
Chapter 1

Preliminaries

In this chapter, We provide some definitions, examples and properties of permanent

of matrix that could be helpful to proceed further. Also, geometrical interpretation

of determinant and permanent of matrix is provided.

1.1 Permanent
1.1.1 Definition

If N be an n × n matrix over a field F, and Nij, its entries (with i ranging over a set

I and J over a set J, each of n elements), then permanent of N is given by

per(N) =
�

π∈S

�

i∈I

Ni,π(i)

S denote the set of all bijection π : I → J and is consists of the elements of the

symmetric group Sn, the group of permutations of n objects. I and J are identified

with set of natural numbers, i.e, 1, · · · , n.

This definition of permanent is closely related to the following definition of deter-

minant of a matrix:

det(N) =
�

π∈S

sgn(π)
�

i∈I

Ni,π(i)
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Note that if π is an even permutation then we use “+” sign and for odd permutation,

we use “ − ” sign.

Example 1. Suppose that N be a square matrix of order 2 as given below.

N =
�
a b
c d

�

per(N) = ad + bc

and
det(N) = ad − bc

1.1.2 Basic properties:

In this section, we describe some properties of permanent of matrices.

1. Permanent have the property of homogeneous of degree n i.e, For matrix A

per(kA) = knper(A)

provided that k is scalar.

2. Let A be a square matrix and AT be its transpose then

per(AT ) = per(A).

3. Suppose that matrix A has only non-negative entries, then

per(A) ≥ det(A).

4. Permanent of matrix A (per(A)) is invariant under arbitrary permutations of

rows and /or columns of matrix A. i.e,

per(A) = per(PAQ)

for any appropriately sized permutation matrices P and Q.
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5. Let B be a matrix of the form

B =

A 0

0 D




then

per


A 0

0 D


 = per(A) ∗ per(D).

6. For an identity matrix I,

per(I) = 1.

7. If matrix A has a row that has all entries equal to zero, then

per(A) = 0.

1.1.3 Geometrical Interpretation

It is observed that permanent of matrix has not very clear geometrical interpretation

like determinant of matrix but still permanent can be illustrated with the help of

bipartite graph and perfect matchings.

The permanent of a (0, 1)-matrix can be interpreted as the number of perfect

matchings in a bipartite graph. More precisely, given such a matrix

A = (aij)1≤i,j≤n

we can define a bipartite graph G with two parts

U = {u1, u1, · · · , un}

and

V = {v1, v1, · · · , vn}
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and there is an edge between ui ∈ U and vj ∈ V if and only if aij = 1. It directly

follows from the definition of the permanent that

perm(A) = pm(G)

Conversely, the number of perfect matchings of a bipartite graph is the permanent of

its incidence matrix, i.e, if U and V are the two color classes, the matrix is

(auv)(u,v)∈U×V

with a uv = 1 if uv is an edge, and 0 otherwise.

1.1.4 Bipartite Graphs and Perfect Matchings

In this section, we describe definition of bipartite graph and perfect matching. We

explain relation between bipartite graph and perfect matching that helps in under-

standing the concept of permanent, perhaps, more clearly.

Matching:

In the mathematical discipline of graph theory, a matching or independent edge set

in a graph is a set of edges without common vertices. It may also be an entire graph

consisting of edges without common vertices. Bipartite matching is a special case of

a network flow problem. Let G be a graph. A matching of G is a set M of edges of

G such that no two edges in M are adjacent in G [Wik10, Hir08, GN72]. A matching

of graph G is a subgraph of G such that every edge shares no vertex with any other

edge. That is, each vertex in matching M has degree one.

The size of a matching is the number of edges in that matching. Consider the graph

in Figure 1.1. Denote the edge that connects vertices i and j as (i, j). Note that



10

2

1

4

5

6

7

8

2

3

Figure 1.1: Example of Matching

{(3, 8)} is a matching. Obviously we can get more. The pairs

{(3, 8), (4, 7)}

also make a matching. That is a matching of size two. A matching of size 3 is

{(2, 3), (4, 8), (5, 7)}

Perfect Matching:

A matching M is perfect if every vertex of G is incident to an edge of M . Simply, we

can say that, a matching which matches all vertices of the graph, i.e. every vertex

of the graph is incident to exactly one edge of the matching. The number of perfect

matchings of G can be denoted by pm(G). Figure 1.2 represents an example of perfect

matching. Corresponding to the graph presented in figure 1.2, an adjacency matrix
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Figure 1.2: Perfect Matching

A is given below.

A =




0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0




Number of perfect matchings in figure 1.2 is one that can be determined by computing

permanent of matrix A.

