
  

   Difference Sets



  

Definition
Suppose that G = (G,+) is a finite group of order v with 
identity 0 written additively but not necessarily abelian. 
A (v,k,λ)-difference set in G  is a subset D of G of size k 
such that the multiset
{x-y| x,y ԑ D, x ≠ y} contains every element of G\{0} λ times.

Example: In ℤ
13

 the set D = {0,1,3,9} is a (13,4,1)-difference 
set. Consider
       1 – 0 = 1          0 – 1 = -1 = 12
       3 – 0 = 3          0 – 3 = -3 = 10
       9 – 0 = 9          0 – 9 = -9 = 4
       3 – 1 = 2          1 – 3 = -2 = 11
       9 – 1 = 8          1 – 9 = -8 = 5
       9 – 3 = 6          3 – 9 = -6 = 7



  

More Examples
Example:

D = {(0,1), (0,2), (0,3), (1,0), (2,0), (3,0)} is a (16,6,2) 
difference set in (ℤ

4
 x ℤ

4
, +).

Example:

D = {a, a2, b, b2, b4} is a (21, 5, 1)difference set in the non-
abelian group
                 G = {aibj: a3 = b7 = 1, ba = ab4}.

Since this group is written multiplicatively the difference 
set definition takes on the form:
              {xy-1 | x, y ԑ D, x ≠ y} = G\{1}.



  

So What?
If a (v,k,λ)- difference set exists then
                                 λ(v-1) = k(k-1).
This is immediate since the the LHS counts the number of 
non-zero elements of the set each with multiplicity λ, while 
the RHS counts the number of ordered pairs of distinct 
elements (each representing a difference).

The notation and this relation seem to imply a relationship 
between difference sets and symmetric BIBDs.

If D is a difference set in group (G,+), then 
                           D+g = {x + g | x ɛ D} 
is called a translate of D for any g ɛ G. The multiset of all v 
(= |G|) translates of D is denoted Dev(D) and called the 
development of D. 



  

The Connection
Theorem: Let D be a (v,k,λ)-difference set in an abelian 
group (G,+). Then (G, Dev(D)) is a symmetric (v,k,λ)-BIBD. 

Pf. Suppose x,y ԑ G, x ≠ y. Let x – y = d. There are λ pairs 
(x

i
,y

i
), with x

i
, y

i
 ԑ D and x

i
 – y

i
 = d. Define g

i
 = -x

i 
+ x. Then 

we also have g
i
 = -y

i 
+ y and {x,y} = {x

i
 + g

i
, y

i
 + g

i
} ⊆ D + g

i
. 

The g
i
's are distinct since the x

i
's are, so there are at least λ 

translates that contain {x,y}.
   Now suppose that there are m translates D + h

j
, 1 ≤ j ≤ m 

which contain {x,y}. Then (x – h
j
) + (h

j
 – y) = x-y = d for 

each j. {x-h
j
, y-h

j
} ⊆ D and the h

j
's are all distinct, so we 

have found m ordered pairs {x',y'} ⊆ D such that x' – y' = d. 
Thus, m = λ and we see that we have a symmetric BIBD. 



  

Example
Only this proof required abelian groups, the result is valid 
for all groups.
Corollary: If D is a difference set then Dev(D) has distinct 
blocks.

Pf: If D + g = D + h with g ≠ h. The symmetric BIBD whose 
blocks are Dev(D) would have two blocks intersecting in k 
points, but two blocks intersect in λ points in a symmetric 
design.

Example: D = {0,1,3,9} is a (13, 4, 1) – difference set. 
Dev(D) =  0139, 124A, 235B, 346C, 0457, 1568, 2679,
                 378A, 489B, 59AC, 06AB, 17BC, 028C
with A = 10, B = 11 and C = 12. This design is the 
projective plane of order 3. 



  

Automorphisms
Theorem: Aut(G, Dev(D)) contains a subgroup (G',◦) 
isomorphic to (G,+). 

