9.3, we have a regular 2-set of matrices of order %, ¢ > 0. Thus,
we have another proof of Turyn’s theorem.



w
o
o

TABLE 9.1 Hadamard Matrices from Williamson Matrices

ton pit g+ 1 f2 3 a
3 12 PP+12+12+3% 1 1 1 1-2w,
5 20 P?P+12+32+3% 1 1 1-2w, 1-2w,
7 28 12+32+43%2+3% 1 1—2w, 1-2w, 1—2ws
7 28 PP+12+12+5 1 1 142w, — 2w, 14 2ws
9 36 32432432432 12w, 1-2w, 1—2ws 1—-2w,
9 36 124+412+32+5% 1 142w — 2w, 1— 2wy 1+ 2ws
1 1 1-2w, 142wy +2w3 —2w,
11 44 12432+432+52 142w — 2w, 1-2w, 1-2ws 1+ 2w
13 52 12+124+412+7 1 1 142w —2ws+2ws— 1—2wy; —2w;
2W6
1 142w, —2ws 1-2w; —2wg 1—-2wy ~2ws
13 52 3243243245 12w, 1-2w, 1-2w; —2ws + 2ws 14 2wg
13 52 P+12+52+5 1-2w3+2w, 1—2w; + 2ws 1+ 2w, 1+ 2ws
15 60 12+32+52+5% 1 1—2ws 1+ 2ws 142wy —2ws +2ws +
2W4—2W7
1-2w; + 2wy 1-2ws 1+ 2w, 142wy +2ws —2wg
1-2w4 + 2w 1-2w; —2ws3 +2ws 1+ 2wy 142w,
15 60 124+12+432+7% 1 1 12wy —2ws + 2wy 142wy —2w3 — 2wy —
2W5
17 68 32+432+52+5 1-2w, 1—2ws 1—2w; +2ws + 2ws 14 2w3 —2wq +2w7
17 68 12432+32+77 1-2ws—2ws+2ws+ 1—2w, 1-2ws 1-2w; — 2w,
ZW7
1 1—-2ws —2ws + 2ws 1—-2w; —2ws + 2wy 1-2w; —2wg
17 68 12+32+32+7% 1 1—2wy — 2wy + 2ws 1— 2wy +2ws —2ws 1—2we — 2w



SIS

19 76
19 76
19 76
21 &4
21 &4
21 84
23 92
23 92
25 100
25 100

1P+5+5+52

32 +32+32 472
P+12+5%+7

32 +5°+5 +5°
2+12+17+9?

12+3%2 4574+ 7

12+12+32+9

P2 +324+54+7
12+32+32+92

52+52+5+ 5

1

1—-2w3—2ws +2ws +
2W9

1

None

1

1- 2W2 + 2Wg

142ws — 2wy

1- 2W7

142wy —2ws

1

1—2ws + 2w

1-2w4 + 2ws
1-2ws+ 2wy

1—2we + 2wg

1—-2ws4 —2wg +2wo +
2wy

None

14 2we —2wy;

142w —2we + 2w

14+ 2w; — 2wy + 2wy
142wy —2w5 + 2w,

1 —2W3 + 2W3 + 2W9

1
1-2w4 + 2wy
1+ 2W2 —2W5

1+ 2ws +2ws—2wg
1-2we + 2wy

1

1+ 2wg — 2wy
142wy —2wg —2wg —
2W9 + 2W10

1+ 2W2 - 2W4 - 2W10
142wy —2ws —2wyg
1+ 2ws —2wq

1—-2w; +2w3 — 2wy

142wy —2ws +2wy2

1-2ws +2wg + 2ws
14 2ws

142wy —2ws + 2wy
142wy —2ws +2wg

14 2ws +2we —2we
142w

1 —2W2 + 2W4 + 2W6
14+ 2wg—2wg

1-2ws —2wg +2w7 +
2W9

142wy —2ws

1+2W1

1+ 2we+ 2wy —2wsg
14 2ws +2wq7 —2wyg
142wy —2ws—2wyg

142w —2w7—we

142wy — 2wy + 2ws

1= 2ws +2w7 + 2wy
1+ 2W1

142wy —2wa + 2w

142w, —2ws —2ws +
2we — 2w — 2w

1- 2W1 - 2W5
1-2w; - 2w+ 2w7 —
2W9

142w +2we — 2wy
142w +2we +2ws —
2W7

142w +2wa —2ws +
2W4 + 2Ws - 2W10
142w + 2wy —2we +
2wg

1- 2W3 —2wq

1-2w; —2w3
1-2w; —2ws
1+ 2ws + 2ws

142w, +2ws ~2wg +
2wio
1—-2ws + 2wy + 2wy
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TABLE 9.1 Hadamard Matrices from Williamson Matrices (continued)

toon @it i 2 ps pa
25 100 12+12+472+7% 1 1 1—2wy—2w3 —2ws+ 1—2w; — 2w +2wg+
2we —2w7 + 2w12 2wg — 2wio — 2w11
14+ 2ws — 2wy 1—-2w1 + 2wy 14+ 2ws—2we—2wipo— 1—2wy;—2ws +2we—
2wy 2wy
14 2ws3 —=2ws 14 2w4 — 2wy, 1-2wy—2wr 14 2ws+2wg —2wq; —
2w10 - 2W5 - ZW2
25 100 12+52452+7  142ws—2wyo 14+ 2ws + 2w — 2w2 142w +2we + 2wy — 1-2w; —2ws
2wy —2wg
27 108  12+1249°+5% 1 1 1—2ws+2ws+2ws+ 12wy —2ws +2we +
2W7 - 2W9 + 2W12 2Ws + 2w10 bt 2W11 + 2W13
27 108 12+3+7+7 14+ 2ws + 2wy —2wg — 14+ 2wo —2wyp —2wn 142ws — 2wy —2wis— 1-=2w; —2wyy
ZW7 2W6
27 108 32+32+32+9% None _
27 108 P +5P+52+72 142wy — 2wy — 2w 142w+ 2wz —2w 14 2ws + 2wy — 2wy 142w7—-2wg —2w3 —
2W9
20 116 1243245 +9% 142wy —2ws+2ws— 1—2w3—2ws+2w7— 142w 142w + 2wy
2wo — 2w + 2w 2wsg + 2wy
31 124 12+12+12+11%2 1 1 142ws + 2wy +2ws —  1-2w; — 2wy + 2wy —
2we — 2wz — 2wya 2wy + 2wy9 — 2w —
2wz —2wys + 2wis
31 124 3243245249 1-2wr+2wi3 2w 14+2ws—2wio—2wis 142w +2w3 —2ws— 1+ 2ws+2we + 2wy —
2we + 2w7 2wz
33 132 PP+12+32+112 142w 42ws—2we— 1+42w; —2wys +2wia— 1=2w3—2w7 + 2wpn 1-2w4—2wi —2wss
2wg —2we + 2wyy 2wis
33 132 2+12+7%+92 1-2we—=2wsg+2wi1+ 1—-2wo+2w3—2wio+ 142w —2ws—=2wi2— 1+42ws—2w7+2wo+

2W16

2wy

2W15

2W13




LIS

33
33
33

35
37

37

37°
39

43
61

132

132

132

140
148

148

148
156

172
244

1245 +52+9
P+5+5%+9
3+5%+77+ 7

Any decomposition
P+ 12452 +117

P+5+T+ 7

2+7P+7+7?
P+ +7P+ 72

12+ 12 + 12 + 132
12+12+ 112+ 112

14+2ws —2w7 + 2w —
2wis

142w —2ws + 2w —
2w1s

1-2w7—2wq; + 2wy

None
1

1—-2w; +2ws +2ws +
2W7 - 2W11

1

1- 2W13

14200-2a2
1

1—2wsy + 2wy + 2wis
14+ 2wq—2w7 4+ 2wy3

1-2ws + 2wy + 2wys

14 2ws —2wg —2wsg +
2wz + 2was

1—20p— 201 —2as
1—2ws3 +2ws — 2wy —
2w + 2wy —2wyg
1-201 + 203

1

1—-2w; +2wys +2we +
2W9 —2W13
14 2w7—2wp — 2wy

1+2w; —2ws —2wg —
2wg + 2wg — 2wy3

I—ZW2—-2W5—ZW7—-

2wg + 2wy — 2wy + 2wy

1+ 2wy —2wge —2wyio +
2wy

1-2a3—2a4 + 203
1~2wg+2w7 —2wsg —
2wir — 2wis + 2wy
1+204 — 206

142wy —2we + 2wy —
2wg — 2wy + 2wz +
2wi7 + 2wig — 2wy —
2w = 2w + 2wy —
2W23 - ZW29 - ZW30

14+ 2w; +2wg + 2wy —
2w

142wz +2ws —2wg —
2wy + 2wy +2wis
1+4+2w; — 2wy — 2wyo —
2wis

1+2W1 +2W3-—2W4 +
2ws —2wg + 2wy —
2wy —2wys — 2wy +
2w +2wig

1—-2wip = 2w + 2wys —
2wy

1420, - 206 — 207
1+2W1 +2W2—-2W4-—
2W9 - ZW15 - 2W19

1+ 2as

1-2wy—2ws + 2wy —
2ws + 2wg + 2wy —
2wip = 2wis + 2wis +
2wie — 2wy + 2w —
2wz — 2was — 2w

a
b

Qj = Wy + Waosj.
Qj = W3j + W3r4j + Witdsj.
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Corollary 9.5 (Turyn [109]). There are Williamson-type matrices of order %,
t > 0, that pairwise satisfy XY = XY =J, XJ =3J.

Example 9.2. 'The regular 2-set of matrices of order 9 can be written as B,C
where writing a,b,c, W for the circulant matrices with first rows

[0++] [ +-][-—+] [0+ -],

respectively, we have
c=bT, b+c=-2I.

The matrix B is

—c a—-I -b
a-I b —c
-b —c . a-1

It should be noted that B is a block back-circulant matrix whose elements are
circulant matrices. Hence, B is neither a type one nor a type two matrix over
Z3 x Z3 (perhaps it should be referred to as a type three matrix over Z3 x Z3),
but it can still be defined as a group matrix over Z3 X Z3.

The matrix B may also be written in the form

M MT MT? I T T?
B=|MT MT* M or M|T T* I|,
MT? M MT > 1 T

where M = I + W, W is as before, and T is the circulant matrix (shift matrix)
with first row [0 + 0]. Note that

T =77, T} =1, I+T+T*=].

The matrix C is constructed as follows:

[+ 4+ — ++— + + —]
+4+— ++— ++ -
+4+— ++ - ++ -
—++ —++ —++
—++ —++ —++
—+4+ —++ —++
+—+ + -+ +-—+
+—-+ +—+ +-+
[+ -+ + -+ + - +]
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The construction of the matrix C is an ingenious idea of Mathon. Note that C
is not composed of circulants or back circulants.
The matrix C may also be written in the form

N N N I I 1
C=|NT NT NT or N|T T T|,
NT? NT? NT? T?> T T?
where
+ + -
N=|+ + -
+ + -

Note that each row of N is the same as the top row of M.

Corollary 9.6. Since there is a regular 4-set of regular matrices of order 49 and
a regular 2-set of regular matrices of order %, t > 0, there is a regular 4-set of
regular matrices of order 49-%. Hence, there are 8-Williamson-type matrices of
order 49. 9, ¢t > 0.

Using the OD(8;1,1,1,1,1,1,1) and the Plotkin OD(24;3,3,3,3,3,3,3), we
have

Corollary 9.7. There is an Hadamard matrix of order 8-49-3', t > 0.

In general, we have

Corollary 9.8. If n=3 (mod4) is a prime power, there is a regular %(n +1)-
set of regular matrices of order n?. Hence, there are (n + 1)-Williamson-type
matrices of order n*- %, t > 0 each with row sum 3'n.