Permanent of matrix A = 1

Bipartite Graph:

In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph

whose vertices can be divided into two disjoint sets U and V (that is, U and V are

each independent sets) such that every edge connects a vertex in U to one in V .

Vertex set U and V are often denoted as partite sets.
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A bipartite graph is a special case of a graph with specific properties. Firstly, in

a bipartite graph, every vertex can be sorted into one of two disjoint sets A and B.

Secondly, each vertex in a set (for example, A) is connected to at least one vertex in

the opposite set B by an edge, and vice versa. Lastly, for any given vertex in a set, it

cannot be connected to any other vertex in the same set, thus the only connections

between vertices are between the two disjoint sets [ADH98, Wik10]. An example of a

simple bipartite graph is shown in figure 1.3. The three vertices on the top form one

Figure 1.3: Simple bipartite graph

set and the bottom four vertices form the second disjoint set. Note that any graph

whose edges have some numerical value assigned to them is called a weighted graph.
Example 2. Suppose that administrators of a college dormitory need to assign rooms
to students in such a way that each room assign to a single student. Now, students
and rooms can be considered as two different categories or sets. If we denote these
two sets by A and B, then

A = {Sana, Rabia, Saba, Nida, Rida}
B = {Room1, Room2, Room3, Room4, Room5}

These two sets (A and B) are presented in figure 1.4. Figure 1.4 part (a) presents
bipartite graph between two sets A and B, where as part (b) of the figure presents
perfect matching between the sets. Note that in part (b) of the figure 1.4, each room is
assigned to a single student where as in part (a) of the figure 1.4, a room is assigned
to more than one students.
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Figure 1.4: Bipartite Graph and Perfect Matching

Further, If there are equal number of nodes on each side of a bipartite graph, a

perfect matching is an assignment of nodes on the one side to nodes on the other side

in such a way that

• Each node is connected by an edge to the node it is assigned to.

• No two nodes on the left are assigned to the same node on the right.

1.2 Determinant

Determinant of square matrices plays a fundamental role in linear algebra. It is a

linear function on rows (and columns) of the matrix, and has several nice interpre-

tations. Geometrically, it is the volume of the parallelepiped defined by rows (or



14

columns) of the matrix, and algebraically, it is the product of all eigenvalues, with

multiplicity, of the matrix. It also satisfies a number of other interesting properties,

e.g., it is multiplicative, invariant under linear combinations of rows (and columns)

etc [Agr06, vzG87, yC90].

1.2.1 Geometrical interpretation

Determinant can be interpreted as the volume of parallelepiped defined by rows (or

columns) of matrix. Suppose that there are three vectors

�a = (a1, a2, a3),

�b = (b1, b2, b3)

and

�c = (c1, c2, c3)

represent three edges that meet at one vertex of parallelepiped (see figure 1.5). Then

volume of the parallelepiped is equal to the absolute value of the scalar triple product

�a · (�b × �c)

can be computed as follows.

�a · (�b × �c) = det




a1 a2 a3

b1 b2 b3

c1 c2 c3




Note that the volume V of parallelepiped is the absolute value of scalar triple product

�a · (�b × �c).

V = |�a · (�b × �c)| =

����������

det




a1 a2 a3

b1 b2 b3

c1 c2 c3




����������
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Figure 1.5: Parallelepiped

Example 3. Let �a=(2, 0, 2)T , �b=(−1, 0, 1)T and �c=(0, 3, 1)T be three vectors that
represent three edges meet at one vertex of parallelepiped (see figure 1.6). Then volume
of parallelepiped is given as

V = |�a · (�b × �c)| =

�������
det




2 0 2
−1 0 1
0 3 1




�������
= 12

Now we can construct a matrix A by using above vectors �a, �b and �c as rows

A =




2 0 2
−1 0 1
0 3 1




Determinant of matrix A is given as

det(A)=det




2 0 2
−1 0 1
0 3 1


=12

1.3 Matrices

A matrix is a concise and useful way of uniquely representing and working with linear

transformations. In particular, every linear transformation can be represented by a
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Figure 1.6: Second Example

matrix, and every matrix corresponds to a unique linear transformation. The matrix,

and its close relative, the determinant, are extremely important concepts in linear

algebra, and were first formulated by Sylvester (1851) and Cayley [Syl83]. In real life,

a matrix is a rectangular array with prescribed numbers n of rows and m of columns

(n × m matrix).

