
  

Hadamard 
Matrices and 

Designs



  

Definition

     An n x n matrix H =  hij  is an Hadamard matrix of 
order n if the entries of H are either +1 or -1 and such 
that  HHt = nI, where Ht is the transpose of H and I is the 
order n identity matrix. 

Put another way, a (+1,-1)-matrix is Hadamard if the inner 
product of two distinct rows is 0 and the inner product of a 
row with itself is n.



  

Examples
     A few examples of Hadamard matrices are;

       1  1           -1  1  1  1            1  1  1  1
       1 -1            1 -1  1  1            1 -1  1 -1
                         1  1 -1  1            1  1 -1 -1
                         1  1  1 -1            1 -1 -1  1

These matrices were first considered as Hadamard 
determinants. They were so named because the 
determinant of an Hadamard matrix satisfies equality in 
Hadamard's determinant theorem, which states that if 
X = xij   is a matrix of order n where | xij | ≤ 1 for all i and j, 
then 
                              | det X |≤ nn/2.



  

Properties

     It is apparent that if the rows and columns of an 
Hadamard matrix are  permuted, the matrix remains 
Hadamard. It is also true that if any row or column is 
multiplied by -1, the Hadamard property is retained.
[Prove this]

Thus, it is always possible to arrange to have the first row 
and first column of an Hadamard matrix contain only +1 
entries. An Hadamard matrix in this form is said to be 
normalized.



  

Order of a Hadamard Matrix
Theorem  - The order of an Hadamard matrix is 1,2 or 4n, 
n an integer.

Proof: [1] is an Hadamard matrix of order 1 and the first 
example above is an Hadamard matrix of order 2. Suppose 
now that H is an Hadamard matrix of order h > 2. Normalize 
H and rearrange the first three rows to look like:

     1 ..... 1       1 ..... 1       1 ..... 1       1 ..... 1
     1 ..... 1       1 ..... 1      -1 .....-1      -1 .....-1
     1 ..... 1      -1 .....-1       1 ..... 1      -1 .....-1

         x                y                 z                 w

Where x,y,z,w are the numbers of columns of each type. 



  

Order of a Hadamard Matrix
Theorem V.1.1 - The order of an Hadamard matrix is 1,2 or 4n, n an integer.

Proof: (cont)  Then since the order is h,
                     x + y + z + w = h
and taking the inner products of rows 1 and 2, 1 and 3, 
and, 2 and 3 we get 
                     x + y - z - w = 0
                     x - y + z - w = 0
                     x - y - z + w = 0.
Solving this system of equations gives,
                   x = y = z = w = h/4.
Thus, the integer h must be divisible by 4.



  

Known orders
Corollary. If H is a normalized Hadamard matrix of order 
4n, then every row(column) except the first has 2n minus 
ones and 2n plus ones, further n minus ones in any row 
(column) overlap with n minus ones in each other row 
(column).

Proof: This is a direct result of the above proof since any 
two rows other than the first can take the place of the 
second and third rows in the proof. The same argument can 
be applied to the columns.

     Hadamard matrices are known for many of the possible 
orders, the smallest order for which the existence of an 
Hadamard matrix is in doubt is currently 668 (A solution for 
the previous unknown case of 428 was announced by 
Kharaghani and Tayfeh-Rezaie in June 2004).



  

Kronecker Construction
Construction: Given Hadamard matrices H1 of order n and 
H2 of order m  the direct product of these two matrices, 
represented by:
                           h11H2  h12H2  ... h1nH2

                           h21H2  h22H2  ... h2nH2

 H = H1 x H2 =     …    ...      ...    ... 
                           hn1H2  hn2H2  ... hnnH2

where H1  = | hij|, is an Hadamard matrix of order nm.

Proof: [Left as an exercise].



  

Example
Let
H  =   1  1              and      H* =    -1   1   1   1
          1  -1                                    1  -1    1   1
                                                     1   1   -1   1
                                                     1   1    1  -1 
  
then the direct product H  x  H* is

                                           H* H*
                                           H*-H*



  

Example
which in full form is,
                            -1  1  1 1 -1  1  1  1
                             1 -1  1 1  1 -1  1  1
                             1  1 -1  1 1  1 -1  1
                             1  1  1 -1 1  1  1 -1
                             -1 1  1 1  1 -1 -1 -1 
                             1 -1  1 1 -1  1 -1 -1
                             1  1 -1 1 -1 -1  1 -1
                             1  1 1 -1 -1 -1 -1  1
Homework: Starting with the Hadamard matrix of order 2, 
repeatedly use the direct product construction to construct 
an Hadamard matrix of order 32.