Pf: For each g in G, define the map t
g
: G → G by

                                (x)t
g
 =  x + g.       Note change from text.

Each t
g
 is a bijection. Let G' = {t

g
| g ԑ G}. It is easy to check 

that G' is a permutation group ( called the permutation 
representation of G).
    Define α: G → G' by α(g) = t

g 
. α is a group isomorphism 

since, (x) (α(g)◦α(h)) = (x)t
g
t
h
 = (x+g) t

h
 = (x+g)+h = x+(g+h)

                        = (x)t
g+h

 = (x) α(g+h).



  

Automorphisms
Theorem: Aut(G, Dev(D)) contains a subgroup (G',◦) isomorphic to (G,+). 

Pf: (cont)
    We now show that G' consists of automorphisms. . 
        (D + h) α(g) = {(x)α(g) | x ԑ D + h}
                            =  {x + g | x ԑ D + h}
                            = {d + h + g | d ԑ D}
                            = D + (h + g) 

So, α(g) maps translates of D to translates of D and is an 
automorphism of Dev(D). 



  

Example
Consider D = {(0,1), (0,2), (0,3), (1,0), (2,0), (3,0)} a 
(16,6,2) difference set in (ℤ

4
 x ℤ

4
, +) = G.

We will number the elements of G as follows:
0 = (0,0)   8 = (2,0)
1 = (0,1)   9 = (2,1)
2 = (0,2)   A = (2,2)
3 = (0,3)   B = (2,3)
4 = (1,0)   C = (3,0)
5 = (1,1)   D = (3,1)
6 = (1,2)   E = (3,2)
7 = (1,3)   F = (3,3)

(0,1) → (0123)(4567)(89AB)(CDEF)
(1,0) → (048C)(159D)(26AE)(37BF)
(1,2) → (068E)(179F)(24AC)(35BD)

D = {1,2,3,4,8,C}
D(0,1) = {2,3,1,5,9,D} = D+1
D(1,2) = {7,4,5,A,E,2} = D+6



  

A useful lemma
Lemma: In a symmetric BIBD, the number of fixed points of 
any automorphism equals the number of fixed blocks.

Pf: Let α be an automorphism of the BIBD (X,B) which has 
incidence matrix A. There exist permutation matrices 
corresponding to the action of α on the points (P) and on 
the blocks (Q) such that 
                                   PA = AQ,
since α is an automorphism and preserves the design. A is 
a square, non-singular matrix and so has an inverse. From 
which we derive P = AQA-1, i.e., P and Q are similar 
matrices. The sum of the elements of P (or Q) on the 
diagonal (the trace of the matrix) is the number of fixed 
points(or blocks) of α. Similar matrices have the same 
trace.



  

Example

The (7,3,1)-difference set {0,1,3} produces the Fano plane 
with blocks  013, 124, 235, 346, 045, 156, 026 has the 
automorphism α = (25)(46). This has 3 fixed points and 
cycle structure [13, 22].  The text would write [1,1,1,2,2].

α fixes blocks 013, 235 and 346, while it interchanges 
blocks 124 ↔ 156 and 045 ↔ 026, so cycle structure on 
the blocks is also  [13, 22].



  

More Generally

Theorem: An automorphism of a symmetric BIBD has the 
same cycle type on the points as it does on the blocks.

We have just seen an example of this. As the proof involves 
the Möbius Inversion Formula we shall skip it for now. 



  

Conversely
Theorem: If a symmetric (v,k,λ)-BIBD admits an 
automorphism which permutes the points in a single cycle 
of length v, then there is a (v,k,λ)-difference set in (ℤ

v
,+).

Pf: Let X = {x
0
, ..., x

v-1
} and α(x

i
) = x

i+1 mod v
. Choose any 

block and call it A
0
 and define

                      A
j
 = {αj(x) | x ԑ A

0
} = {x

i+j mod v
 | x

i
 ԑ A

0
}.

