2 Chapter 10 Combinatorial Designs

10.1 LATIN SQUARES

A Latin square is a type of combinatorial design most
easily described as an n X n array.

DEF: A Latin square on a set X of n objectsisann xn
array such that each object in X occurs once in each row
and once in each column.

Example 10.1.1: A Latin square on four graphic pat-
terns is shown in Figure 10.1.1.

Fig 10.1.1 A 4 x 4 Latin square.

The standard symbols for an n xn Latin square are the in-
tegers modulo n. The rows and columns of a Latin square
on Z, are commonly indexed in Z,,, so that there is a row
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0 and a column 0. In particular, the following 4 x 4 Latin

square on Z4 is obtainable from the Latin square of Figure
10.1.1 by a bijection of the symbol sets.

(10.1.1)

W N~ O
DN WO
O W N
O = NW

Remark: A sudoku is a form of 9 x 9 Latin square on the
numbers 1 to 9, with an additional requirement that each
number occur exactly once in certain 3 X 3 sub-arrays.

It is easy enough to construct a Latin square of any
given size.

Proposition 10.1.1. For every positive integer n, there
exists an n X n Latin square with Z,, as the set of objects.

Proof: Let L[i,j] =i+ j modulo n. Thus,

( 0 1 2 - n—2 n-—1

1 2 3 - n-—1 0

2 3 4 ... 0 1

L = . . T . .
n—2 n—1 0 --- n—4 n-—3
Kn—l 0 1 -+ n—-3 n—2)

Clearly the array L is a Latin square. &
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Example 10.1.2: For n = 4, the construction of Propo-
sition 10.1.1 yields the following Latin square.

0 1 2 3

1 2 3 0
9 3 0 1 (10.1.2)
3 0 1 2

A Latin square can be recognized as a type of combi-
natorial design (X, B ) with additional structure. The set
B is ordered, corresponding to the order of the rows in the
array. Each member B; € B contains every object of X, is
construed to be ordered, corresponding to the order of the
elements of a row. Moreover, the number of subsets in B
equals the number of objects in X, and for each object x

and each possible position within a row, there is a unique
row in which x occupies that position.

Product of Latin Squares

The next definition indicates a method of construc-
tion of a new Latin square, starting from two given Latin
squares.

DEF: Let A = (a;;) and B = (b;;) be Latin squares on Z,
and Zg, respectively. Then the product square AR B is
the Latin square on Z, X Z,

apo X B apl X B .- ap(r—1) X B

aigp X B a1 X B - a1(r—1) X B
ARB =

agr—1)0 X B apt X B -+ a@_1y(r—1) X B
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where the s X s submatrix a;; X B is given by

(@ij, boo) (aij, bo1) o (@, bo(s—1))
(aij, b1o) (aij, bir) -+ (aij, bis—1))
a;; X B = . . .
(aij, bs—1)0) (@ij bs—1)1) -+ (aij, bs—1)(s—1))

Proposition 10.1.2. Let A = (a;j) and B = (b;;) be
Latin squares on Z, and Zg, respectively. Their product
A ® B is a Latin square.

Proof: Since each row of A contains each number in Z,
and each row of B contains each number in Z,, it follows
that each row of A ® B contains each pair in Z, x Z,. The
same fact holds for the columns. &

Example 10.1.3: If

0 1 2
A = 0 1 and B = 1 2 0
(] ()> 2 0 1
then
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
( )
(0,1) (0,2) (0,0) (1,1) (1,2) (1,0)
AQB — (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)
(1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
(1,1) (1,2) (1,0) (0,1) (0,2) (0,0)
\(1,2) (1,0) (1,1) (0,2) (0,0) (0,1))
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which we observe is equivalent to the Latin square

0 1 2 3 4 5
1 2 0 4 5 3
2 01 5 3 4
34 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

under the bijection Zsy X Zs — Zg given by

A

SN’
I
o

.

0,1)—1 (0,2)—2
(1,0) =3 (1,1)—4 (1,2)—5

N
SN’

Orthogonal Latin Squares

DEF: Two n x n Latin squares A = (a; ;) and B = (b; ;)
are orthogonal Latin squares if the n® ordered pairs
(@i j, b;j) are mutually distinct.

Remark: By the pigeonhole principle, two n X n Latin
squares are orthogonal if each possible ordered pair of do-
main elements occurs.