This also means that we have

Corollary 9.9. If n =3 (mod4) is a prime power, there is an Hadamard matrix
of order n*(n+1)-9, ¢ > 0.

Proof. Choose a Latin square of size n + 1 and an Hadamard matrix H =
(hij) of order n + 1. Replace the 1,2,3,...,%(n + 1)th elements of the Latin
square by By, By,..., B(;41)/2 and the %(n + 3)rd,...,(n + 1)th elements by BlT,
BT ,...,B(Tn +1)/2- We now have a block matrix (Bij). The required Hadamard
matrix is (h;;B;j). O

This method is considered further in [80], where it is used to show

Theorem 9.10 (Seberry). Let q be a prime power. Then there are Willia#ison-
type matrices of order
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1. 14%(q + 1) when g =1 (mod4),
2. 1g%(q + 1) when q =3 (mod4), and there are Williamson-type matrices
of order (g + 1).

Example 9.3. let By,Bs,...,Bs be the matrices constructed by Seberry and
Whiteman [85] or Seberry [80] of order 121. Write Sy = By, §7 = B], $; = By,
Sg = BZT,...,S6 = B6, So = B6T

Let
1011 1 - -
wy=1(11 1y, Wo=Wa=Wy=|—- 1 —1,
11 1 1 - -1
(Sl Sy 83 [S4 S5 6
i=(8% & 82, Y=|8 S S,
[$2 S5 S1 (S5 S6 S4
[S7 S So] [S10 S So
Y= |S S7 Ssi, Ya=| S Sw Sul,
[ g So 57 [S11 S0 S
and
Sy =S5 —Ss
Xi=Y, Xp=|-S% S -S|,
-85 —S Sa
S7 =S8 —S S0 —Su  —So
Xs=|-S S —Ss|, Xa=|-S Sw -Su
-8 =S %7 =Su =S Sw

Now the S; are 12 (1,—1) matrices of order 112, satisfying

SisT=J, i#]
1
Y osisF =112 121 x 1.
i=0

Thus, X, X7 = —J xJ, j =2,3,4,

3J —-J -J
AXinT= -J 3 -J|, i7j=2’3’4’
-J -J 3J
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and
1

4
S xxT =Y sisTxI=11>-12Ix I.
i=1 j=0

Hence, X3, X5, X3, X, are Williamson-type matrices of order 363.

9.1. New Difference Sets

M. Xia and G. Liu [129] have recently announced the existence of 4-{g?
%q(q —1);q(q — 2)} supplementary difference sets for ¢ =1 (mod4) a prime
power. A. L. Whiteman has also given the following set of 4-{9;3;3} supple-
mentary difference sets:

{0,1,2}, {0,x,2x}, {0,x + 1,2x + 2}, {0,x+2,2x + 1},

whose incidence matrices 4;, i = 1,2,3,4, satisfy 4;4; =J, i # j, and he has
given 4-{25;10;15} supplementary difference sets

{2,3,x+ 1,x+2,x+3,2x+4,3x + 1,4x + 2,4x + 3,4x + 4},
{1,2,3,4,x,x + 4,2x + 4,3x + 1,4x,4x + 1},
{,4,x+2,2x+1,2x +2,2x + 4,3x + 1,3x + 3,3x + 4,4x + 3},
{1,2,3,4,x + 2,2x,2x + 3,3x,3x + 2,4x + 3}.

The Xia-Liu result means the following:

Theorem 9.11 (Xia-Liu). There exist four Williamson matrices of order q* for
all g =1 (mod4) a prime power. The negation of each matrix has row sum q.

This also gives Williamson matrices of orders p* for p =3 (mod4) a prime
because then p? =1 (mod4). Thus,

Corollary 9.12. There exist four Williamson matrices of orders 3%, 5%, and p*,
p =3 (mod4) a prime.

Now OD(4¢;1,t,1,1) exist for ¢t = 3,9,27,5,25,125,7,49,11,121, for all t =1
(mod4), ¢ prime € {13,17,29,37,41,53,61,101,...}, and for ¢ prime of the form
1+ 2210°26°, a,b,c > 0. This gives

Corollary 9.13. There exist Hadamard matrices of order 4-3, 4.5, 4-13",
4-17, 4-29, 4-37, 4-41", 4.53", 4-61", 4-101", r>0; 4.-g%, 4.g%+*1,
4.g%+2 8.g4+3 {50, g=711; and 4-p" whenever p=1+2°10°26° is
prime, a,b,c > 0.
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9.2. Other Results

We define a complete regular 4-set of regular matrices of order q* as four ma-
trices satisfying

A} = A,
AjAj=pJ, pconstant, i#j, i,j=123,4
4
> Al =441,
i=1
A;J =qJ.

These are a special form of Williamson type matrices and exist for at least
orders %, i = 1,2.
As with regular 2-sets of regular matrices, we have

Theorem 9.14 (Seberry). If there exist complete regular 4-sets of regular matri-
ces of orders s* and t* respectively there exists a complete regular 4-set of regular
matrices of order s*t2.

Proof. Let the complete regular 4-sets of regular matrices of order s and
12 be Ay, Az, A3, A4 and By, By, B3, By, respectively. Then

Ci = 3[A1 x (B + By) + Ay x (B1 — By)),
Cy = 3[—A1 x (B3 — By) + A2 x (B3 + B4)],
G = %[A3 X (31 + Bz) — Ay % (Bl — BZ)],

Cy = %[A3 X (B3 - B4) + Ay X (B3 + B4)],

is a complete regular 4-set of regular matrices of order 5222, O

Corollary 9.15. If there exist complete regular 4-sets of regular matrices of or-
ders q1,qa, ..., then there exists a complete regular 4-set of regular matrices of
order q1.9>.q3 ..., and Williamson-type matrices.

Many authors have found suitable and near suitable matrices of Williamson
type, and this will be pursued in a later article. Appendix A.2 gives a summary
of orders for which Williamson and Williamson-type matrices exist plus a list
of known orders < 2000.



SBIBD and the Excess of Hadamard Matrices 523
10 SBIBD AND THE EXCESS OF HADAMARD MATRICES

10.1. SBIBD(41,2t — 1,1 — 1)

Every Hadamard matrix H of order 4z is associated in a natural way with
an SBIBD with parameters (4¢ — 1,2¢ — 1,# — 1), and with its complement, an
SBIBD(4t — 1,2t,t). To obtain the SBIBD, we first normalize H and write the
resultant matrix in the form

Then
Al =JA=~] and AAT =41-1J.

So B = }(A + ) satisfies
BI=JB=Q2t—-1)J and BB  =tI+(@-1)J.

Thus, B is a (0,1) matrix satisfying the equations for the incidence matrix
of an SBIBD with parameters (4¢ — 1,2¢ — 1,¢ — 1). Similarly, C = $(J — A4) is
the incidence matrix of an SBIBD with parameters (4z — 1,2¢,¢). Clearly, if we
start with the incidence matrix of an SBIBD with parameters (4¢ — 1,2¢ — 1,7 —
1) or (4¢ —1,2¢,¢) and replace all the 0 elements by —1, we form either A4 or
—A. Thus,

11 --- 1 -1 -1 --- -1
1 -1
and
: A : -A
1 -1

are Hadamard matrices of order 4¢ obtained from these SBIBD.
Thus, we have shown

Theorem 10.1. There exists an Hadamard matrix of order 4t if and only if there
exists an SBIBD(4t — 1,2t — 1, — 1).

Since a (4t — 1,2t — 1, — 1) difference set yields an SBIBD we have

Corollary 10.2. If there exists a (4 — 1,2t — 1,t — 1) difference set, then there
exists an Hadamard matrix of order 4t.
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In view of the Seberry theorem [121] (see Section 3) we have that

Theorem 103. Let q be any odd natural number. Then there exists a t (<
[210g,(q — 3)]) so that there is an SBIBD(2' q —1,2'"1q —1,2"2q - 1).

Constructions given above indicate that for small g (< 10,000) z=2 in
about 97% of cases, and ¢ = 3,4,5 in about 2% of further cases. So for g <
10,000 most SBIBD(4q — 1,2 — 1,4 — 1) exist. Table A.2 in Appendix A.3 il-
lustrates this point.

10.2. The Equivalence Theorem

The main theorem of this section deals with the equivalence among Hada-
mard matrices with maximal excess, regular Hadamard matrices, and certain
SBIBDs. We begin with the definition of excess of a Hadamard matrix.

Definition 10.1. Let H be an Hadamard matrix of order n. The sum ¢(H) of
the elements of H is called the excess of H. The maximum excess of H, over
all Hadamard matrices of order n, is denoted by a(n); i.e., '

o(n) = max{c(H) : H an Hadamard matrix of order n}.

An equivalent notion is the weight of H, denoted w(H), which is defined
as the number of U’s in H. It follows that o(H) = 2w(H) - n® and o(n) =
2w(n) — n® (see [8)).

Theorem 10.4. There is an Hadamard matrix of order n = 4s? with maximal
excess ny/n = 8s> if and only if there is an SBIBD(45%,25% + 5,5* + 5).

In (Seberry) Wallis [114, p. 343], it is pointed out that Goethals and Seidel
[25] and Shrikhande and Singh [92] have established

Theorem 10.5. [f there exists a BIBD(2k? — k,4k? — 1,2k + 1,k,1), then there
exists a symmetric Hadamard matrix of order 4k? with constant diagonal.

Moreover, Shrikhande [90] has studied these designs and shown they exist for
all k = 2*, ¢ > 1. They are also known for k = 3,5,6,7 [114].

In (Seberry) Wallis [114, pp. 344-346], it is established that symmetric Hada-
mard matrices of order k& with constant diagonal exist for & = 2% for all £ > 1,
and for & = 36,100, 144,196 (after Theorem 5.15 of [114]). Using results of (Se-
berry) Wallis-Whiteman [113] and Szekeres [99], they are shown to exist with
the extra property of regularity (constant row sum) for & = 4.52,4.132,4.292,
4-51%, and h = 4(2((p —3)/4) + 1), for p=3 (mod4) a prime power (after
Theorem 5.15 of [114]).
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Remark 10.1. A theorem of Goethals and Seidel [25] (see Geramita and
Seberry [23]) tells us that if there is an Hadamard matrix with constant di-
agonal of order 4k, then there is a regular symmetric Hadamard matrix with
constant diagonal of order 4(2k)?. So an Hadamard matrix of order 4¢ gives
a regular symmetric Hadamard matrix with constant diagonal of order 4k?2,
k = 2¢. In particular, known results give these matrices for 2¢ < 210.

Remark 10.2. 'We note that regular symmetric Hadamard matrices with
constant diagonal of orders 4s* and 4¢ give a regular symmetric Hadamard
matrix with constant diagonal with order (2s¢)’.

Theorem 10.6 (J. Wallis [114]). A regular Hadamard matrix H of order 4k?
with row sum +2k exists if and only if there exists an SBIBD(4k2,2k? + k,
k2 1 k).

We observe that the stipulation that the row sum is 42k is unnecessary for
the following reason: If the matrix is regular, it must have constant row sum,
say x. Thus, eHT = (x,...,x), where e is the 1x 4k? matrix of ones. Now
HTH = 4k%I, so

16k* = 4k’ee” = eH HeT = (%yee ey X)X, ., X)T = 42 X2,

Thus, x = +2k. The matrix with constant row sum —2k is the negative of the
matrix with constant row sum 2k.
We can now combine the results obtained so far as

Theorem 10.7 (Equivalence Theorem). The following are equivalent:

1. There exists an Hadamard matrix of order 4k?* with maximal excess 8k3.
2. There exists a regular Hadamard matrix of order 4k>.