Each of the A
j
 is a block of the design since α is an 

automorphism. We also have α(A
j
) = A

j+1 mod v
 by the way in 

which the A
i
's are defined. Since the cycle type of α on 

points is [v1], it must permute the blocks in a single orbit of 
length v, so the A

i
's are distinct and all blocks are of this 

type. 



  

Conversely
Theorem: If a symmetric (v,k,λ)-BIBD admits an automorphism which permutes the points in 
a single cycle of length v, then there is a (v,k,λ)-difference set in (ℤ

v
,+).

Pf: (cont) Now define
                               D = {i | x

i
 ԑ A

0
}.

Let g ԑ ℤ
v
\{0}. The pair {x

0
, x

g
} occurs in λ blocks of the 

design, A'
1
, ..., A'

λ
. For each occurrence of a pair 

{x
0
,x

g
} ⊆ A'

j
, we have a pair with difference g in the set D, 

namely,
    (g – j) - (-j) ≡ g mod v, where {-j mod v, g-j mod v} ⊆ . D

 These λ     ,     pairs in D are distinct so D is a
( , ,v k λ)-  . difference set



  

More Generally
Theorem: If a symmetric (v,k,λ)-BIBD admits a sharply 
transitive automorphism group G, then there is a (v,k,λ)-
difference set in the group G.

Sharply transitive means that for every ordered pair of 
elements (a, b), there is a unique element g ԑ G, so that 
b = ag. This generalizes the last result since the group 
generated by an automorphism which is a single cycle of 
length v is sharply transitive in its action on X. 

The proof is similar to the last result and so is omitted. 



  

Quadratic Residues
Let F=F

q
= GF(q) be a finite field of odd prime power order q. 

                 QR(q) = {non-zero squares in F}
which is called the set of quadratic residues of F. The set of 
non-zero elements that are not in QR form the set of 
quadratic non-residues QNR(q). 

  In terms of a primitive element, ω of F, the quadratic 
residues are the even powers of ω, and the quadratic non-
residues are the odd powers. 

Ex: QR(7) = {1,4,2}   3 is a primitive element of ℤ
7
 = GF(7).

  30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.



  

Properties
Since the non-zero elements of a finite field (= F* = F\{0}) 
form a multiplicative cyclic group, it is easy to see that 
QR(q) is a subgroup of this cyclic group which must be of 
order ½(q-1). NQR(q) is the coset of this group in F*.

Thm: For odd q,  -1 ԑ QR(q) if and only if q ≡ 1 mod 4.

Pf: Let ω be a primitive element of F
q
. Let γ = ω(q-1)/2 then 

γ2 = ω(q-1) = 1, but since γ ≠ 1 we have γ = -1. 

Ex: In GF(7), -1 = 6 which is in NQR(7) since 7 ≡ 3 mod 4.

   In GF(5), -1 = 4, clearly in QR(5) and 5 ≡ 1 mod 4.



  

QR Difference Sets
Thm: If q ≡ 3 mod 4, then QR(q) is a (q, ½(q-1), ¼(q-3))- 
difference set in (F

q
, +).

Pf: Denote D = QR(q). We have |D| = ½(q-1), so we need 
only show that every non-zero element of F

q
 occurs ¼(q-3) 

times as a difference of two elements in D. 
    For any d ԑ F

q
\{0}, define

                    a
d
 = | {(x,y) : x,y ԑ D, x – y = d}|.

gx – gy = g(x-y) for all g, x, y, so the number of times any 
given difference d occurs in D is the same as the number of 
times the difference gd occurs in gD, where gD = {gx : x ԑ 
D}. Suppose that g ԑ D, then gD = D so a

d
 = a

gd
 and there 

exists a constant λ such that a
d
 = λ for all d ԑ D. 



  

QR Difference Sets
Thm: If q ≡ 3 mod 4, then QR(q) is a (q, ½(q-1), ¼(q-3))- difference set in (F

q
, +).