Example 10.1.4: It is easy enough to construct the pair
of orthogonal 4 x 4 Latin squares in Figure 10.1.2 by ad
hoc methods. One Latin square is represented pictorially
by the outer pattern in an array location, and the other
Latin square by the inner pattern.
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0O 1 2 3
1 0 3 2
2 3 0 1
3 2 1 O
outer
3 0 1 2
2 1 0 3
0 3 2 1
1 2 3 0
mner

Fig 10.1.2 Two orthogonal Latin squares.

The next proposition indicates how to construct a
family of mutually orthogonal Latin squares.

Proposition 10.1.3. Fork=1,...,p— 1, wherep is a
prime number, let L]f be the p X p array such that

LYi,j] = ki+jmodp 0<i,j<p-—1
Then the p — 1 arrays
Lpl, Lpz, e Lg_l
are mutually orthogonal Latin squares.

Proof: The entries in row ¢ of the array L]f are

ki, ki+1, ki+2, ..., ki+(p—1)
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which are clearly distinct. The entries in column 5 are

Two of these entries differ by some number ck with 0 <
¢,k < p. Since p is prime, ck Z 0 modulo p. Therefore,
each of the arrays L]f is a Latin square.

Now suppose that the pairs of entries
Lkr. . L. . L & LA
(Lp [Zv.]]v Lp [%.]]) and (LP [Z’J]’ LP [Z"]]>
are identical. Then

kit = kit (10.1.3)
and

Kidj = Kitj (10.1.4)

If ¢ # i, then i — 7 has a multiplicative inverse in L, (see
Corollary 6.4.2). Hence,

k= 177 from (10.1.3)
1 —1
and
Vo= 17 from (10.1.4)
1 —1

Therefore, k = k'. &
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Example 10.1.5: The arrays LZ and L3 of Proposition
10.1.3 are orthogonal.

01 2 3 4 01 2 3 4
2 3 4 0 1 340 1 2
L =14 01 2 3 Ly =112 3 4 0
1 2 3 4 0 4 0 1 2 3
3 40 1 2 2 3 4 0 1

Remark: If p is not a prime, then L]f might not be a Latin
square. For instance, row 2 of the array Lg is identical to
row 0.

Theorem 10.1.4 [MacNeish, 1922]. Let

be r mutually orthogonal n X n Latin squares. Then the
Latin squares

AN @ BD AR g BR) ... A g BT
are mutually orthogonal.

Proof: Suppose that the pair of entries at location 75 x k¢
of the Latin square A®) x B®) and of the Latin square
AW x BW je.,

(al), by2)) and (al?), b1Y))
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is the same as the pair in location pg x uv of those two
Latin squares, i.e., as the pair

( (2) b(“")) and (a(y) b(y))

pq > Ouv pq ? “uv

Then the pairs

(a(fﬂ) a(y)) and (a(fﬂ) a(y))

i » Aij pq » “pq

are identical, which implies, since A®) and AW are or-
thogonal, that

t=p and jJ=gq
Similarly,

k=u and (=

Therefore, A®) x B®) and AW x BW are orthogonal. ¢

Proposition 10.1.5. For every odd number n > 1, there
is a pair of orthogonal n X n Latin squares.

Proof: This follows from Proposition 10.1.3 and Theo-
rem 10.1.4, since every odd number factors into a product
of odd primes. &

Proposition 10.1.6. Let n = 2% with k > 2. Then there
is a pair of orthogonal n X n Latin squares.

Proof: Example 10.1.4 gives a pair of orthogonal 4 x 4
Latin squares. The following is a pair of orthogonal 8 x 8
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Latin squares.

01234567 01234567
10325476 76543210
23016745 321076514
32107654 45670123
45670123 67452301
54761032 10325476
67452301 54761032
76543210 23016745)

If k£ is even, then n is a power of 4, and if k is odd, then
n is a product of 8 with a power of 4. It follows from the

base cases 4 X 4 and 8 X 8 and Theorem 10.1.4 that there
is a pair of orthogonal n x n Latin squares. &

There are only two possible 2 x 2 Latin squares in Z,,
and they are not orthogonal. Euler conjectured in 1782
that for n odd, there is no orthogonal pair of 2n X 2n
Latin squares. In 1901, Gaston Tarry [Tarr1901] proved
by exhaustion that there is no 6 x 6 pair. However, Ernest
Parker [Park1959] produced a 10 x 10 pair in 1960, and
then Bose, Shrikhande, and Parker [BSP1960] proved that

there is a 2n x 2n orthogonal pair except for n = 1 or 3.