3. There is an SBIBD(4k%2k? + k,k* + k) (and its complement the
SBIBD(4k?,2k? — k, k% — k)).

Part of this result was also observed by Brown and Spencer [9] and Best [8].

We also note the following consequence of the Liu-Xia result mentioned in
Section 9. In the next theorem, we need the notion of a proper n-dimensional
Hadamard matrix. This is defined to be an n-dimensional array (with entries
—1 and 1) such that every two-dimensional face is an Hadamard matrix.

Theorem 10.8. Suppose that there exist 4-{q?; %q(q —1);q9(q — 2)} supplemen-
tary difference sets. Then

1. there is a regular symmetric Hadamard matrix with constant diagonal of
order 4q? with maximal excess 8¢°;

2. there is an SBIBD(44%,2¢* + q,4* + q);
3. there is a proper n-dimensional Hadamard matrix of order (4¢%)".
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10.3. Excess

In this section, we present several results dealing with the excess of a Hada-
mard matrix and the excess of an orthogonal design. We begin with an exam-
ple.

Example 10.1. The excess of the following Hadamard matrices

1 1 1 -1 1 1

Hz—[l 1], H, = 11 - - ’ Ry= 1 - 1 1 ,
1 - 1 - 1 - 11 - 1
1 - -1 1 1 -

is easily determined. We see that o(H) = 2, 0(Hs) = 4, 0(R4) = 8. Since R4
has the maximal excess of all Hadamard matrices of order 4, 0(4) = 8. We can
find the Hadamard matrix of maximal excess of order 8 quite easily. We note
that if H and K are Hadamard matrices, then so is

Ry Ry
Hg = [ ] , a(Hs) = 16.
H, -H,

Now Hj has its fifth column (—,1,1,1,—,—,—,—). Negating this column gives
Rg where o(Rg) = 20.

This construction yields
Lemma 10.9. o¢(2n)>20(n)+4.

Noting that the Kronecker product of two Hadamard matrices is an Hada-
mard matrix, we have

Lemma 10.10. o(mn) > g(m)a(n).
We define the excess of the orthogonal design D = x1 A1 + --- + x, A, as
o(D)=o0(A1)+--- +0(Aw),

where 0(A4;) is the sum of the entries of A;. This is equivalent to putting all
the variables equal to +1.
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The concept of excess of orthogonal designs is used by Hammer-Leving-
ston-Seberry [34] to obtain bounds on the excess of Hadamard matrices and
by Seberry [82], Koukouvinos and Kounias [54] and Koukouvinos, Kounias,
and Seberry [55] to find Hadamard matrices of order 4k2 with maximal excess
and equivalently SBIBD(4k2,2k? £ k,k? £ k).

Example 10.2. The excesses of the OD(4;1,1,1,1)

A B C D —-A B C D
—B A D -C B A -D C
D1= ’ D2= 5
-C -D A B C D A -B
-D C -B A D —-C B A
are
1 0 00 01 0 0
0100 — 0 0 0
0'(D1)= +0
0 010 0 0 1
0 001 0 - 0
01 0 0 0 0 1
0 0 — 0 10
+0 +0
- 00 0 — 00
010 0 - 0 0 0
=4+0+04+0=14,
— 0 00 010 0
0100 1 00 O
g(Dy)=0 +0
0 01 0 0 0 0 —
0 0 01 0 01 0
0 010 0 0 0 1
0 0 01 00 — 0
+0 +0
1 0 00O 01 0 0
0 — 00 1 0 0 O
=2+2+2+2=8.

Constructions that give OD’s of larger order with large excess could lead
to a construction such as that of Seberry Wallis [121] for Hadamard matrices
of large excess.
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10.4. Bounds on the Excess of Hadamard Matrices

Many authors, including Brown and Spencer [9], Best [8], Enomoto and Miya-
moto [21], Farmakis and Kounias [22, 61}, Hammer, Levingston, and Seberry
[34], Jenkins, Koukouvinos, Kounias, J. Seberry, and R. Seberry [39], Khara-
ghani [41], Koukouvinos and Kounias [54], Koukouvinos, Kounias, and Se-
berry [56], Koukouvinos and Seberry [59], Sathe and Shenoy [73], Schmidt and
Wang [76], Seberry [82], Wallis [122] and Yamada [131] have found the excess
of Hadamard matrices for particular orders or families of orders. Lower and
upper bounds have been given [8, 61, 34, 56]. Here, we are interested in the
upper bound, which is surveyed in Jenkins et al. [39].

The most encompassing upper bound is that of Brown and Spencer [9] and
later by Best [8].

Brown-Spencer-Best Bound: o(n) < n/n Now, in the case of n = 4k2, we
can restate this bound as 0(4k2) < 8k3. Hadamard matrices with maximal
excess meeting this bound have been found by Koukouvinos, Kounias, Se-
berry, and Yamada [54, 56, 82, 131] for n = 4k? with even k when there
is an Hadamard matrix of order 2k (in particular, for all 2k < 210) and also
for ke{1,3,5,...,45,49,...,69,73,75,81,...,101,105,109,125,625} U {3%m,25 .
32" . m > 0}.

Let a;, 1 <i < n, be the ith row sum of an Hadamard matrix of order n.
Denote the integer part of z by [z]. Then, with

a1=a2="'=ai=t,

a1 =iy = =dap =1 +4

where ¢ = [\/n] when [\/n] is even and ¢ = [/n] — 3 when [/n] is odd, and i
is the integer part of (n((¢ + 4)> — n)/8(¢ + 2), the Brown-Spencer-Best bound
can be refined to the HLS bound (see [34]).

Hammer-Levingston-Seberry (HLS) Bound: o(n) < n(t + 4)—4i Jenkins et al.
[39] lists a number of cases where this bound is satisfied. The HLS bound
has been improved for some orders by Farmakis and Kounias [22]. Write n =
(2x + 1)% + 3. Then [/n] = 2x + 1. From HLS bound, putting ¢ = [y/n] -3 =
2x—-2,i=x*+x+1,

o(n)<n2x+2)—4(x*+ x+ 1) =n2x + 1) = nvn-3.
Thus, we have the Farmakis-Kounias bound.

Farmakis-Kounias (KF) Bound: o(n)<nvn—3 for n=2x+1*+3 In
some special cases, the HLS and KF bound are identical. If n = (2x + 1%+
3, both give o(n) < ny/n— 3. Hadamard matrices of order n = (2x + 1)*+3
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satisfying the bound ¢(n) < nv/n — 3 with equality are known for
x=0,1,...,7,911,16,18,22,25,26,29,36,37,49.
There is also the Kharaghani-Kounias-Farmakis bound.

Kharaghani-Kounias-Farmakis Bound: a(n) < 4(m—1*(2m+1) forn =
4m(m —1) Hadamard matrices are known that meet this bound for some
values of m where m is the order of a skew Hadamard matrix, the order of a
conference matrix, or the order of a skew complex Hadamard matrix [60, 56].
The precise details of the constructions used to find the Hadamard matrices
of maximal excess and order 4k? can be found in Koukouvinos, Kounias, and
Sotirakoglou [51], Koukouvinos, Kounias, and Seberry [56], and Seberry [83].
Using all the known results we have the following:

Theorem 10.11. Hadamard matrices of order 4k* with maximal excess 8k3
exist for

1. k even, k <210, or if an Hadamard matrix of order 2k exists;

2. ke{1,35,...,45,49,...,57,61,...,69,75, 81,..., 95,99, 115, 117,625 } U
{3%7,5%.32" . m > 0};

3. k =¢qs,q € {q:q=1(mod 4) is a prime power}, s € {1,...,33,37,...,41,
45,...,59} U {2g + 1 : g the length of a Golay sequence}.

It follows from the equivalence theorem (Theorem 10.7) that regular Hada-
mard matrices of order 4k? and SBIBD(4k?2k*+k,k?>+k) also exist for
these k values.

11 COMPLEX HADAMARD MATRICES

Complex Hadamard matrices were first introduced by Richard J. Turyn [104]
who showed how they could be used to construct Hadamard matrices. These
matrices are very important for they exist for orders for which symmetric con-
ference matrices cannot exist. Complex Hadamard matrices also give power-
ful “multiplication” theorems. They are conjectured to exist for all even orders
[114], a conjecture that implies the Hadamard conjecture.

Known small orders and a list of classes of complex Hadamard matrices
are given in this section. This section is not a complete study of complex
Hadamard matrices; it just gives some interesting constructions.

Theorem 11.1 (Turyn [104]). If C is a complex Hadamard matrix of order c
and H is a real Hadamard matrix of order h, then there exists a real Hadamard
matrix of order hc.
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We note a connection between complex Hadamard matrices and matrices
to “plug into.”

Lemma 11.2, If there is a complex Hadamard matrix, C = H + iK of order n,
then H and K are amicable, disjoint, suitable matrices of total weight n.

Lemma 11.3. If there is a complex Hadamard matrix, C = H +iK of order n,
then there is an orthogonal design OD(2n;n,n) and amicable orthogonal designs
AOD(2n;(n, n);(n, n)).

Proof. Let a,b be commuting variables and use

[aH+bK aH — bK

aH — bK aH+bK]
aH —bK —aH —bK |’

—aH —bK aH -bK
11.1. Constructions for Complex Hadamard Matrices

Theorem 11.4 (Turyn [104]). If C and D are complex Hadamard matrices of
orders r and q, then C x D (where x is the Kronecker product) is a complex
Hadamard matrix of order rq.

Proof. CC* =rI and DD* = ql, so (C x D)(C* x D*) = rql. O

Theorem 11.5 (Turyn [104]). If I + N is a symmetric conference matrix, then
il + N is a (symmetric) complex Hadamard matrix and I +iN is a complex
skew Hadamard matrix.

Adapting a theorem of Turyn [104], Kharaghani and Seberry [43] showed
Theorem 11.6. There is an Hadamard matrix of order 4m of the form

A B Cc D
—-B A D -C
-C -D A B
-D C -B A4

if and only if there is a complex Hadamard matrix of order 2m of the form

-5

where T denotes the complex conjugate of T.

This theorem and the next lemma show complex Hadamard matrices are also
related to matrices to “plug in.”
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Lemma 11.7 (Kharaghani and Seberry [42]). Suppose that A,B,C,D are four
Williamson-type matrices of order m with constant row and column sum a,a,b,b.
Then there exists a regular complex Hadamard matrix of order 2m, with row sum
a+ib.

Proof. We form X = 3(A+B), Y =4A4-B), W=}(C+D) and V =
1(C — D), which have row sums a,0,b,0. Then

X+iY V+iW
—-V+iW X-iY

is the required regular complex Hadamard matrix with row and column sum
a+ib. O

Lemma 11.8 (Kharaghani and Seberry [42]). Ler g be the length of a pair of
Golay sequences U and V. Suppose that the row sums of U and V are a and b,
50 2g = a® + b%. Then there is a regular complex Hadamard matrix of order 2g,
with row sum a + ib.

Proof. Use U and V as the first rows of circulant matrices X and Y of

order g. Then
C= [ X iy ]
iy xT
is the required regular complex Hadamard matrix. O

Lemma 11.9 (Kharaghani and Seberry [42]). Suppose that there is a regular
complex Hadamard matrix C of order 4c, with row sum a + ib and of the form

[A iB]
iB A}’

where A and B are real. Then D = %(——i +1)(A+iB) is a regular complex
Hadamard matrix of order 2c with row sum (a + b) + (a — b)i.