Pf: (cont) Now suppose that d ԑ QNR(q) and let e = -d. 
Since q ≡ 3 mod 4, -1 ԑ QNR so e ԑ D. Note that a

d
 = a

e
 

because x-y = d if and only if y-x = e. Therefore it follows 
that a

d
 = λ for all d ԑ F

q
\{0}, and so D is a (q, ½(q-1), λ)-

difference set. We can now calculate λ using
                        λ(v-1) = k(k-1)
  so 
                     λ(q-1) = ½(q-1)(½)(q-3) 
                             λ = ¼(q-3).



  

Example

The QR difference set obtained when q = 11 is an 
(11,5,2)- difference set which produces a biplane with k=5.

QR(11) = {1, 4, 9, 5, 3} = D

Dev(D) = {1, 4, 9, 5, 3}  {2, 5, 10, 6, 4}  {3, 6, 0, 7, 5}
               {4, 7, 1, 8, 6}  {5, 8, 2, 9, 7}   {6, 9, 3, 10, 8}
               {7, 10, 4, 0, 9} {8, 0, 5, 1,10}  {9, 1, 6, 2, 0}
               {10, 2, 7, 3, 1} {0, 3, 8, 4, 2}



  

Related Quartic Residues

Thm: If p = 4t2 + 1 is prime and t is an odd integer, then 
the quartic residues in ℤ

p
 form a (4t2+1, t2, ¼(t2-1)) – 

difference set in (ℤ
p
,+).

With t = 3, p = 37 and Dev(quartic residues) forms a
(37, 9, 2) biplane.

Thm: If p = 4t2 + 9 is prime and t is an odd integer, then 
the quartic residues in ℤ

p
  together with 0, form a 

(4t2+9, t2 + 3, ¼(t2+ 3)) – difference set in (ℤ
p
,+).



  

Singer Difference Sets
Thm: If q is a prime power, then there exists a 
              (q2+q+1, q+1, 1)-difference set in (ℤq2+q+1,+). 

Pf:  We will prove this by constructing the design and then 
showing that it has the right kind of automorphism to give us 
the difference set. 
      Recall that the designs with these parameters were 
constructed from a 3-dimensional vector space V. Points were 
the 1-dimensional subspaces and blocks the 2-dimensional 
subspaces. 
       Since Fq3 is a 3-dimensional vector space over F

q
 we 

may take V = Fq3 and construct our design. Let ω be a   



  

Singer Difference Sets
Thm: If q is a prime power, then there exists a (q2+q+1, q+1, 1)-difference set in (ℤq2+q+1,+). 

Pf:  (cont.) primitive element of Fq3 and define a map
f: V → V by f(z) = ωz. Now f(z + z') = ω(z+z') = ωz+ωz' = 
f(z)+f(z'), and f(cz) = ω(cz) = (ωc)z = (cω)z = c(ωz) = cf(z). 
Thus f is a linear map of V and so preserves subspaces of 
V. This means that f induces an automorphism of the 
design.
    Since  F

q
 is a subfield of Fq3 it is easy to see that

                   F
q
 = {ω(q2+q+1)i | 0 ≤ i ≤ q-2} U {(0,0,0)}.

The map fq2+q+1 multiplies any vector by a scalar (an 
element of F

q
) so fixes any 1-dim subspace, and no smaller 

(non-zero) power of f can do so. Thus, f permutes the 
points in a single cycle of length q2+q+1 = v.



  

Example
For example consider the construction of the (13,4,1)- 
Singer difference set in ℤ

13
. 