If an Hadamard has order t then this construction can be used 
to produce an Hadamard matrix of order 2t.



  

Quadratic Character of a Field
For odd prime powers q, define the quadratic character 
of the field GF(q) as the function χq : GF(q) → {-1, 0, 1} 
                                        0 if x = 0,
                          χq (x) =   1 if x in QR(q), 
                                       -1 if x in NQR(q).
Note:
    χq (-1)   = 1  if q ≡ 1 mod 4,  χq (-1)  = -1 if q ≡ 3 mod 4.

The quadratic character is multiplicative,
                         χq (xy) =  χq (x)  χq (y).



  

Quadratic Character of a Field - 2
Further properties of  χq :
Lemma:

1. ∑
x∈GF q

q x =0,   and

2. ∑
x∈GF q

q  x q  x y =−1,  for all y∈GF q *=GF q∖{0}.

Pf: Part 1 follows from |QR(q)| = |NQR(q)| = (q-1)/2.
For Part 2, observe
 χq (x) χq (x+y) =  χq (x) χq (x) χq (1+yx-1) =  χq (1+yx-1) if x≠0.
Since y≠0, 1+yx-1 takes on all values except 1, so

∑
x∈GF q

q x q  x y = ∑
x∈GF q , x≠0

q1 yx
−1

= ∑
s∈GF q , s≠1

q  s= ∑
s∈GF q

q s−q 1=0−1=−1.



  

Conference Matrix Construction
A conference matrix of order n is an nxn matrix C with 
entries in {-1,0,1} such that all diagonal entries are 0 and 
CCT = (n-1)In.  

Example:  0  1  1  1  1  1  
                 1  0  1 -1 -1  1
                 1  1  0  1 -1 -1
                 1 -1  1  0  1 -1
                 1 -1 -1  1  0  1
                 1  1 -1 -1  1  0

From the product condition it follows that the only 0's in the 
matrix will be on the main diagonal. 



  

Conference Matrix Construction -2
Conference matrices are closely related to Hadamard matrices, 
so it is not surprising that there are similar constraints on the 
order of conference matrices. In particular we have the 
following result (without proof): 

Theorem: If a symmetric conference matrix of order n 
exists, then n ≡ 2 mod 4 and n-1 is the sum of two integral 
squares. 



  

Conference Matrix Construction-3
Construction: For q ≡ 1 mod 4, define the q+1 x q+1 
matrix W = wij, with indices from GF(q) U {∞}, by:
                       wij = χq(i-j)  for i,j ԑ GF(q),
                       w∞∞ = 0, wij = 1 otherwise.   

Theorem: If q ≡ 1 mod 4 is a prime power, then W is a 
symmetric conference matrix of order q+1.     

Pf: Diagonal entries of W are all 0 and every off diagonal 
element is ±1. Thus, the diagonal entries of WWT are all q 
and since -1 is a square, W is a symmetric matrix. So, we 
must show that the off diagonal entries of WWT are all 0.  



  

Conference Matrix Construction-4
Theorem: If q ≡ 1 mod 4 is a prime power, then W is a symmetric conference matrix of order 
q+1.     

Pf: (cont) Let i,j in GF(q) i ≠ j, then the (i,j) entry of WWT is
1 ∑

h∈GF q
q i−hq j−h=1 ∑

x∈GF q
q x q  x y      where x=i−h  and y= j−i

=1−1=0.

For i ≠∞ wi∞ = w∞i =  

∑
x∈GF q

q  x=0.

Our example was this construction with q = 5.



  

Conference Matrix Construction -5
Theorem: If C is a symmetric conference matrix of order m 
then the matrix

H=C I m C− Im
C− I m −C− I m

is an Hadamard matrix of order 2m.

Pf: Since C is symmetric we have HT = H and every entry of 
H is ±1. It is straight-forward to check that:

HH t=HH=A 0
0 B. Further computation shows that 

A = B = (2m)Im giving the required 
result. 



  

Conference Matrix Construction -6
Combining these results gives us:

Corollary: If m is odd there is an Hadamard matrix of 
order 4m provided 2m-1 is a prime power.