Lemma 11.10 (Kharaghani-Seberry [42]). Let ci,c3,...,¢ac be the columns of
a complex Hadamard matrix C. Define C; to be the 2¢ x 2¢ matrix C; = c¢;c}
(where * is the hermitian conjugate). Then

LG=C;GC=0,i#];
2. Z?ilcl = 2¢chy; E,zil GCr = 40212c-

The next four results, found by Kharaghani and Seberry [42], are based on
the work of Kharaghani:
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Theorem 11.11 (Kharaghani-Seberry [42]). Let C be a complex Hadamard
matrix of order c. Then there is a regular complex Hermitian Hadamard matrix,
D of order c? with constant diagonal and with row (and column) sum c. Hence

D has element sum c3.

Proof. Form Ci,...,C, of order c as in the Lemma 11.5. Now from condi-
tion 1, 37/, G = cI, and from condition 2, G;C; = 0.
Form the block back-circulant complex Hadamard matrix

G G - G

G G - G
D=

C G - G

of order ¢? which has row and column sum ¢ and hence element sum ¢3. The
diagonal of each Cj, j =1,...,c, is one by condition 1 of Lemma 11.10, so D
has diagonal one. Moreover, each C; is hermitian, Ci = Cj, so D is hermitian.

O

Lemma 11.12 (Kharaghani-Seberry [42]). Let H,C, G, ...,C, be (1,-1,i,—i)
matrices of order n satisfying

1. HH* = nl,; HCj = G;H*;
2.Cr=Cj; CiG =0,k #j; 37, C} = n?l,.

Then there is a complex Hadamard matrix of order 2n(n + 1) of the form

[A iB]
D=,
iB* A*

where A and B are block circulant. Furthermore, if H,C1, G, ..., C, are real and
H is regular, then D is regular.

Corollary 11.13. For each positive integer n, there is a regular complex Hada-
mard matrix of order 4*(4" + 1).

The next result is based on a similar theorem for real Hadamard matrices
by Mukopadhyay [65].

Theorem 11.14 (Kharaghani-Seberry). Suppose that there exists a skew-type
complex Hadamard matrix C = I + U of order p + 1, where U* = —-U. Further,
suppose that there exist two (1,—1,i,—i) matrices A,,B, of order q satisfying

1. A,B* = B, A7,
2. A, A* + pB,B* = q(1+ p)l,.
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Then there are two (1,—1,i,—i) matrices of order p/q, j > 0, satisfying
ArjBryj = BrajAry)
Ar4jAr,;+ pBryjBlyi=qpl(p+ DI

Also, there exists a complex Hadamard matrix of order qp’(p + 1) for every
j=0.

Corollary 11.15. Let n+1 be the order of a symmetric conference matrix.
Then there is a complex Hadamard matrix of order n/(n + 1) for every j > 0.

A result analogous to the next one was also found by R. Turyn [104].
Lemma 11.16 (Miyamoto [64]). If there is an Hadamard matrix of order 4t

_B A ’

then there is a complex Hadamard matrix of order 2t.

Proof. From the Hadamard matrix ABT = BAT and AA” + BBT = 4tL,.
Let

1 i
E= E(A+B)— E(A_B)'
Then the elements of E are 1,—1,i,—f and
1 .
EE* = 2(A4 + BB") + %(—ABT +BAT) =2th,.

Thus, E is the desired complex Hadamard matrix. Clearly, E will be a real
matrix if and only if 4 = B. O

This lemma, in view of many recent results on Williamson-type matrices gives
us many new complex Hadamard matrices:

Corollary 11.17. Let w be the order of a Williamson-type matrix. Then there
exists a complex Hadamard matrix of order 2w. In particular, there are complex
Hadamard matrices for orders 2c, c € {33,39,53,73,81,83,89,93,101, 105, 109,
113,125,137,149,153,173,189,193,197,233,241,243,257,277,281,293}.

Kharaghani and Seberry went on to show how certain complex Hadamard
matrices were extremely powerful in the construction of real Hadamard ma-
trices with large excess.
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Seberry and Whiteman [84] have also found complex weighing matrices
analogous to the real matrices of Goethals and Seidel [25}, and these matri-
ces give some of the unsolved complex orthogonal designs of Geramita and
Geramita [24].

11.2. Constructions Using Amicable Hadamard Matrices

Theorem 11.18 (Seberry-Wallis [114]). Let W =1+ C be a complex skew
Hadamard matrix of order w. Let M = I + U and N be complex amicable or-
thogonal designs CAOD(m; (1,m — 1),(m)) of order m satisfying U* = —U and
N* = N. Further, let X,Y,Z be pairwise amicable complex matrices of order
p that are suitable matrices for a complex orthogonal design, COD(wm;1,m —
1,(w—-1)m):

XX*+(m-1)YY*"+(w—1mZZ* =wpml.
Then there is a complex Hadamard matrix of order wpm.
Proof. Use K=IxIxX+IxUxY+CxNXxZ. O
Corollary 11.19. Let I + C be a complex skew Hadamard matrix of order w.

Let X,Z be amicable complex matrices of order p that are suitable matrices for
a COD(w; 1,w — 1). Then there is a complex Hadamard matrix of order pw.

Proof. Put m =1 in the theorem. a

Corollary 11.20 [89]. Let S = I + C be a complex skew Hadamard matrix of
order w. Then there is a complex Hadamard matrix of order w(w — 1).

We can use this corollary to form complex Hadamard matrices. In Table 11.1,
the * signifies that a symmetric conference matrix for this order is not possible
as w(w —1) is not the sum of two squares. A number of other similar con-
structions are discussed in Seberry-Wallis [114, pp. 349-353], but we will not
pursue them here.

TABLE 11.1
w Complex Hadamard order Comment
18 306
26 650 =59x11+1
30 870 =789 x 11 +1
38 1406 =281 x 5+1
50 2450 =79 x 31+ 1

62 3782=199x19+1
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Seberry and Zhang [89] have constructed amicable, disjoint W (4mn,2mn)
U and V from Hadamard matrices of orders 4m and 4n. Thus, we have

Theorem 11.21 (Seberry-Zhang [88]). Suppose that 4m and 4n are the orders
of Hadamard matrices. Then U + iV (U,V above) is a complex Hadamard ma-
trix of order 4mn.

The strong Kronecker product is used to prove Theorem 3.4.

11.3. Orders for Which Complex Hadamard Matrices Exist

We noted in Theorem 11.5 that symmetric conference matrices N always give
a complex Hadamard matrix i/ + N. So in Table 11.2 of complex Hadamard
matrices, ci refers to the construction in Appendix A.1 for conference matri-
ces. The construction x2 refers to Turyn’s theorem [104], as well as to that
of Kharaghani and Seberry [42] that Williamson-type matrices of order w give
complex Hadamard matrices of order 2w.

APPENDIX

A.l. Hadamard Matrices

One of us (Seberry) has a table containing odd integers g < 40,000 for which
Hadamard matrices orders 2‘q exist. In Appendix A.3, we give this table for
q < 3000. The key for the methods of construction follows: Note that not all
construction methods appear, only those that, in the opinion of the authors,
enabled us to compile the tables efficiently.

Amicable Hadamard Matrices

Key Method Explanation
al p'+1 P’ =3 (mod4) is a prime power [110]
a2  2g+1) 2q + 1 is a prime power; g =1 (mod4) is a prime
[114]
as  nh n, h, are amicable Hadamard matrices [110]
Skew Hadamard Matrices
Key  Method Explanation
s1 2]k t all positive integers;
k; —1=3 (mod4) a prime power [66]
52 (p-1D*+1 p is a skew Hadamard matrix; # > 0

is an odd integer [105]
53 2g+1 q =5 (mod8) is a prime power [98
q p P
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TABLE 11.2 Complex Hadamard Matrices

q How q How q How q How q How

1 89 x2 177 cl 265 cl 353 x2
3 cl 91 cl 179 267 355 cl
5 cl 93 x2 181 cl 269 357
7 cl 95 x2 183 271 cl 359
9 cl 97 cl 185 273 361 x2
11 x2 99 cl 187 cl 275 363 x2
13 cl 101 x2 189 x2 277 x2 365 cl
15 cl 103 191 279 cl 367 cl
17 x2 105 x2 193 x2 281 x2 369
19 cl 107 195 cl 283 371
21 cl 109 x2 197 x2 285 cl 373 x2
23 c3 111 199 cl 287 375 x2
25 cl 113 c2 201 cl 289 cl 377
27 cl 115 cl 203 291 379 cl
29 x2 117 cl 205 cl 293 x2 381 cl
31 cl 119 207 295 383
33 x2 121 cl 209 297 cl 385 cl
35 123 3 211 cl 299 387 cl
37 cl 125 x2 213 301 cl 389 x2
39 x2 127 215 303 391
41 cl 129 cl 217 cl 305 393
43 x2 131 219 307 cl 395
45 cl 133 221 309 cl 397 x2
47 135 cl 223 311 399 cl
49 cl 137 x2 225 cl 313 cl 401 x2
51 cl 139 cl 227 315 x2 403
53 x2 141 cl 229 cl 317 x2 405 cl
55 cl 143 231 cl 319 407
57 cl 145 cl 233 x2 321 cl 409 x2
59 147 cl 235 323 411 cl
61 cl 149 x2 237 325 x2 413
63 cl 151 239 327 cl 415 cl
65 153 x2 241 x2 329 417
67 155 243 x2 331 cl 419
69 cl 157 cl 245 333 421 cl
71 159 cl 247 335 423 x2
73 x2 161 249 337 cl 425
75 cl 163 251 339 cl 427 cl
77 165 253 341 429 cl
79 cl 167 255 cl 343 431
81 x2 169 cl 257 x2 345 433 x2
83 x2 171 259 347 435 x2

85 cl 173 x2 261 cl 349 x2 437
87 cl 175 cl 263 351 cl 439 cl
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TABLE 11.2 Complex Hadamard Matrices (continued)

q How q How q How q How q How
441 cl 529 x2 617 x2 705 cl 793

443 531 cl 619 cl 707 795

445 533 621 709 x2 797 x2

447 535 cl 623 711 799 cl

449 x2 537 625 cl 713 801 cl

451 x2 539 627 x2 715 cl 803

453 541 x2 629 717 cl 805 cl

455 543 x2 631 719 807 cl

457 x2 545 c3 633 721 809 x2

459 x2 547 cl 635 723 811 cl

461 x2 549 cl 637 725 813

463 551 639 cl 727 cl 815

465 cl 553 641 x2 729 x2 817

467 555 cl 643 731 819 cl

469 cl 557 x2 645 cl 733 821 x2

471 cl 559 cl 647 735 x2 823

473 x2 561 x6 649 cl 737 825

475 563 651 cl 739 827

477 cl 565 cl 653 741 cl 829 cl

479 567 655 743 831

481 cl 569 x2 657 745 cl 833

483 57 659 747 cl 835 cl

485 573 661 cl 749 837

487 575 663 x2 751 839

489 cl 571 cl 665 753 841 cl

491 579 x2 667 755 843 x2

493 581 669 757 x2 845

495 583 671 759 x2 847 cl

497 585 673 x2 761 c2 849 cl

499 cl 587 675 x2 763 851

501 589 677 x2 765 853

503 591 cl 679 767 855 cl

505 cl 593 x2 681 cl 769 x2 857

507 cl 595 683 77 859

509 597 cl 685 cl 773 x2 861 cl
. 511 cl 599 687 cl 775 cl 863

513 601 cl 689 777 cl 865

515 603 691 cl 779 867 cl

517 cl 605 693 781 869

519 607 cl 695 783 871 cl

521 x2 609 cl 697 785 873

523 611 699 787 875

525 cl 613 c2 701 x2 789 877 cl

527 615 cl 703 x2 791 879 x2
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TABLE 11.2 Complex Hadamard Matrices (continued)

q How q How q How q How q How

881 x2 905 929 x2 953 x2 977 x2
883 907 931 cl 955 979
885 x2 909 933 957 cl 981
887 911 935 959 983
889 cl 913 937 cl 961 x2 985
891 915 939 cl 963 987 cl
893 917 941 965 989
895 cl 919 943 967 cl 991
897 921 945 cl 969 993
899 923 947 971 995
901 cl 925 cl 949 973 997 cl
903 927 951 cl 975 cl 999 cl