    We start with the field F
27

 as a 3-dimensional vector 
space over F

3
. [This is the right base field since we want 

to construct the projective plane of order 3.]
   A primitive cubic polynomial over F

3
 is given by x3-x2 +1 

[Note that -1 ≡ 2 mod 3]. If w is a primitive element of F
27

 
then:

w0 = w26 = 1             w7 = w2 + 1            w14  = -w                w21 = -w2 -w + 1 
w1 = w                     w8 = w2+ w -1         w15 = -w2                w22 = w2 +w +1
w2 = w2                    w9 = -w2 -w -1         w16 = -w2 +1           w23 = -w2 +w -1
w3 = w2 -1               w10 = w2 -w +1         w17 = -w2 + w +1    w24 = -w + 1
w4 = w2 – w – 1       w11 = w -1                w18 = w +1             w25 = -w2 + w
w5 = -w -1               w12 =w2 -w               w19 = w2+ w
w6 = -w2 -w             w13 = -1                    w20 = -w2 -1



  

Example
We now need a 2-dimensional subspace. We can pick any 
two vectors (elements of F

27
) as a basis for the subspace 

as long as they aren't scalar multiples of each other. For 
instance 1 and w will work. We now form <1,w> = {a + bw} 
where a, b range through F

3
 = {0,1,-1 = w13}. This gives us

0 + 0w = 0           1 + 0w = 1           -1 + 0w = w13

0 + w   = w           1 + w  = w18         -1 + w   = w11 
0 – w   = w14         1 – w  = w24         -1 – w   = w5

Now, taking only the non-zero elements and reducing the 
exponents mod 13 (to get only one vector in each 1-dim 
subspace) we get:  {1, w, w5, w11} = <1,w>. The difference 
set in ℤ

13
 is thus {0,1,5,11}.



  

Multipliers
From now on we will be working with abelian groups.

Let D be a (v,k,λ)-difference set in an abelian group (G,+) 
of order v. For an integer m, define
                    mD = {mx | x ԑ D},
where mx is the sum of m copies of x (computed in G). m 
is called a multiplier of D if mD = D+g for some g ԑ G.
If mD = D, we say that D is fixed by the multiplier m.

Ex: D = {0,3,4,9,11} is a (21,5,1)-difference set in ℤ
21

.
  Consider 2D = {0,6,8,18,1} = D + 18 so 2 is a multiplier.

   {3,6,7,12,14} is also a (21,5,1)-difference set in ℤ
21

 and 
it is fixed by the multiplier 2. 



  

Properties of Multipliers
Lemma: If m is a multiplier of a (v,k,λ)-difference set in an 
abelian group G of order v, then gcd(v,m) = 1.

Pf. Suppose that gcd(v,m) = s > 1. Let p be a prime divisor 
of s. Since G is abelian, there will be an element of order 
p in G; select one and call it d. There must exist elements 
x,y in the difference set D so that x – y = d. Then, 
mx – my= md = 0 since p divides m. So the set mD 
contains repeated elements and therefore mD ≠ D + g for 
any g in G. m is thus not a multiplier, a contradiction.



  

Properties of Multipliers - 2
Lemma: If m is a multiplier of a (v,k,λ)-difference set D in 
an abelian group G then the map α: G → G given by 
α(x) = mx is an automorphism of (G, Dev(D)). 

Pf: Since m is a multiplier, mD = D + g for some g ԑ G.
Consider
  α(D + h) = m(D + h) = mD + mh = D + g + mh ԑ Dev(D).
So α maps blocks to blocks. If α is a bijection then it will 
be an automorphism of (G, Dev(D)). Since G is finite, we 
need only show that a is an injection to prove that it is a 
bijection. Suppose α(x) = α(y). Then mx = my, or 
m(x-y)=0. If x -y ≠ 0, then the order of x – y must divide m 
and v, but this contracts the last lemma, so x = y.



  

The Multiplier Theorem
Theorem: Let D be a (v,k,λ)-difference set in an abelian 
group G. If
        1. p is a prime,
    2. gcd(v,p) = 1,
        3. k – λ ≡ 0 mod p, and  k – λ is the order of the design
        4. p > λ,
then p is a multiplier of D.

Example: A (21,5,1)-difference set in ℤ21 would have 2 as a 
multiplier and we shall construct one shortly.