1.3.1 Adjacency matrix

The adjacency matrix for a graph with n vertices is an n × n matrix whose i, j-th

entry is 1, if vertex i and vertex j are adjacent, and 0, if they are not. An adjacency

matrix is a mean of representing the vertices of graph which are adjacent to other

vertices. The adjacency matrix of bipartite graph whose parts have r and s vertices

has the form [W+01], 
 O B

BT O




where B is an r × s matrix and O is an all zero matrix. The matrix B represent

a bipartite graph and it is also called biadjacency matrix. The adjacency matrix
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of an undirected simple graph is symmetric, and therefore has complete set of real

eigenvalues and an orthogonal eigenvector basis.
Example 4. Corresponding to the graph presented in figure 1.2, an adjacency matrix
A is given below.

A =




0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0




1.3.2 (0-1) matrix

A (0-1) matrix is a matrix whose entries are either 0 or 1. Such matrices arise

frequently in combinatorics and graph theory. It is known that the largest number of

ones in an n×n nonsingular (0-1) matrix is n2 − n + 1 [HLZ05].

A (0, 1)-matrix (also identified as zero-one or Boolean) is a rectangular matrix for

which each element of the matrix has the value of either one or zero. (0, 1)-matrices

arise from problems in a variety of application areas. Prominent examples include:

1. adjacency matrix for simple graph, representing connectivity relationship be-

tween vertices.

2. Matrix calculus applications in statistics and econometrics which generate spe-

cial (0,1)-matrices such as selection, permutation, commutation, elimination,

duplication, and shifting matrices [And04].
Example 5. The 0-1 matrix of size 5

B =




1 1 0 0 0
1 0 1 1 0
1 0 0 1 0
0 0 0 1 0
0 0 0 1 1
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1.3.3 Biadjacency Matrix

Let G = (V, E) be a bipartite graph. The biadjacency matrix B represents the

bipartite graph.The biadjacency matrix B = bij is r× s, (0-1) matrix in which bij = 1

if and only if (ui, vj) ∈ E otherwise bij = 0.

A biadjacency matrix B of bipartite graph given in figure 1.4 is

B =




1 1 0 0 0
1 0 1 1 0
1 0 0 1 0
0 0 0 1 0
0 0 0 1 1




The permanent of biadjacency matrix B is given as

per(B) =




1 1 0 0 0
1 0 1 1 0
1 0 0 1 0
0 0 0 1 0
0 0 0 1 1




= 1

As the perfect matching of given bipartite graph is unique and permanent of biad-

jacency matrix of bipartite graph is also one. Thus, permanent of the biadjacency

matrix of a bipartite graph is exactly the number of perfect matchings in the graph.

Square matrices

Square matrices having non negative entries are considered to be very important as

they played important role in probabilistic theory of finite Morkov chains and in the

study of linear models. The properties of such matrices were first investigated by

Perron [GD53, Ser10]. In mathematics, a square matrix is a matrix with the same
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number of rows and columns. An n × n matrix is known as a square matrix of order

n.
Example 6.

A =



1 2 3
0 4 6
8 1 2




is a square matrix of size 3.

1.3.4 Finding Rank of Matrices

The rank of a matrix is equal to the number of linearly independent rows. A linearly

independent row is one that is not a combination of other rows.

The following matrix has two linearly independent rows (1 and 2). However, when

the third row is thrown into the mix, you can see that the first row is now equal to

the sum of the second and third rows. Therefore, the rank of this particular matrix

is 2, as there are only two linearly independent rows.



1 2 1
−2 −3 1
3 5 0




Another example is given below.
Example 7.

N =



1 0 2
4 1 2
3 1 0




Rank of matrix N is 2, because it has two linearly independent rows and the third row
is the linear combination of first row and second row.

The matrix rank will always be less than the number of non-zero rows or the num-

ber of columns in the matrix. If all of the rows in a matrix are linearly independent,

the matrix is full row rank. For a square matrix, it is only full rank if its determinant

is zero.
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Figuring out the rank of a matrix by trying to determine by sight only how many

rows or columns are linearly independent can be practically impossible. An easier

(and perhaps obvious) way is to convert to row echelon form. Finding the rank of a

matrix is simple if we know how to find the row echelon matrix. Thus, to find the

rank of any matrix:

• Find the row echelon matrix.

• Count the number of non-zero rows.

Example 8. Consider the matrix

K =



1 2 4
2 3 5
3 6 12




Performing elementary row operations, matrix K is reduced to echelon form as given

below

K �




1 2 4
0 1 3
0 0 0




The above matrix has been converted to row echelon form with two non-zero rows.

Therefore, the rank of the matrix is 2 [Sch91, Sta15].

Identity matrix

The identity matrix In of size n is the matrix in which all the elements on the main

diagonal are equal to 1 and all other elements are equal to 0.

Example 9. An identity matrix of size n can be written as

In =




1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1