This gives the following small orders:

m 2m-1 order m 2m-1 order
3 5 12 19 37 76
5 9 20 21 41 84
7 13 28 25 49 100
9 17 36 27 53 108

13 25 52 31 61 124
15 29 60



  

Williamson's Method
Consider this matrix identity:

H=−a b c d
b a d −c
c −d a b
d c −b a HH t=a2b2c2d 2 I 4 .

valid for any entries from a commutative ring. 

If we can find 4 nxn symmetric commuting matrices with ±1 
entries (A, B, C and D) such that A2 + B2 + C2 + D2 = 4nIn 
then an Hadamard matrix of order 4n exists. 



  

Williamson's Method
The Hadamard matrices constructed this way are said to be of 
Williamson type. 

The matrices used in this construction must be circulant 
matrices (each row is a cyclic permutation of the previous row). 
While there is an infinite family of Williamson type 
Hadamard matrices they have not be classified.

Constructions are known for orders: 12, 20, 28, 36, 44, 52, 
60, 68, 76, 84, 92, 100, 108, 116, 148, 172, ...

The constructions we have discussed give all orders ≤ 100.



  

Hadamard 2-Designs

     Hadamard matrices of order 4t (t > 1) can be used to 
create symmetric BIBD's, which are called Hadamard 2-
Designs. 

The construction actually forms the incidence matrix of the 
BIBD, from which the design is easily obtained. The 
Hadamard designs have parameters v = 4t – 1, k = 2t - 1 
and λ= t - 1, or v = 4t - 1, k = 2t, and λ= t. 

The construction, as we shall see, is reversible, so that 
BIBD's with these parameters can be used to construct 
Hadamard matrices.



  

Construction
     Let H be an Hadamard matrix of order 4t. First normalize 
the matrix H (so that the first row and column are just +1's), 
then remove the first row and column. The 4t-1 x 4t-1 matrix
which remains, say A, has 2t -1's in each row and column 
and 2t-1 +1's in each row and column, so the row and 
column sums are always -1 for A. The inner product of two 
distinct rows of A will be -1 and the product of a row with itself 
will be 4t-1. These statements are summarized by the matrix 
equations,
               AJ = JAt  = -J     and     AAt   = 4tI - J
where I is the identity matrix and J is the all one matrix of the 
appropriate order. 



  

Construction
Now construct the matrix B = ½(A + J). B is a (0,1)-matrix, 
whose row and column sums are 2t-1,
i.e., BJ = JB = (2t-1)J. Furthermore, the matrix equation,
                                    BBt   = tI + (t-1)J
is satisfied [verify]. Comparing this to an earlier result, we 
see that B is the incidence matrix of a symmetric (since B 
is a square matrix) BIBD with v = 4t-1, k = 2t-1 and  λ= t-1. 
Similarly, if C = ½(J - A), C will be the incidence matrix of 
a (4t-1,2t,t)-design.



  

Example
     Let H be the 8 x 8 Hadamard matrix seen before. In 
normalized form we have,

       + + + + + + + +
       + +  - -  + +  - -              + -  -  + + - -         1 0 0 1 1 0 0
       + -  + -  + -  + -              - +  -  + - + -         0 1 0 1 0 1 0
H = +  -  - + +  -  - +             -  -  + + - - +         0 0 1 1 0 0 1
       + + + +  -  -  -  -     A =  + +  + -  - -  - B =  1 1 1 0 0 0 0
       + +  -  -  -  - + +            +  -  -  - - + +         1 0 0 0 0 1 1
       + -  +  -  - +  - +             - +  -  - + - +         0 1 0 0 1 0 1
       + -  -  +  - +  + -             -  -  + - + + -         0 0 1 0 1 1 0

So, labeling the rows of B with {1,2,...,7} we have the 
(7,3,1)-design whose 7 blocks are:
  {1,4,5}   {2,4,6}   {3,4,7}   {1,2,3}   {1,6,7}   {2,5,7}   {3,5,6}



  

Example
The matrix C is B with the 0's and 1's interchanged (a 
design obtained by interchanging the 0's and 1's of an 
incidence matrix is called the complementary design of the 
original) and its blocks form the (7,4,2)-design:

 {2,3,6,7}  {1,3,5,7} {1,2,5,6}  {4,5,6,7}  {2,3,4,5}  {1,3,4,6}  
{1,2,4,7}. 

Exercise: Prove that an Hadamard design (i.e. a symmetric 
BIBD with either of these sets of parameters) can be used 
to construct an Hadamard matrix.
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