A (31, 10, 3) -difference set in ℤ31 would have 7 as a 
multiplier, but we will see that no such difference set exists. 



  

Using the Multiplier Theorem
There are some properties of multipliers which make using the 
theorem easier.

Theorem: If m is a multiplier of a difference set D in an 
abelian group G, then there is a translate of D which is 
fixed by m.

Pf: Recall that the map α(x)= mx is an automorphism of 
the design (G, Dev(D)). Since α(0) = 0, α has at least one 
fixed point and so it must fix at least one block of Dev(D). 



  

Examples
If there is a (21,5,1)-difference set in ℤ21, then 2 is a 
multiplier by the multiplier theorem, but how do we find the 
difference set?

By the last result we know that 2 would fix a translate of 
the difference set (which is itself a difference set), so we 
should try to find it. If 2 fixes this block, then the points in 
the block must form orbits of the action given by 
multiplying by 2 (mod 21). The orbits of this action are:
[0], [1 2 4 8 16 11], [3 6 12], [5 10 20 19 17 3], [7 14], and 
[9 18 15]. A block of size 5 can only be made up of orbits 
of sizes 2 and 3 (from this list with no repeated elements). 
So, we check {3,6,7,12,14} and {7,9,14,15,18} both of 
which happen to work – that is, give difference sets.



  

Examples
Similar to the last example, a (31, 10, 3)-difference set in ℤ31 
would have 7 as a multiplier. 

As before we would look for a block fixed by multiplication 
by 7 (i.e., made up of orbits of this action), but these orbits 
are:
    [0],
    [1 7 18 2 14 5 4 28 10 8 25 20 16 19 9]
    [3 21 23 6 11 15 12 22 30 24 13 29 17 26 27]

as it is impossible to obtain a block of size 10 from these 
orbits of size 15, there can be no such difference set. 



  

Using the Multiplier Theorem - 2
Theorem: If there exists a (v,k,λ)-difference set D in an 
abelian group G of order v where gcd(v,k) = 1, then there 
is a translate of D which is fixed by every multiplier.

Pf: Let s=∑
x∈D
x .

It follows that
∑
x∈Dg

x=skg .

Now suppose that s + kg = s + kh, with g ≠ h. Then k(g-h) = 
0, so the order of g-h divides k. But the order of any 
element of a group divides the order of the group (v in this 
case). Since gcd(k,v) = 1, we have g – h = 0 →← 



  

Using the Multiplier Theorem - 2a
Theorem: If there exists a (v,k,λ)-difference set D in an abelian group G of order v where 
gcd(v,k) = 1, then there is a translate of D which is fixed by every multiplier.

Pf:(cont) This shows that g → s + kg is one-to-one. Since 
G is finite, this map is a bijection, and so a surjection and 
there must be a unique g for which s + kg = 0. For this g, 

∑
x∈m Dg

x=m ∑
x∈Dg

x=0.

∑
x∈Dg

x=0 .

Now let m be any multiplier of D. m is also a multiplier of 
any translate of D, so

But since there is a unique translate which adds up to 0, 
we have m(D+g) = D+g, so D+g is fixed by all multipliers.



  

Example
Consider a projective plane of order n with n ≡ 0 mod 6, 
that is a symmetric (n2+n+1,n+1,1)-design. Both 2 and 3 
satisfy the conditions of the multiplier theorem. Since
n2+n+1 = n(n+1) + 1, gcd(v,k) = 1 so there would be a 
difference set which is fixed by both multipliers by the last 
result. If x≠0 is an element of such a D, then 2x and 3x 
must also be elements. None of the elements x, 2x or 3x 
can be equal and the differences 2x – x and 3x – 2x are 
both equal to x, contradicting the fact that λ = 1. So no such 
difference set can exist. 
     Notice that this does not rule out the existence of a projective 
plane of order 12, only one that comes from a difference set 
(these are called cyclic projective planes.) 