Skew Hadamard Matrices (continued)

54  2(q+1) q = p' is a prime power where p =5 (mod8)
and ¢ = 2 (mod4) [99, 125]

s5 4m 3 < m < 33,127 [35, 100, 18a]
m € {37,43,67,113,127,157,163,181, 241}
[17, 16]

56 4(q+1) q =9 (mod16) is a prime power [113]

s7  (tj+D(g+1) q = s* + 412 =5 (mod8) is a prime power;
|t] +1is a skew Hadamard matrix [117]

58  4q*+q+1) q is a prime power, g> + ¢ + 1 =3,5,7 (mod8)
a prime, or 2(q*> + q + 1) + 1 is a prime power
[94]

s0 hm h is a skew Hadamard matrix;
m is an amicable Hadamard matrix [114]

Spence Hadamard Matrices

Key  Method Explanation
pl g +q+1) g*+ q+1=1 (mod8) is a prime [94]
p2 4nor8n n, n—2 are prime powers; if n =1 (mod4),

there exists a Hadamard matrix of order 4n;
if n =3 (mod4), there exists a Hadamard
matrix of order 8n [93]

p3  4m m is an odd prime power for which an
integer s > 0 such that (m — (2°*1 + 1))/25+!
is an odd prime power [93]

Conference Matrices That Give Symmetric Hadamard Matrices The follow-
ing methods give symmetric Hadamard matrices of order 2n and conference
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matrices of order n with the exception of ¢6 which produces an Hadamard
matrix. The order of the Hadamard matrix is given in the column headed
“Method.”

Key  Method Explanation

cl  2(p +1 P’ =1 (mod4) is a prime power [66, 25]
c2  2(h-1*%+1)  hisaskew Hadamard matrix [7)
3 2q*(g-2)+1) q=3(mod4)is a prime power
q — 2 is a prime power {63]
cd  2(5-9%t+1) t>0[85]
c5 2((n—-1+1) n is a conference matrix s > 2 [105]
c6 nh n is a conference matrix
h is a Hadamard matrix [25]

Note: A conference matrix of order n =2 (mod4) exists only if n—1 is the
sum of two squares.

Hadamard Matrices Obtained from Williamson Matrices If a Williamson ma-
trix of order 2'q exists, then there is a Hadamard matrix of order 2*2g, the
same key as in the Index of Williamson Matrices in Appendix A.2 is used to
index the Hadamard matrices produced from them.

OD Hadamard Matrices
Key  Method Explanation
ol 2% If a T-matrix of order 2’q exists, then there is a
Hadamard matrix of order 2‘*2g [12, 108]
02 ow o is an OD-Hadamard matrix;
w is a Williamson matrix [6, 12, 115]
o3  8pw an OD(8p; p, p, p, p, P, P, P, p) exists for p =1,3;

there exist 8-Williamson matrices of order w [67]

Yamada Hadamard Matrices
Key  Method Explanation
yl 4q q =1 (mod8) is a prime power;

(¢ — 1)/2 is a Hadamard matrix [132]
y2  4q+2) g =5 (mod8) is a prime power;

(g +3)/2 is a skew Hadamard matrix [132]
y3  4q+2) g =1 (mod8) is a prime power;

(g +3)/2 is a conference matrix [132]
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Miyamoto Hadamard Matrices

Key  Method Explanation

ml 4q q =1 (mod4) is a prime power;
q —1is a Hadamard matrix [64]

m2 &g q = 3 (mod4) is a prime power;

2q — 3 is a prime power [64]

Koukouvinos and Kounias

Key  Method Explanation
k1 2q 2!q = g1 + g2, where g1 and g; are the lengths of
Golay
sequences [53]
Agayan Multiplication
Key  Method Explanation

dl  2+s-lpg 2 p and 2°q are the orders of Hadamard
matrices [1]

Seberry
Key  Method Explanation
se 2'q t is the smallest integer such that for given odd g,

a(q + 1) + b(q — 3) = 2 has a solution for
a,b nonnegative integers [121]

Craigen-Seberry-Zhang

Key Method Explanation

cz  2itstutw=4 9tg 92sh 2%c,2%d are the orders of Hadamard
matrices [14]

A.2. Index of Williamson Matrices

One of us (Seberry) has a list on the computer of odd integers g < 40,000
for which Williamson or Williamson type matrices exist. The following leg-
end gives a list of constructions for these matrices, the method used, and the
discoverer—with apologies to anyone excluded:
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Key = Method Explanation

wl  {1,...,33,37,39,41,43} [52, 18, 130]

w2 (r+1)/2 p =1 (mod4) a prime power [26, 106,
126]

w3 34 d a natural number [65, 109]

w4 [p(p +1)]/2 p =1 (mod4) a prime power [112, 127]

wS s(4s +3),5(4s - 1) s € {1,3,5,...,31} [120]

w6 93 [120]

w7 [(f — DAf + D)/4 p=4f +1, f odd, is a prime power of
the form 1 + 4¢2;
(f —1)/8 is the order of a good matrix
[118]

w8 [(f + D(4f +1))/4 p=4f +1, f odd, is a prime power of
the form 25 + 4¢2;
(f + 1)/8 is the order of a good matrix

[118]

w9 [p(p-1)]/2 p =4f + 1 is a prime power;
(p—1)/4 is the order of a good matrix
[118]

w0 p+2)(p+1) p =1 (mod4) a prime power;

p + 3 is the order of a symmetric
Hadamard matrix [118]

wa [(f +1)(@4f +1)]/2  p=4f+1, f odd, is a prime power of
the form 9 + 4¢%;
(f —1)/2=1 (mod4) a prime power
[118]

wb [(f —Daf +1)]/2 p=4f +1, f odd, is a prime power of
the form 49 + 4¢2;
(f —3)/2=1 (mod4) a prime power

[118]
wce 2p+1 g =2p—1is a prime power, p isa
prime [64, 87]
wd 13 i>0[65]
w#e T 11.7 i > 0 (gives 8-Williamson matrices) [78]
. wf q%(q +1)/2 g =1 (mod4) is a prime power, d > 2 [65, 95a]
wg pPAp+1)/2 p =1 (mod4) is a prime power [80]
wh pPHp+1)/4 P =3 (mod4) is a prime power;
(p +1)/4 is the order of a
Williamson-type matrix {80]
wi q+2 q =1 (mod4) is a prime power;
(g + 1)/2 is a prime power [64]
wj q+2 q =1 (mod4) is a prime power;

(g + 3)/2 is the order of a symmetric
conference matrix [64]
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wk q q =1 (mod4) is a prime power;
(g — 1)/2 is the order of a symmetric
conference matrix or the order of a
symmetric Hadamard matrix [64]
wl q g =1 (mod4) is a prime power;
(g —1)/4 is the order of a
Williamson-type matrix [64]
wm q q =1 (mod4) is a prime power;
(g —1)/2 is the order of a
Hadamard matrix [87]
wn wn w is the order of a Williamson-type
matrix;
n is the order of a symmetric conference
matrix
wo 2wu w and u are the orders of
Williamson-type matrices [87]
w#p 2q+1 q + 1 is the order of an amicable
Hadamard matrix;
q is the order of a Williamson type
matrix [87]
w#q ¢q q is a prime power;
and (g — 1)/2 is the order of a
Williamson-type matrix [87]
w#r 2q+1 q + 1 is the order of a symmetric
conference matrix;
q is the order of a Williamson-type
matrix [87]
w#s 29 +1 t>0[87]

S = {1,...,31} is the set of good matrices.

Note: The fact that if there is a Williamson matrix of order n, then there is a
Williamson matrix of order 2n, is used in the calculation of wh.

We now give in Table A.1 known Williamson-type matrices of orders
< 2000. The order in which the algorithms were applied was wy, wa, wa, wy, ws,
wg, wi,wj,wk,wl,wn,w#p ,w#q,w#r, and then others if it appeared they
might give a new order. To interpret the results in the table, we note that if
there is an Hadamard matrix of order 44, then it can be a Williamson-type
matrix, but this was not included. A notation w#x means that 8-Williamson
matrices are known, but not four, so an OD(8s;s,s,s,s,s,s,s,s) is needed
to get an Hadamard matrix. The notation 47,3, w# p means that there are 8-
Williamson matrices of order 47, and thus an Hadamard matrix of order 8- 47.
A notation with wr of 3 indicates that there are four Williamson-type matrices
but they are of even order. The notation 35,3,wn means that there are four
Williamson-type matrices of order 70 and an Hadamard matrix of order 280.
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TABLE A.1 Williamson and Williamson-Type Matrices

g t How q ¢ How g ¢t How q¢ ¢t How g ¢ How

1 wil 85 w2 169 w2 253 3 wn 337 w2
3 wl 87 w2 171 3 wn 255 w2 339 w2
- 5 wl 89 wl 173 wl 257 wl 341 3 wn
7 wl 91 w2 175 w2 25 3 wn 343 3 wn
9 wl 93 ws 177 w2 261 w2 345 3 wn
- 11 wl 95 w6 179 3 w#q 263 347 3 w#q
13 wl 97 w2 181 w2 265 w2 349 wk
15 wil 99 w2 183 3 wn 267 3 wn 351 w2
17 wl 101 wk 185 3 wn 269 353 wl
19 wl 103 3 w#q 187 w2 271 w2 355 w2
21 wl 105 3 wn 189 w5 273 3 wn 357 3 wn
23 wl 107 3 w#q 191 3 w#p 2715 3 wn 359
25 wl 109 wk 193 wk 271 wk 361 wk
27 wl 111 3 wn 195 w2 279 w2 363 wi
29 wl 113 wk 197 wk 281 wl 365 w2
31 wl 115 w2 199 w2 283 3 wi#q 367 w2
33 wl 117 w2 201 w2 285 w2 369 3 wn
35 3 wn 119 3 wn 203 3 w9 287 3 wn 371 3 wn
37 wl 121 w2 205 w2 289 w2 373 wl
39 wl 123 wi 207 3 wn 291 3 wn 375 wf
41 wl 125 wk 209 3 wn 293 wl 377 3 wn
43 wl 127 3 w#p 211 w2 295 379 w2
45 w2 129 w2 213 297 w2 381 w2
47 3 w#p 131 215 3 wn 299 3 wn 383
49 w2 133 3 wn 217 w2 301 w2 385 w2
51 w2 135 w2 219 3 wn 303 3 w7 387 w2
53 wk 137 wl 221 3 wn 305 3 wn 38 wk
55 w2 139 w2 223 307 w2 391 3 wn
57 w2 141 w2 225 w2 309 w2 393
59 3 w#q 143 3 wn 227 3 wi#q 311 395 3 wn
61 w2 145 w2 229 w2 313 w2 397 wk
63 w2 147 w2 231 w2 315 w5 399 w2
- 65 3 wn 149 wk 233 wl 317 wk 401 wk
67 3 w#q 151 3 w#q 235 319 3 wo 403 3 wn
69 w2 153 wd 237 3 wn 321 w2 405 w2
71 15§ 3 wn 239 323 3 wn 407 3 wn
73 wk 157 w2 241 wk 325 wd 409 wk
75 w2 159 w2 243 wj 327 w2 411 w2
77 3 wn 161 3 wn 245 3 wn 329 413
79 w2 163 3 w#q 247 3 wn 331 w2 415 w2
81 w3 165 3 wn 249 3 wn 333 3 w9 417 3 wn
83 wi 167 3 w#p 251 3 w#q 335 419
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TABLE A.1 Williamson and Williamson-Type Matrices (continued)

q t How q t How q ¢t How q¢ 't How - -gq t How

421 w2 513 3 wn 605 3 wn 697 3 wn 789

423 wi 515 3 w#r 607 w2 69 3 wn 791 3 wn
425 3 wn 517 w2 609 w2 701 wk 793 3 wn
427 w2 519 3 wn 611 703 wd T95 3 wn
429 w2 521 wl 613 wl 705 w2 797 wk
431 523 3 w#q 615 w2 707 3 wn 799 w2
433 wk 525 w2 617 wl 709 wk 801 w2
435 wd 527 3 wn 619 w2 711 3 wn 803 3 wo
437 3 wn 529 wl 621 3 wn 713 3 wn 805 w2
439 w2 531 w2 623 3 wn 715 w2 807 w2
441 w2 533 3 wn 625 w2 717 w2 809 wl
443 535 w2 627 wi 719 811 w2
45 3 wn 537 629 3 wn 721 813 3 wn
47 3 wn 539 3 wn 631 3 w#q 723 3 wn 815

