Chapter 2
 Incidence Matrix

Let G be a graph with $V(G)=\{1, \ldots, n\}$ and $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. Suppose each edge of G is assigned an orientation, which is arbitrary but fixed. The (vertex-edge) incidence matrix of G, denoted by $Q(G)$, is the $n \times m$ matrix defined as follows. The rows and the columns of $Q(G)$ are indexed by $V(G)$ and $E(G)$, respectively. The (i, j)-entry of $Q(G)$ is 0 if vertex i and edge e_{j} are not incident, and otherwise it is 1 or -1 according as e_{j} originates or terminates at i, respectively. We often denote $Q(G)$ simply by Q. Whenever we mention $Q(G)$ it is assumed that the edges of G are oriented.

Example 2.1 Consider the graph shown. Its incidence matrix is given by Q.

$$
Q=\left[\begin{array}{cccccc}
-1 & 1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1
\end{array}\right]
$$