  

The Group Ring
Let G be an abelian group. The group ring ℤ[G] consists 
of all formal sums of the form

∑
g∈G
ag x

g

where ag ԑ ℤ and x is an indeterminate. The elements of 
the group ring look like polynomials in x with integer 
coefficients. We exploit that resemblance and define: 

ab x =∑
g∈G

a gbg  x
g

and
a⋅b  x =∑

g∈G
∑
h∈G

a gbh  x
gh

where a  x =∑
g∈G
a g x

g  and b  x =∑
g∈G
bg x

g



  

The Group Ring - 2
With those definitions it is straight forward to show that 
ℤ[G] is in fact a ring.

Sometimes we replace ℤ by ℤp and will write 
   a(x) ≡ b(x) mod p ↔ ag ≡ bg (mod p) for all g ԑ G. 

Some other definitions:
a  xm=∑

g∈G
ag x

mg ,

a  x−1=∑
g∈G
a g x

−g ,

a 1=∑
g∈G
a g ,

G  x =∑
g∈G
x g , and for any set D of G 

D  x =∑
g∈D

xg .



  

Properties of the Group Ring
Lemma A: If D is a (v,k,λ)-difference set in an abelian 
group, then 
                    D(x)D(x-1) = λG(x) + (k-λ)x0.

Pf: We have D  xD  X−1= ∑
g , h∈D

x g−h

=∑
d∈G

d x
d ,

where
d=∣{g , h∈D×D : g−h=d }∣.
Clearly
d=k  if d=0  and   if d≠0

since D is a difference set. 
   Note similarity with incidence matrix equation. 



  

Properties of the Group Ring -2
Lemma B: If a(x) in ℤ[G], then
                     a(x)G(x) = a(1)G(x).

a  xG  x = ∑
g ,h∈G

ag x
gh

=∑
i∈G ∑g∈G a g x

i ,  where gh=i

=∑
i∈G
a 1 x i

=a 1G  x  .



  

Properties of Group Rings - 3
Lemma C: If p is a prime and a(x) in ℤ[G], then
                  (a(x))p ≡ a(xp)  (mod p). 

Pf: By induction on the number of non-zero coefficients in 
a(x). If a(x) ≡ 0 the statement is trivially true. If a(x) has 
only one non-zero coefficient then a(x) = agxg for some g.
a  x p=a g x

g  p=a g
p x pg=a g  x

pg=a  x p  in ℤ p [ x ]

Now assume the result if there are j or fewer non-zero 
coefficients in a(x) and assume that we have an a(x) with 
j+1 non-zero coefficients. We can write a(x) = aj(x) + agxg, 
where aj(x) has exactly j non-zero coefficients and ag ≠ 0. 



  

Properties of Group Rings - 3
Lemma C: If p is a prime and a(x) in ℤ[G], then (a(x))p ≡ a(xp)  (mod p). 

Pf:(cont) We now have: 

a  xp=a j x ag x
gp

=a j x 
p∑

i=1

p−1

 pi a j x i agi xg p−ia g xg p
≡a j x 

pag x
g p

≡a j x
pa g x

pg=a  x p .



  

Properties of Group Rings - 4

Lemma D: If D is a (v,k,λ)-difference set in an abelian 
group G, and m is a positive integer with gcd(m,v) = 1, 
then 
             D(xm)D(x-m) = λG(x) + (k-λ)x0.

The proof is similar to that of Lemma A and is left as an 
exercise.



  

Proof of the Multiplier Theorem
Theorem: Let D be a (v,k,λ)-difference set in an abelian group G. If p is prime, gcd(v,p) = 1, p 
divides k – λ and p > λ, then p is a multiplier of D.

Pf: In ℤp[G]:
D x pD x−1=D x pD x−1        Lemma C

=D  x p−1D xD  x−1
=D x p−1G  x  k− x0      Lemma A

= k p−1G  x k−D  x  p−1   Lemma B & D(1)=k 
= k p−1G  x 
=G  x .