449 wk 541 wk 633 3 wn 725 3 wn 817 3 wn
451 wj 543 wi 635 3 w#r 727 w2 819 w2
453 545 3 wn 637 3 wn 729 w3 821 wk
455 3 wn 547 w2 639 w2 731 3 wo 823 3 w#gq
457 wk 549 w2 641 wk 733 3 w#q 825 3 wn
459 wi 551 3 wn 643 3 w#q 735 wi 827

461 wk 553 3 wn 645 w2 737 829 w2
463 3 w#q 555 w2 647 739 831 3 wn
465 w2 557 wk 649 w2 741 w2 833 3 wn
467 3 w#q 559 w2 651 w2 743 835 w2
469 w2 561 3 wn 653 745 w2 837 3 wn
471 w2 563 3 wi#q 655 3 w#p 747 w2 839

473 w5 565 w2 657 3 wn 749 841 w2
475 3 wn 567 3 wn 659 751 3 w#q 843 wi
477 w2 569 wm 661 w2 7153 845 3 wn
479 571 3 w#q 663 ws 755 847 w2
481 w2 573 665 3 wn 757 wl 849 w2
483 3 wn 575 3 wn 667 3 wn 759 wi 851 3 wn
4485 3 wn 577 w2 669 761 wl 853

487 3 w#p 579 wj 671 3 wn 763 855 w2
489 w2 581 3 wn 673 wk 765 3 wn 857

491 583 3 wo 675 wi 767 859 3 w#yq
493 3 wo 358 3 wn 677 wk 769 wk 861 w2
495 3 wn 587 3 w#q 679 3 wn 771 3 wn 863

497 589 3 wn 681 w2 173 wl 865 3 wn
499 w2 591 w2 683 715 w2 867 w2
501 593 wk 685 w2 777 w2 89 3 wn
503 595 3 wn 687 w2 779 3 wn 871 w2
505 w2 597 w2 689 3 w9 781 873 3 wn
507 w2 599 691 w2 78 3 wn 875 3 wn
509 601 w2 693 3 wn 78 3 wn 877 w2

511 w2 603 3 wn 695 3 wn 787 879 wi
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TABLE A.1 Williamson and Williamson-Type Matrices (continued)

545

q t How q t How g ¢t How g t How gq t How
881 wk 973 3 wn 1065 w2 1157 3 wn 1249 wl
883 3 w#q 975 w2 1067 3 wn 1159 3 wn 1251 wi
885 ws 977 wk 1069 w2 1161 3 wn 1253

887 979 3 wo 1071 w2 1163 1255

889 w2 981 3 wn 1073 3 wn 1165 3 wn 1257

891 3 wn 983 1075 3 wn 1167 w2 1259

893 985 3 wn 1077 w2 1169 1261 w2
895 w2 987 w2 1079 3 wn 1171 w2 1263 3 wn
87 3 wn 98 3 wn 1081 w2 1173 3 wn 1265 3 wn
89 3 wn 991 1083 3 wn 1175 1267 3 wn
901 w2 993 3 wn 1085 3 wn 1177 1269 3 wn
903 3 wn 995 3 wn 1087 3 w#p 1179 w2 1271 3 wn
%5 3 wn 997 w2 1089 3 wn 1181 1273

907 999 w2 1091 1183 wf 1275 w2
909 3 wn 1001 3 wn 1093 3 w#q 1185 3 wn 1277 3 wi#q
911 1003 1095 wi 1187 3 w#q 1279 w2
913 3 wo 1005 3 wn 1097 wl 1189 w2 1281 3 wn
915 3 w9 1007 3 wn 1099 w2 1191 w2 1283 3 wi#gq
917 1009 w2 1101 3 wn 1193 wl 1285 3 wn
919 3 w#q 1011 3 wn 1103 1195 w2 1287 3 wn
921 3 wn 1013 3 wn 1105 w2 1197 w2 1289 wl
923 3 w#r 1015 w2 1107 w2 1199 3 wo 1291 3 w#q
925 w2 1017 3 wn 1109 wl 1201 w2 1293

927 3 wn 1019 3 w#r 1111 w2 1203 wi 1295 3 wn
929 wl 1021 wk 1113 3 wn 1205 3 wn 1297 w2
931 w2 1023 3 wn 1115 3 w#r 1207 wsS 1299 3 wn
933 1025 3 wn 1117 wk 1209 w2 1301 wl
935 3 wn 1027 w2 1119 w2 1211 3 wn 1303 3 w#q
937 w2 1029 3 wn 1121 1213 3 w#q 1305 w2
939 w2 1031 1123 1215 wi 1307 3 w#r
941 1033 wk 1125 3 wn 1217 wk 1309 w2
943 3 wn 1035 w2 1127 3 wn 1219 w2 1311 w2
945 w2 1037 3 wn 1129 wk 1221 w2 1313 3 wn
947 3 w#q 1039 1131 3 wn 1223 1315

949 3 wn 1041 w2 1133 1225 wéd 1317 w2
951 w2 1043 3 wn 1135 w2 1227 3 wn 1319

953 wl 1045 w2 1137 w2 1229 wk 1321 wl
955 1047 3 wn 1139 wS 1231 3 w#p 1323 wi
957 w2 1049 wm 1141 w2 1233 3 wn 1325 3 wn
959 3 wn 1051 3 w#q 1143 3 wn 1235 3 wn 1327 3 w#p
961 wk 1053 3 wn 1145 3 wn 1237 w2 1329 w2
93 3 wn 1055 3 wn 1147 w2 1239 w2 1331 3 wn
965 3 wn 1057 w2 1149 w2 1241 3 wo 1333 3 wn
967 w2 1059 3 wn 1151 1243 3 wn 1335 3 wn
99 3 wn 1061 wk 1153 wk 1245 3 wn 1337

971 1063 3 w#q 1155 w2 1247 3 wo 1339 w2
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TABLE A.1 Williamson and Williamson-Type Matrices (continued)

q t How g t How q t How q¢ ¢t How g ¢t How

1341 wb 1433 1525 w2 1617 3 wn 1709 wk
1343 3 wn 1435 3 wn 1527 1619 3 w#q 1711

1345 w2 1437 1529 3 wn 1621 wk 1713

1347 w2 1439 1531 w2 1623 wi 1715 3 w#r
1349 1441 1533 3 wn 1625 3 wn 1717 w2
1351 3 wn 1443 3 wn 1535 3 wn 1627 w2 1719

1353 3 wn 1445 3 wn 1537 3 wo 1629 w2 1721 wl
1355 3 wn 1447 1539 3 wn 1631 3 wn 1723 3 w#q
1357 w2 1449 w2 1541 1633 1725 w2
1359 1451 1543 1635 3 wn 1727 3 wn
1361 wk 1453 wl 1545 w2 1637 wl 1729 w2
1363 1455 w2 1547 3 wn 1639 3 wo 1731 w2
1365 w2 1457 1549 wk 1641 3 wn 1733 wl
1367 1459 w2 1551 3 wn 1643 3 wn 1735 w2
1369 wl 1461 1553 wk 1645 1737 3 wn
1371 w2 1463 3 wn 1555 w2 1647 3 wn 1739

1373 3 w#q 1465 3 wn 1557 3 wn 1649 3 wn 1741 w2
1375 w2 1467 3 wn 1559 1651 w2 1743 wS
1377 w2 1469 3 wn 1561 w2 1653 3 wn 1745 3 wn
1379 3 wn 1471 3 w#p 1563 w2 1655 3 wn 1747

1381 3 w#q 1473 1565 3 wn 1657 w2 1749 3 wn
1383 wi 1475 1567 1659 wi 1751

1385 3 wn 1477 w2 1569 w2 1661 1753 wl
1387 3 wn 1479 w2 1571 1663 1755 wi
1389 w2 1481 wl 1573 3 wn 1665 w2 1757

1391 1483 3 w#q 1575 3 wn 1667 1759 w2
1393 3 wn 1485 w2 1577 3 wn 1669 3 w#q 1761

1395 w2 1487 1579 1671 3 wn 1763 3 wn
1397 1489 wl 1581 3 wn 1673 1765 w2
1399 w2 1491 1583 1675 1767 w2
1401 w2 1493 wl 1585 w2 1677 3 wn 1769 3 wn
1403 3 wn 1495 3 wn 1587 wh 1679 3 wn 1771 w2
1405 w2 1497 3 wn 1589 1681 w2 1773 3 wn
1407 3 wn 1499 1591 w2 1683 wj 17715 3 wn
1409 wl 1501 w2 1593 3 wn 1685 3 wn 1777 wl
1411 3 wo 1503 1595 3 wn 1687 w2 1779 w2
1413 3 wn 1505 3 wn 1597 wk 1689 1781 3 wn
1415 1507 3 wo 1599 3 wn 1691 3 wn 1783

1417 w2 1509 1601 . wk 1693 wl 1785 3 wn
1419 w2 1511 1603 3 wn 1695 w2 1787

1421 3 wn 1513 3 wn 1605 w2 1697 wl 1789 3 w#q
1423 1515 3 wn 1607 1699 3 w#q 1791 w2
1425 wS 1517 3 wn 1609 w2 1701 3 wn 1793

1427 1519 w2 1611 w2 1703 1795

1429 w2 1521 w2 1613 3 w#q 1705 3 wn 1797 w2

1431 w2 1523 3 w#q 1615 w2 1707 w2 1799 3 wn
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TABLE A.1 Williamson and Williamson-Type Matrices (continued)

q t Hw q t How g ¢t How g ¢t How g t How

1801 wk 1841 1881 w2 1921 3 wn 1961 3 wn
1803 3 wn 1843 3 wn 1883 3 w#r 1923 3 wn 1963

1805 wh 1845 3 wn 1885 w2 1925 3 wn 1965 w2
1807 w2 1847 1887 3 wn 1927 w2 1967 3 wn
1809 w2 1849 w2 1889 wm 1929 1969

1811 1851 w2 1891 wd 1931 1971 3 wn
1813 3 wn 1853 3 wo 1893 1933 3 w#q 1973 3 w#q
1815 3 wn 1855 w2 1895 3 wn 1935 wi 1975 3 wn
1817 3 wn 1857 3 wn 1897 w2 1937 3 wn 1977

1819 w2 1859 3 wn 1899 w2 1939 w2 1979

1821 3 wn 1861 w2 1901 3 w#q 1941 w2 1981

1823 3 wn 183 3 wn 1903 3 wo 1943 1983 3 wn
1825 3 wn 185 3 wn 1905 3 wn 1945 w2 1985 3 wn
1827 wS 1867 w2 1907 3 w#q 1947 3 wn 1987

1829 1869 3 wn 1909 3 wn 1949 1989 3 wn
1831 1871 1911 w2 1951 3 w#p 1991 3 wn
1833 3 wn 1873 wk 1913 1953 3 wn 1993 wl
1835 3 wn 1875 wf 1915 1955 3 wn 1995 w2
1837 w2 1877 wk 1917 w2 1957 1997 wk
1839 w2 1879 3 w#q 1919 3 wn 1959 w2 1999 w#p

A.3. Tables of Hadamard matrices

Table A.2 gives the orders of known Hadamard matrices. The table gives the
odd part g of an order, the smallest power of two, ¢, for which the Hadamard
matrix is known and a construction method. If there is no entry in the ¢ col-
umn the power is two. Thus, there are Hadamard matrices known of orders
22.105 and 23-107. We see at a glance, therefore, that the smallest order for
which an Hadamard matrix is not yet known is 4-107. Since the theorem of
Seberry ensures that a ¢ exists for every g, there is either a ¢ entry for each g,
or t = 2 is implied.