Summary. For every positive integer n except 1, 2, and
6, there is a pair of orthogonal n X n Latin squares.
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Isotopic Latin Squares

DEF: The Latin squares Lli,j] and L'[i, 7] on Z,, are iso-
topic Latin squares if L’ can be obtained from L by a
sequence of transformations, each chosen from any of the
following three types.

e A permutation of the rows.

e A permutation of the columns.

e Applying a permutation o : Z,, — Z,, to the symbols
of the array.

Example 10.1.6: Swapping rows 0 and 1 of the Latin
square

0 1 2 3
1 2 3 0
9 3 0 1 (10.1.2)
3 0 1 2
yields the Latin square
1 2 3 0
0 1 2 3
2 3 0 1
3 0 1 2

Example 10.1.7: Swapping the symbols 0 and 1 in the
Latin square (10.1.2) yields this Latin square.

1 0 2 3

0 2 3 1
2 3 1 0
31 0 2
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Remark: Clearly, isotopy on Latin squares is an equiva-
lence relation.

DEF: A Latin square on Z,, is said to be normalized if
its initial row is

and its initial column is

n—1

Clearly, every Latin square is isotopic to a normalized
Latin square.

Abstract Latin Squares

Isotopy allows three natural kinds of transformation
on Latin squares that may be regarded as natural equiv-
alences. The following alternative conceptualization of a
Latin square allows some additional equivalences.

DEF: An abstract Latin square on Z,, is a set L of triples

(ry ¢, s)

in Z,, X 2, X Z, such that
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e For any (¢, j) € Z, X Z, there is a unique triple
(7“, C, 3) in L such that 1 = r and ,] — c.

e For any (i, k) € 2y X Z, there is a unique triple
(7“, C, 3) in L such that : = r and k£ = s.

e For any (5, k) € Z, X Z, there is a unique triple
(T‘, C, 3) in L such that J — c and k = s.

Proposition 10.1.7. Every abstract Latin square corre-
sponds to a unique concrete Latin square (i.e., the array
form). Conversely, for every concrete Latin square, there
is a unique abstract Latin square. &

We observe that the operation of transposition on the
array form of a Latin square has as its abstract counter-
part the operation of swapping the first and second entry
in each triple. Yet from the abstract perspective, we could
equally well swap the first and third entry of each triple.
Indeed, we equally apply any of the six possible permu-
tations uniformly to all the triples. This motivates the
following definition.

DEF: Let m be a permutation on the set {1, 2, 3}. The
operation of transforming a Latin square by applying 7 to
the coordinates of the triples is called a conjugacy op-
eration. The array resulting from applying © to a Latin

square L is called the m-conjugate of L. It may be de-
noted L™.
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Example 10.1.8: Consider the following Latin square
in array and abstract form.

0 3 1 2 (0,0,0) (0,1,3) (0,2,1) (0,3,2)

L - 1 2 O 3 (1707 1) (17172) (17270) (17373)

130 21 (2,0,3) (2,1,0) (2,2,2) (2,3,1)

2 1 3 0 (3,0,2) (3,1,1) (3,2,3) (3,3,0)
Applying the permutation (1,2)(3) to the set of triples

means swapping the first and second coordinates of each
triple, thereby obtaining

(0,0,0) (1,0,3) (2,0,1) (3,0,2)
(0,1,1) (1,1,2) (2,1,0) (3,1,3)
(0,2,3) (1,2,0) (2,2,2) (3,2,1)
(0,3,2) (1,3,1) (2,3,3) (3,3,0)

which is the abstract form of the Latin square
0 1 3 2
pa2e) - [302 01
1 0 2 3
2 3 1 0

Observing that L(12)(3) ig simply the transpose of L, we
recognize that the transformation L — L1123 simply
swaps the roles of rows and columns.

Alternatively, applying the permutation (1, 3)(2) to the set
of triples means swapping the first and third coordinates
of each triple, thereby obtaining

(0,0,0) (3,1,0) (1,2,0) (2,3,0)
(1,0,1) (2,1,1) (0,2,1) (3,3,1)
(3,0,2) (0,1,2) (2,2,2) (1,3,2)
(2,0,3) (1,1,3) (3,2,3) (0,3,3)
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which is the abstract form of the Latin square

,(1:3)(2)

N Wk O
O = W
w N o
O N W

Remark 1: We observe that conjugacy is an equivalence
relation on the Latin squares. The possible class sizes are

1, 2, 3, and 6.

Remark 2: For n < 5, the conjugacy operations on
a Latin square produce only Latin squares that could be
obtained by isotopy operations. However, for n > 6, they
produce additional Latin squares.

DEF: Two Latin squares L and L’ are main class isotopic
if L is isotopic to any conjugate of L',