Let S(x) = D(xp)D(x-1) – λG(x). We have shown S(x) ≡ 0 
mod p, so all coefficients of S(x) are divisible by p. All the 
coefficients of D(xp)D(x-1) are non-negative, so the 
coefficients of S(x) are greater than or equal to -λ. Thus,  



  

Proof of the Multiplier Theorem -2
Theorem: Let D be a (v,k,λ)-difference set in an abelian group G. If p is prime, gcd(v,p) = 1, p 
divides k – λ and p > λ, then p is a multiplier of D.

Pf:(cont) since p > λ, all coefficients of S(x) are ≥ 0. 

S  xS  x−1=D x pD x−1−G  xD x−pD  x −G  x−1
=D  x p D x−1−G  xD  x−pD x −G  x

=D x pD  x−p D xD  x−12G  x2

                                 −G  x D x pD  x−1D x− pD  x .

Using Lemmas A, B and D and G(1) = v we have:

D  x pD  x−pD x D  x−1=G  x k− x02

=2G  x22 k−G  xk−2 x0

=2 vG  x 2 k−G  x k−2 x0 .



  

Proof of the Multiplier Theorem -3
Theorem: Let D be a (v,k,λ)-difference set in an abelian group G. If p is prime, gcd(v,p) = 1, p 
divides k – λ and p > λ, then p is a multiplier of D.

Pf:(cont) In a similar vein we compute: 

2G  x 2−G  x D x pD  x−1D  x− pD  x
=−2 k 2G  x 2 vG  x .

Combining these results we get:
S  x S  x−1=2 v2 k−−2k 22v G  xk−2 x0

= k−2 x0 .

Let
S  x =∑

g∈G
sg x

g .

We have already shown that sg ≥ 0 for all g.



  

Proof of the Multiplier Theorem -4
Theorem: Let D be a (v,k,λ)-difference set in an abelian group G. If p is prime, gcd(v,p) = 1, p 
divides k – λ and p > λ, then p is a multiplier of D.

Pf:(cont) Suppose that sg and sh are positive for g ≠ h. Then 
in S(x)S(x-1) the coefficient of xg-h would have a positive 
coefficient, a contradiction. Thus S(x) can only have one 
non-zero coefficient, say S(x) = sgxg, and we have 
                  S(x)S(x-1) = (sgxg)(sgx-g) = (sg)2x0.
Thus we have S(x) = (k-λ)xg for some g since sg ≥ 0.
Hence,
                D(xp)D(x-1) = (k – λ)xg + λG(x).
So,
               D(xp)D(x)D(x-1) = D(x)((k – λ)xg + λG(x)), 

and using Lemmas A and B, we obtain:



  

Proof of the Multiplier Theorem -5
Theorem: Let D be a (v,k,λ)-difference set in an abelian group G. If p is prime, gcd(v,p) = 1, p 
divides k – λ and p > λ, then p is a multiplier of D.

Pf:(cont)
      D(xp)(λG(x) + (k-λ)x0) = D(x)(k-λ)xg + λkG(x)
           λkG(x) + (k- λ)D(xp) = D(x)(k-λ)xg + λkG(x)
                         (k- λ)D(xp) = D(x)(k-λ)xg

                                D(xp) = xgD(x).

Now, by comparing exponents we see that pD = D + g and 
so p is a multiplier.  



  

Conjecture
While the condition p > λ is used in the proof we have just 
seen (in an essential way), there is no known example of a 
prime which satisfies only the other conditions which is not 
a multiplier. 

This has led to the conjecture first enunciated by Marshall 
Hall, Jr. (1947) 

Conj: Given a (v,k,λ) difference set, a prime p, with (v,p) = 1 
and which divides the order of the difference set is a 
multiplier of the difference set.  

Proved for n = 2pr (Muzychuk 1998), n = 3pr (Qiu 2002), 
and n = 5pr but with some exceptions (Feng 2008).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