With the exception of order 4-163, marked dj, which was announced re-
cently [16], the method of construction used is indicated. The order in which
the algorithms were applied reflects the fact that other tables were being con-
structed at the same time. Hence, the “Amicable Hadamard,” “Skew Hada-
mard,” “Conference Matrix,” “Williamson Matrix,” direct “Complex Hada-
mard” were implemented first (in that order). The tables reflect this and not
the priority in time of a construction or its discoverer.

Next the “Spence,” “Miyamoto,” and “Yamada” direct constructions were
applied because they were noticed to fill places in the table. The methods
01 and of Koukouvinos and Kounias were now applied as lists of ODs were
constructed. These were then used to “plug in” the Williamson-type matrices
implementing methods 02 and o03.
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Finally, the multiplication theorems of Agayan, Seberry, and Zhang were
applied. The Craigen, Seberry, and Zhang theorem was applied to the table
that one of us (Seberry), had in the computer. The method and order of ap-
plication was by personal choice to improve the efficiency of implementation.
This means that some authors, for example, Baumert, Hall, Taryn, and White-
man, who have priority of construction are not mentioned by name in the final
table.

TABLE A.2 Orders of Known Hadamard Matrices

.q t How q t How q ¢t How q ¢t How ¢q t How

1 al 69 cl 137 al 205 cl 273 al
3 al 71 al 139 cl 207 al 275 ol
5 al 73 wk 141 al 209 ol 277 wk
7 cl 75 cl 143 al 211 cl 279 cl
9 cl 77 al 145 cl 213 02 281 al
11 al 79 cl 147 al 215 al 283 3 w#q
13 cl 81 w3 149 wk 217 cl 285 cl
15 al 83 al 151 y2 219 02 287 ol
17 al 85 cl 153 wd 221 al 289 cl
19 cl 87 al 155 al 223 3 a1 291 al
21 al 89 a2 157 cl 225 cl 293 al
23 wl 91 cl 159 cl 227 al 295 ol
25 cl 93 wS 161 al 229 cl 297 al
27 al 95 al 163 dj 231 cl 299 ol
29 a2 97 cl 165 al 233 a2 301 cl
31 cl 99 cl 167 3 w#p 235 ol 303 w7
33 al 101 wk 169 cl 237 al 305 ol
35 al 103 y2 17 al 239 4 a1l 307 cl
37 cl 105 al 173 al 241 wk 309 cl
39 wi 107 3 w#q 175 cl 243 al 311 3 m3
41 al 109 wk 177 cl 245 ol 313 cl
43 wl 111 al 179 3 w#q 247 ol 315 al
45 al 113 a2 181 cl 249 o2 317 wk
47 ol 115 cl 183 02 251 3 w#q 319 ol
49 cl 117 al 185 al 253 ol 321 al
51 cl 119 ol 187 cl 255 al 323 al
53 al 121 cl 189 wS 257 wl 325 wé
55 cl 123 al 191 3 w#p 259 ol 327 al
57 al 125 al 193 wk 261 cl 329 ol
59 ol 127 y2 195 cl 263 al 331 cl
61 cl 129 cl 197 al 265 cl 333 w9
63 al 131 al 199 cl 267 02 335 ol
65 ol 133 ol 201 cl 269 m2 337 cl

67 ol 135 cl 203 al 271 cl 339 cl
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

549

q t How g t How q t How g t How ¢q ¢t How
341 ol 433 wk 525 al 617 al 709 wk
343 02 435 wd 527 ol 619 cl 711 al
345 ol 437 al 529 wl 621 ol 713 al
347 3 w#q 439 cl 531 cl 623 02 715 cl
349 wk 441 cl 533 al 625 cl 717 cl
351 cl 443 3 m3 535 cl 627 wi 719 4 al
353 wl 445 o2 537 3 03 629 ol 721 3 di
355 cl 447 al 539 02 631 3 w#q 723 02
357 al 449 wk 541 wk 633 al 725 ol
359 4 a1l 451 wj 543 wi 635 al 727 cl
361 wk 453 al 545 al 637 02 729 w3
363 al 455 ol 547 cl 639 cl 731 02
365 al 457 wk 549 cl 641 a2 733 m2
367 cl 459 wi 551 al 643 3 w#q 735 al
369 ol 461 wk 553 02 645 al 737 02
3N al 463 3 w#q 555 cl 647 3 m3 739 16 se
373 wl 465 cl 557 wk 649 cl 741 al
375 al 467 al 559 cl 651 cl 743 al
377 ol 469 cl 3561 al 653 a2 745 cl
379 cl 471 cl 563 al 655 y2 747 cl
381 al 473 wS 565 cl 657 02 749 4 di
383 al 475 ol 567 al 659 17 se 1751 3 al
385 cl 477 al 569 wm 661 cl 753 al
387 cl 479 16 se 571 3 al 663 wS 755 al
389 wk 481 cl 573 3 al 665 al 757 wl
391 ol 483 al 575 ol 667 02 759 wi
393 al 485 02 577 cl 669 3 a1l 761 al
395 al 487 3 w#p 519 wj 671 al 763 02
397 wk 489 cl 581 02 673 wk 765 ol
399 cl 491 15 se 583 ol 675 al 767 al
401 wk 493 ol 585 al 677 al 769 wk
403 ol 495 al 587 al 679 02 771 al
405 al 497 al 589 o2 681 clt 773 wl
407 al 499 cl 59 cl 683 al 775 cl
409 wk 501 al 593 al 685 cl 777 cl
411 cl 503 al 595 ol 687 cl 779 ol
413 ol 505 cl 597 cl 689 w9 781 o2
415 cl 507 al 599 8 al 691 cl 783 ol
417 al 509 a2 601 cl 693 ol 785 02
419 4 a1 511 cl 603 al 695 02 187 3 m3
421 cl 513 ol 605 02 697 ol 78 3 al
423 wi 515 3 w#r 607 cl 699 02 791 al
425 al 517 cl 609 cl 701 al 793 02
427 cl 519 02 611 ol 703 wd 795 ol
429 cl 521 al 613 wl 705 al 797 al
431 al 523 3 w#q 615 al 707 02 799 cl
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

q t How q ¢t How q ¢t How g ¢t How ¢ t How
801 al 893 al 985 02 1077 cl 1169 4 k1
803 o2 895 cl 987 al 1079 o2 117 cl
805 cl 897 o2 989 02 1081 cl 1173 al
807 cl 899 o2 991 3 al 1083 o2 1175 ol
809 a2 901 cl 993 02 1085 al 1177 4 d1
811 cl 903 ol 995 02 1087 3 w#p 1179 cl
813 al 905 o2 997 cl 1089 ol 1181 al
815 al 907 3 m3 999 cl 1091 al 1183 wf
817 02 909 ol 1001 al 1093 3 w#q 1185 02
819 cl 911 al 1003 ol 1095 wi 1187 3 w#q
821 wk 913 02 1005 al 1097 wl 1189 cl
823 3 wi#q 915 al 1007 al 1099 w2 1191 cl
825 al 917 3 02 1009 cl 1101 02 1193 wl
827 al 919 3 al 1011 02 1103 3 m3 1195 cl
829 cl 921 02 1013 al 1105 cl 1197 al
831 al 923 al 1015 cl 1107 cl 1199 02
833 al 925 cl 1017 02 1109 wl 1201 cl
835 cl 927 o2 1019 3 w#r 1111 cl 1203 wi
837 al 929 wl 1021 wk 1113 al 1205 o2
89 8 al 931 cl 1023 al 1115 3 w#r 1207 w5
841 cl 933 4 dl 1025 al 1117 wk 1209 cl
843 al 935 al 1027 cl 1119 cl 1211 02
845 ol 937 cl 1029 02 1121 al 1213 m2
847 cl 939 cl 1031 6 a1 1123 3 m3 1215 wi
849 cl 941 m2 1033 wk 1125 ol 1217 wk
851 02 943 ol 1035 al 1127 al 1219 cl
83 3 al 945 al 1037 02 1129 wk 1221 cl
855 cl 947 3 w#q 1039 3 a1 1131 al 1223 8 a4l
857 m2 949 02 1041 ¢l 1133 3 d1 1225 wd
89 3 al 951 al 1043 02 1135 cl 1227 02
861 cl 953 a2z 1045 cl 1137 al 1229 a2
863 3 m3 955 3 al 1047 02 1139 w5 1231 y2
865 o2 957 cl 1049 a2 1141 cl 1233 al
867 al 959 02 1051 3 w#q 1143 02 1235 ol
869 02 961 wk 1053 al 1145 02 1237 cl
871 cl 963 al 1055 al 1147 cl 1239 cl
873 al 965 02 1057 cl 1149 cl 1241 02
875 al 967 ¢l 1059 02 1151 al 1243 02
877 cl 969 02 1061 al 1153 wk 1245 02
879 wi 971 6 al 1063 3 w#q 1155 cl 1247 al
881 wk 973 02 1065 al 1157 02 1249 wl
883 3 w#q 975 cl 1067 o2 1159 02 1251 al
885 al 977 al 1069 cl 1161 al 1253 al
887 al 979 o2 1071 al 1163 al 1255 3 a4l
889 cl 981 al 1073 02 1165 02 1257 4 o2
891 ol 983 al 1075 02 1167 cl 1259 4 al

A
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

q t How g t How q t How q ¢t How g ¢t How

1261 cl 1353 ol 1445 al 1537 ol 1629 cl
1263 al 1355 al 1447 19 se 1539 ol 1631 02
- 1265 al 1357 cl 1449 cl 1541 al 1633 02
1267 02 1359 3 di 1451 6 al 1543 3 al 1635 02
1269 ol 1361 al 1453 wl 1545 cl 1637 al
. 1271 ol 1363 02 1455 cl 1547 02 1639 02
1273 02 1365 cl 1457 al 1549 wk 1641 al
1275 al 1367 3 m3 1459 cl 1551 al 1643 al
1277 al 1369 wl 1461 al 1553 al 1645 ol
1279 cl 1371 al 1463 al 1555 cl 1647 02
1281 ol 1373 m2 1465 02 1557 02 1649 02
1283 3 w#q 1375 cl 1467 al 1559 4 a1 1651 cl
1285 ol 1377 al 1469 02 1561 cl 1653 02
1287 al 1379 o2 1471 3 w#p 1563 w2 1655 al
1289 a2 1381 m2 1473 3 al 1565 02 1657 cl
1291 3 w#q 1383 al 1475 ol 1567 19 se 1659 wi
1293 al 1385 o2 1477 cl 1569 cl 1661 3 di
1295 al 1387 02 1479 cl 1571 18 se 1663 3 m3
1297 cl 1389 cl 1481 al 1573 02 1665 al
1299 02 1391 al 1483 3 a1 1575 al 1667 3 m3
1301 wl 1393 02 1485 al 1577 02 1669 3 w#q
1303 3 w#q 1395 cl 1487 3 m3 1579 S5 al 1671 02
1305 cl 1397 3 d1 1489 wl 1581 al 1673 al
1307 al 1399 cl 1491 02 1583 3 m3 1675 02
1309 cl 1401 cl 1493 wl 1585 cl 1677 ol
1311 cl 1403 02 1495 ol 1587 wh 1679 02
1313 02 1405 cl 1497 al 1589 3 dl1 1681 cl
1315 3 d1 1407 ol 1499 18 se 1591 cl 1683 wj
1317 cl 1409 a2 1501 cl 1593 ol 1685 02
1319 18 se 1411 02 1503 al 1595 al 1687 cl
1321 wl 1413 al 1505 02 1597 wk 1689 3 03
1323 wi 1415 al 1507 02 1599 02 1691 al
1325 ol 1417 cl 1509 3 a1 1601 a2 1693 wl
1327 3 w#p 1419 cl 1511 al 1603 02 1695 al
1329 cl 1421 al 1513 02 1605 cl 1697 wl
. 1331 al 1423 3 a1l 1515 o2 1607 al 1699 3 a4l
1333 02 1425 ws 1517 al 1609 cl 1701 al
1335 02 1427 3 m3 1519 cl 1611 cl 1703 3 o2
1337 al 1429 cl 1521 cl 1613 al 1705 02
1339 cl 1431 cl 1523 al 1615 cl 1707 al
1341 wb 1433 m2 1525 cl 1617 02 1709 wk
1343 02 1435 ol 1527 3 d1 1619 3 w#q 1711 02
1345 ¢l 1437 6 al 1529 02 1621 wk 1713 3 03
1347 al 1439 19 se 1531 cl 1623 al 1715 02
1349 02 1441 3 al 1533 al 1625 ol 1717 cl

1351 02 1443 02 1535 02 1627 cl 1719 3 al
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

q t How g t How q t How gq ¢t How gq t How

1721 al 1813 02 1905 02 1997 wk 2089 cl
1723 3 w#q 1815 ol 1907 3 w#q 1999 y2 2091 al
1725 al 1817 02 1909 02 2001 cl 2093 wS
1727 al 1819 cl 1911 al 2003 al 2095 3 al
1729 cl 1821 al 1913 19 se 2005 ol 2097 al
1731 cl 1823 3 wn 1915 3 al 2007 cl 2099 3 w#r
1733 a2 1825 02 1917 cl 2009 02 2101 cl
1735 el 1827 al 1919 02 2011 ¢l 2103 02
1737 al 1829 02 1921 02 2013 02 2105 al
1739 o2 1831 3 m3 1923 al 2015 al 2107 o2
1741 cl 1833 al 1925 al 2017 wk 2109 cl
1743 al 1835 02 1927 cl 2019 wi 2111 al
1745 02 1837 cl 1929 3 03 2021 02 2113 wl
1747 3 m3 1839 cl 1931 al 2023 02 2115 cl
1749 ol 1841 3 d1 1933 3 w#q 2025 cl 2117 al
1751 3 d1 1843 02 1935 wi 2027 3 w#r 2119 3 d1
1753 wl 1845 ol 1937 02 2029 ¢l 2121 cl
1755 al 1847 3 m3 1939 cl 2031 al 2123 02
1757 al 1849 cl 1941 cl 2033 4 d1 2125 ol
1759 cl 1851 cl 1943 02 2035 02 2127 cl
1761 al 1853 al 1945 cl 2037 al 2129 a2
1763 02 1855 cl 1947 ol 2039 20 se 2131 cl
1765 cl 1857 02 1949 4 a1 2041 02 2133 02
1767 cl 1859 02 1951 y2 2043 al 2135 al
1769 02 1861 cl 1953 ol 2045 al 2137 cl
17711 cl 1863 al 1955 ol 2047 cl 2139 wi
1773 02 1865 al 1957 3 d1 2049 ol 2141 al
1775 02 1867 cl 1959 cl 2051 02 2143 3 w#q
1777 wl 1869 02 1961 ol 2053 3 w#q 2145 cl
1779 cl 1871 3 m3 1963 3 d1 2055 al 2147 02
1781 o2 1873 wk 1965 cl 2057 02 2149 cl
1783 7 al 1875 al 1967 al 2059 02 2151 02
1785 ol 1877 al 1969 4 02 2061 al 2153 wm
1787 3 m3 1879 3 al 1971 al 2063 8 al 2155 3 al
1789 3 w#q 1881 al 1973 a2 2065 cl 2157 al
1791 cl 1883 3 w#r 1975 02 2067 cl 2159 3 di
1793 4 a1l 1885 cl 1977 al 2069 a2 2161 wk
1795 5 d1 1887 al 1979 4 a1 2071 02 2163 02
1797 al 1889 a2 1981 4 d1 2073 al 2165 02
1799 ol 1891 w4 1983 02 2075 02 2167 02
1801 wk 1893 3 03 1985 02 2077 cl 2169 cl
1803 al 1895 02 1987 16 se 2079 cl 2171 4 d1
1805 al 1897 cl 1989 ol 2081 wl 2173 ol
1807 cl 1899 cl 1991 al 2083 3 w#q 2175 al
1809 cl 1901 al 1993 wl 2085 ol 2177 al

1811 al 1903 02 1995 cl 2087 4 a1 2179 cl
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

q t How q t How q ¢t How ¢q t How gq ¢t How

2181 o2 2273 al 2365 cl 2457 w2 2549 a?
2183 al 2275 cl 2367 al 2459 3 w#q 2551 cl
- 2185 wS 2277 02 2369 3 dl 2461 3 al 2553 al
2187 al 2279 02 2371 9 al 2463 al 2555 02
2189 02 2281 cl 2373 al 2465 al 2557 cl
2191 02 2283 o2 2375 02 2467 cl 2559 wi
) 2193 ol 2285 o2 2377 wk 2469 cl 2561 al
2195 al 2287 20 se 2379 02 247 al 2563 02
2197 wk 2289 o2 2381 m2 2473 wk 2565 al
2199 cl 2291 02 2383 3 w#q 2475 w5 2567 al
2201 al 2293 22 se 2385 al 2477 al 2569 02
2203 3 al 2295 ol 2387 al 2479 cl 2571 3 di
2205 al 2297 al 2389 wk 2481 al 2573 o2
2207 4 al 2299 cl 2391 02 2483 al 2575 w5
2209 wk 2301 al 2393 a2 2485 cl 2577 cl
2211 cl 2303 02 2395 cl 2487 cl 2579 3 w#q
2213 m2 2305 02 2397 al 2489 3 02 2581 o2
2215 4 d1 2307 al 2399 8 al 2491 ol 2583 al
2217 al 2309 wk 2401 cl 2493 02 2585 02
2219 02 2311 cl 2403 wi 2495 o2 2587 o2
2221 cl 2313 ol 2405 al 2497 cl 2589 4 di
2223 ol 2315 4 al 2407 cl 2499 ol 2591 3 m3
2225 o2 2317 02 2409 cl 2501 02 2593 wl
2227 3 02 2319 cl 2411 al 2503 3 al 2595 cl
2229 cl 2321 al 2413 3 d1 2505 cl 2597 o2
2231 al 2323 02 2415 ol 2507 02 2599 cl
2233 o2 2325 cl 2417 wm 2509 02 2601 wf
2235 02 2327 4 02 2419 ol 2511 cl 2603 02
2237 wk 2329 cl 2421 02 2513 4 k1 2605 cl
2239 y2 2331 al 2423 4 a1l 2515 3 di 2607 al
2241 al 2333 m2 2425 o2 2517 al 2609 wm
2243 al 2335 3 al 2427 o2 2519 02 2611 o2
2245 cl 2337 cl 2429 4 d1 2521 cl 2613 ol
2247 cl 2339 4 al 2431 cl 2523 al 2615 al
2249 02 2341 3 w#q 2433 02 2525 al 2617 cl
. 2251 5 al 2343 al 2435 al 2527 02 2619 cl
2253 al 2345 02 2437 wk 2529 02 2621 m2
2255 ol 2347 3 m3 2439 cl 2531 3 m3 2623 0?2
2257 cl 2349 ol 2441 wl 2533 02 2625 al
2259 cl 2351 al 2443 02 2535 al 2627 o2
2261 al 2353 02 2445 cl 2537 02 2629 3 al
2263 02 2355 al 2447 al 2539 cl 2631 cl
2265 al 2357 m2 2449 02 2541 al 2633 al
2267 al 2359 02 2451 al 2543 6 al 2635 ol
2269 3 w#q 2361 cl 2453 al 2545 3 al 2637 cl

2271 02 2363 02 2455 cl 2547 02 2639 o2
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TABLE A.2 Orders of Known Hadamard Matrices (continued)

q t Hw g +t+ How q ¢t How ¢ ¢ How g t How

2641 cl 2713 wk 2785 cl 2857 wl 2929 cl
2643 02 2715 al 2787 cl 2859 cl 2931 cl
2645 02 2717 al 2789 m2 2861 al 2933 al
2647 3 w#q 2719 cl 2791 cl 2863 02 2935 cl
2649 cl 2721 al 2793 al 2865 3 d1 2937 02
2651 02 2723 al 2795 o2 2867 al 2939 8 al
2653 02 2725 cl 2797 m2 2869 cl 2941 cl
2655 cl 2727 02 2799 wi 2871 al 2943 02
2657 al 2729 wl 2801 wk 2873 al 2945 al
2659 3 w#q 2731 3 w#q 2803 3 w#q 2875 cl 2947 02
2661 3 dl1 2733 3 al 2805 ol 2877 02 2949 cl
2663 al 2735 al 2807 ol 2879 21 se 2951 3 di
2665 cl 2737 ol 2809 wk 2881 02 2953 wl
2667 al 2739 cl 2811 al 2883 02 2955 02
2669 02 2741 a2 2813 al 2885 02 2957 al
2671 9 al 2743 02 2815 3 dl1 2887 5 al 2959 y2
2673 al 2745 al 2817 02 2889 wS 2961 ol
2675 02 2747 al 2819 3 w#q 2891 02 2963 3 wi#q
2677 9 al 2749 wk 2821 cl 2893 3 al 2965 o2
2679 02 2751 al 2823 3 d1 2895 al 2967 al
2681 al 2753 a2 2825 al 2897 al 2969 a2
2683 7 al 2755 02 2827 cl 2899 4 d1 2971 3 al
2685 al 2757 al 2829 cl 2901 cl 2973 4 di1
2687 21 se 2759 o2 2831 02 2903 4 a1l 2975 ol
2689 wk 2761 cl 2833 wk 2905 o2 2977 cl
2691 cl 2763 02 2835 cl 2907 cl 2979 02
2693 al 2765 al 2837 wl 2909 wk 2981 al
2695 02 2767 3 w#p 2839 y2 2911 cl 2983 02
2697 cl 2769 02 2841 3 al 2913 7 d1 2985 al
2699 21 se 2771 al 2843 3 m3 2915 ol 2987 3 w#r
2701 wd 2773 3 dl 2845 cl 2917 wl 2989 02
2703 ol 2775 o2 2847 cl 2919 wi 2991 cl
2705 ol 2777 m2 2849 02 2921 3 dl1 2993 al
2707 cl 2779 cl 2851 cl 2923 02 2995 9 al
2709 cl 2781 02 2853 al 2925 al 2997 al
2711 3 m3 2783 al 2855 4 dl1 2927 3 m3 2999 22 se
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